JPH10145981A - Battery charging and device therefor - Google Patents

Battery charging and device therefor

Info

Publication number
JPH10145981A
JPH10145981A JP8300333A JP30033396A JPH10145981A JP H10145981 A JPH10145981 A JP H10145981A JP 8300333 A JP8300333 A JP 8300333A JP 30033396 A JP30033396 A JP 30033396A JP H10145981 A JPH10145981 A JP H10145981A
Authority
JP
Japan
Prior art keywords
battery
voltage
charging
current
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8300333A
Other languages
Japanese (ja)
Other versions
JP3641885B2 (en
Inventor
Takeji Tanjiyou
雄児 丹上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP30033396A priority Critical patent/JP3641885B2/en
Publication of JPH10145981A publication Critical patent/JPH10145981A/en
Application granted granted Critical
Publication of JP3641885B2 publication Critical patent/JP3641885B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To optimize charging completion current value for constant-voltage charging time and charging amount which affect deterioration of a battery by determining constant-voltage charging time from battery voltage and battery internal resistance, so as to increase charging/discharging cycle life. SOLUTION: A battery voltage detecting means 2 detects the voltage of a battery 1, and a battery current detecting means 3 monitors the current of the battery 1 to charge the battery at constant current until the voltage of the battery 1 reaches a prescribed voltage value. The current value is then made smaller than a constant-current value to keep voltage at a prescribed voltage value for constant-voltage charging. A CPU5 determines the internal resistance of the battery 1 from the voltage of the battery 1 detected by the battery voltage detecting means 2 and the current of the battery 1 detected by the battery current detecting means 3 to determine constant-voltage charging time and charging completion current from the internal resistance and the temperature of the battery 1 detected by a battery temperature detecting means 6. It is thus possible to optimize constant-voltage charging time which affects deterioration of a battery 1 and increase charging/discharging cycle life.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池の充電方法及
び充電装置に関する。
The present invention relates to a battery charging method and a battery charging device.

【0002】[0002]

【従来の技術】従来の電池の充電方法としては、例えば
図9に示すような方法がある。電池電圧がある一定電圧
以上になると安全上好ましくない非水系電池において
は、同図に示すように、定電圧充電が行われている。ま
た特開平6−325794号公報には、電池の電圧が満
充電電圧より高い所定の基準電圧になるまで定電流で充
電し、その後、満充電電圧に等しい電圧で定電圧充電す
ることにより、短時間で十分な充電を行うことが可能な
充電方法が開示されている。
2. Description of the Related Art As a conventional battery charging method, for example, there is a method as shown in FIG. When the battery voltage becomes higher than a certain voltage, the non-aqueous battery, which is not preferable for safety, is charged at a constant voltage as shown in FIG. Japanese Patent Application Laid-Open No. 6-325794 discloses that a battery is charged with a constant current until a battery voltage reaches a predetermined reference voltage higher than a full charge voltage, and then charged at a constant voltage with a voltage equal to the full charge voltage. A charging method capable of performing sufficient charging in a short time is disclosed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の電池の充電方法にあっては、充電時間及び充
電量は、電池温度により異なるため、電池温度が高いと
きに必要以上に充電時間が長くかかることがあり、電池
温度が高いときには充電時間が長くなるほど劣化しやす
くなるという問題点があった。一方、電池温度が低いと
きには、充電時間が長く必要となるため、充電不足にな
ったり、充電時間による制御が難しいという問題点があ
った。
However, in such a conventional battery charging method, the charging time and the charging amount differ depending on the battery temperature. Therefore, when the battery temperature is high, the charging time is longer than necessary. It may take a long time, and when the battery temperature is high, there is a problem that the longer the charging time, the more easily the battery deteriorates. On the other hand, when the battery temperature is low, a long charging time is required, so that there is a problem in that the charging becomes insufficient and control based on the charging time is difficult.

【0004】本発明は、このような従来の問題点に着目
してなされたもので、電池の劣化に影響する定電圧充電
時間及び充電量に関係する充電終止電流値を最適化し
て、充放電サイクル寿命を向上させることができる電池
の充電方法及び充電装置を提供することを目的とする。
The present invention has been made in view of such conventional problems, and optimizes a constant voltage charging time which affects battery deterioration and a charge termination current value relating to the amount of charge to charge and discharge. An object of the present invention is to provide a battery charging method and a battery charging device capable of improving cycle life.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の電池の充電方法は、電池の電圧が所
定電圧値に達するまで定電流で充電し、その後、電流値
を小さくし、電圧を前記所定電圧値に保って定電圧充電
する電池の充電方法において、前記定電圧充電する時間
を電池温度と電池内部抵抗によって決定することを要旨
とする。この構成により、電池の劣化に影響する定電圧
充電時間を最適化することが可能となる。
According to a first aspect of the present invention, there is provided a method for charging a battery, wherein the battery is charged at a constant current until the voltage of the battery reaches a predetermined voltage value. In addition, in a method of charging a battery that performs constant voltage charging while maintaining the voltage at the predetermined voltage value, the gist is that the time for performing the constant voltage charging is determined by a battery temperature and a battery internal resistance. With this configuration, it is possible to optimize the constant voltage charging time that affects battery deterioration.

【0006】請求項2記載の電池の充電方法は、上記請
求項1記載の電池の充電方法において、所定の電池温度
における前記電池内部抵抗から前記電池の劣化を判断
し、前記定電圧充電時間は前記電池の劣化とともに短く
することを要旨とする。この構成により、電池内部抵抗
は電池の容量劣化とともに大きくなる。定電圧充電時間
を電池の劣化とともに短くすることで、劣化の進行を抑
える上で定電圧充電時間を最適化することが可能とな
る。
According to a second aspect of the present invention, in the battery charging method according to the first aspect, the deterioration of the battery is determined from the internal resistance of the battery at a predetermined battery temperature. The gist of the invention is to shorten the battery with the deterioration of the battery. With this configuration, the battery internal resistance increases as the battery capacity deteriorates. By shortening the constant voltage charging time together with the deterioration of the battery, it is possible to optimize the constant voltage charging time to suppress the progress of the deterioration.

【0007】請求項3記載の電池の充電方法は、電池の
電圧が所定電圧値に達するまで定電流で充電し、その
後、電流値を小さくし、電圧を前記所定電圧値に保って
定電圧充電する電池の充電方法において、前記定電圧充
電時の充電終止電流値を電池温度と電池内部抵抗によっ
て決定することを要旨とする。この構成により、充電量
に関係する充電終止電流値を最適化することが可能とな
る。
According to a third aspect of the battery charging method, the battery is charged with a constant current until the battery voltage reaches a predetermined voltage value, and thereafter, the current value is reduced, and the voltage is maintained at the predetermined voltage value. In the battery charging method described above, the gist is that the end-of-charge current value at the time of constant-voltage charging is determined by the battery temperature and the battery internal resistance. With this configuration, it is possible to optimize the charge termination current value related to the charge amount.

【0008】請求項4記載の電池の充電方法は、電池の
電圧が所定電圧値に達するまで定電流で充電し、その
後、電流値を小さくし、電圧を前記所定電圧値に保って
定電圧充電する電池の充電方法において、前記定電圧充
電時の充電終止電流値を前記電池の充電回数又は使用時
間の少なくとも何れかによって決定することを要旨とす
る。この構成により、上記と同様に、充電量に関係する
充電終止電流値を最適化することが可能となる。
According to a fourth aspect of the present invention, there is provided a method of charging a battery, wherein the battery is charged at a constant current until the battery voltage reaches a predetermined voltage value, and thereafter, the current value is reduced, and the voltage is maintained at the predetermined voltage value. In the battery charging method described above, the gist is that the charge termination current value at the time of the constant voltage charging is determined by at least one of the number of times of charging of the battery and the usage time. With this configuration, it is possible to optimize the charge termination current value related to the charge amount, as described above.

【0009】請求項5記載の電池の充電方法は、上記請
求項3又は4記載の電池の充電方法において、所定の電
池温度における前記電池内部抵抗、前記充電回数又は使
用時間から前記電池の劣化を判断し、前記充電終止電流
値は前記電池の劣化とともに大きくすることを要旨とす
る。この構成により、電池容量は、電池内部抵抗が大き
いほど、また充電回数又は使用時間が増すほど劣化して
いる。充電終止電流値を電池の劣化とともに大きくする
ことで、充電不足を防止する上で充電終止電流値を最適
化することが可能となる。
According to a fifth aspect of the present invention, in the battery charging method according to the third or fourth aspect, the deterioration of the battery is determined based on the internal resistance of the battery at a predetermined battery temperature, the number of times of charging, or the use time. It is determined that the charge termination current value is increased with the deterioration of the battery. With this configuration, the battery capacity is degraded as the internal resistance of the battery is increased and as the number of times of charging or the usage time is increased. By increasing the charge termination current value along with the deterioration of the battery, it becomes possible to optimize the charge termination current value in order to prevent insufficient charging.

【0010】請求項6記載の電池の充電方法は、上記請
求項1,2,3,4又は5記載の電池の充電方法におい
て、複数個の電池が直列に接続された組電池において、
前記電池温度と電池内部抵抗は前記組電池中最も内部抵
抗の大きい電池を基準にすることを要旨とする。この構
成により、組電池に対し、電圧ばらつきを考慮した上で
最適な充電が可能となる。
A battery charging method according to a sixth aspect of the present invention is the battery charging method according to the first, second, third, fourth or fifth aspect, wherein a plurality of batteries are connected in series.
The gist is that the battery temperature and the battery internal resistance are based on the battery having the largest internal resistance among the assembled batteries. With this configuration, it is possible to optimally charge the battery pack in consideration of voltage variations.

【0011】請求項7記載の充電装置は、電池の電圧が
所定電圧値に達するまで定電流で充電し、その後、電流
値を小さくし、電圧を前記所定電圧値に保って定電圧充
電する充電装置において、前記電池の温度を検出する電
池温度検出手段と、前記電池の電圧を検出する電池電圧
検出手段と、前記電池の電流を検出する電池電流検出手
段と、前記電池電圧検出手段で検出された電池電圧及び
前記電池電流検出手段で検出された電池電流から求めた
電池内部抵抗と前記電池温度検出手段で検出された電池
温度から前記定電圧充電する時間を決定する制御手段と
を有することを要旨とする。この構成により、電池の劣
化に影響する定電圧充電時間を最適化する充電方法を適
切に実現することが可能となる。
According to a seventh aspect of the present invention, there is provided a charging apparatus for charging a battery at a constant current until the voltage of the battery reaches a predetermined voltage value, and thereafter reducing the current value and maintaining the voltage at the predetermined voltage value to perform constant voltage charging. In the device, a battery temperature detecting means for detecting a temperature of the battery, a battery voltage detecting means for detecting a voltage of the battery, a battery current detecting means for detecting a current of the battery, and a battery voltage detected by the battery voltage detecting means. Control means for determining the constant voltage charging time from the battery internal resistance determined from the battery voltage and the battery current detected by the battery current detection means and the battery temperature detected by the battery temperature detection means. Make a summary. With this configuration, it is possible to appropriately realize a charging method that optimizes the constant voltage charging time that affects battery deterioration.

【0012】請求項8記載の充電装置は、電池の電圧が
所定電圧値に達するまで定電流で充電し、その後、電流
値を小さくし、電圧を前記所定電圧値に保って定電圧充
電する充電装置において、前記電池の温度を検出する電
池温度検出手段と、前記電池の電圧を検出する電池電圧
検出手段と、前記電池の電流を検出する電池電流検出手
段と、前記電池電圧検出手段で検出された電池電圧及び
前記電池電流検出手段で検出された電池電流から求めた
電池内部抵抗と前記電池温度検出手段で検出された電池
温度から前記定電圧充電時の充電終止電流値を決定する
制御手段とを有することを要旨とする。この構成によ
り、充電量に関係する充電終止電流値を最適化する充電
方法を適切に実現することが可能となる。
In the charging device according to the present invention, the battery is charged with a constant current until the battery voltage reaches a predetermined voltage value, and thereafter, the current value is reduced, and the voltage is maintained at the predetermined voltage value to perform constant voltage charging. In the device, a battery temperature detecting means for detecting a temperature of the battery, a battery voltage detecting means for detecting a voltage of the battery, a battery current detecting means for detecting a current of the battery, and a battery voltage detected by the battery voltage detecting means. Control means for determining a charge termination current value at the time of constant voltage charging from the battery internal resistance obtained from the battery voltage detected by the battery voltage and the battery current detected by the battery current detection means, and the battery temperature detected by the battery temperature detection means. The gist is to have. With this configuration, it is possible to appropriately realize a charging method that optimizes the charge termination current value related to the charge amount.

【0013】[0013]

【発明の効果】請求項1記載の電池の充電方法によれ
ば、定電圧充電時間を電池温度と電池内部抵抗によって
決定するようにしたため、電池の劣化に影響する定電圧
充電時間を最適化することができて、充放電サイクル寿
命を向上させることができる。
According to the battery charging method of the present invention, since the constant voltage charging time is determined by the battery temperature and the battery internal resistance, the constant voltage charging time which affects the deterioration of the battery is optimized. Therefore, the charge / discharge cycle life can be improved.

【0014】請求項2記載の電池の充電方法によれば、
所定の電池温度における前記電池内部抵抗から電池の劣
化を判断し、前記定電圧充電時間は前記電池の劣化とと
もに短くするようにしたため、劣化の進行を抑える上で
定電圧充電時間を最適化することができて、充放電サイ
クル寿命を向上させることができる。
According to the battery charging method of the second aspect,
Since the deterioration of the battery is determined from the internal resistance of the battery at a predetermined battery temperature, and the constant voltage charging time is shortened with the deterioration of the battery, the constant voltage charging time is optimized to suppress the progress of the deterioration. Thus, the charge / discharge cycle life can be improved.

【0015】請求項3記載の電池の充電方法によれば、
定電圧充電時の充電終止電流値を電池温度と電池内部抵
抗によって決定するようにしたため、充電量に関係する
充電終止電流値を最適化することができて、充電不足を
防止することができる。
According to the battery charging method of the third aspect,
Since the end-of-charge current value at the time of constant-voltage charging is determined by the battery temperature and the internal resistance of the battery, the end-of-charge current value related to the amount of charge can be optimized, and insufficient charging can be prevented.

【0016】請求項4記載の電池の充電方法によれば、
定電圧充電時の充電終止電流値を電池の充電回数又は使
用時間の少なくとも何れかによって決定するようにした
ため、上記請求項3記載の発明の効果とほぼ同様の効果
が得られる。
According to the battery charging method of the fourth aspect,
Since the charge termination current value at the time of constant voltage charging is determined based on at least one of the number of times of charging of the battery and the use time, substantially the same effect as the effect of the third aspect of the present invention can be obtained.

【0017】請求項5記載の電池の充電方法によれば、
所定の電池温度における前記電池内部抵抗、前記充電回
数又は使用時間から電池の劣化を判断し、前記充電終止
電流値は前記電池の劣化とともに大きくするようにした
ため、充電不足を防止する上で充電終止電流値を最適化
することができる。
According to the battery charging method of the fifth aspect,
Deterioration of the battery is determined from the internal resistance of the battery at the predetermined battery temperature, the number of times of charging, or the usage time, and the charge termination current value is increased with the degradation of the battery. The current value can be optimized.

【0018】請求項6記載の電池の充電方法によれば、
複数個の電池が直列に接続された組電池において、前記
電池温度と電池内部抵抗は前記組電池中最も内部抵抗の
大きい電池を基準にするようにしたため、組電池に対
し、電圧ばらつきを考慮した上で最適な充電を行うこと
ができる。
According to the battery charging method of the sixth aspect,
In a battery pack in which a plurality of batteries are connected in series, the battery temperature and the battery internal resistance are based on the battery with the largest internal resistance among the battery packs. The optimal charging can be performed on the above.

【0019】請求項7記載の充電装置によれば、電池温
度を検出する電池温度検出手段と、電池電圧を検出する
電池電圧検出手段と、電池電流を検出する電池電流検出
手段と、前記電池電圧検出手段で検出された電池電圧及
び前記電池電流検出手段で検出された電池電流から求め
た電池内部抵抗と前記電池温度検出手段で検出された電
池温度から定電圧充電時間を決定する制御手段とを具備
させたため、電池の劣化に影響する定電圧充電時間を最
適化する充電方法を適切に実現することができる。
According to the charging device of the present invention, a battery temperature detecting means for detecting a battery temperature, a battery voltage detecting means for detecting a battery voltage, a battery current detecting means for detecting a battery current, Control means for determining a constant voltage charging time from the battery internal resistance obtained from the battery voltage detected by the detection means and the battery current detected by the battery current detection means and the battery temperature detected by the battery temperature detection means. Because of the provision, a charging method that optimizes the constant voltage charging time that affects battery deterioration can be appropriately realized.

【0020】請求項8記載の充電装置によれば、電池温
度を検出する電池温度検出手段と、電池電圧を検出する
電池電圧検出手段と、電池電流を検出する電池電流検出
手段と、前記電池電圧検出手段で検出された電池電圧及
び前記電池電流検出手段で検出された電池電流から求め
た電池内部抵抗と前記電池温度検出手段で検出された電
池温度から定電圧充電時の充電終止電流値を決定する制
御手段とを具備させたため、充電量に関係する充電終止
電流値を最適化する充電方法を適切に実現することがで
きる。
According to the charging device of the present invention, the battery temperature detecting means for detecting the battery temperature, the battery voltage detecting means for detecting the battery voltage, the battery current detecting means for detecting the battery current, and the battery voltage A charge termination current value at the time of constant voltage charging is determined from the battery internal resistance obtained from the battery voltage detected by the detection means and the battery current detected by the battery current detection means and the battery temperature detected by the battery temperature detection means. Therefore, the charging method for optimizing the charge termination current value related to the charge amount can be appropriately realized.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0022】図1乃至図5は、本発明の第1の実施の形
態を示す図である。まず、図1を用いて、充電装置の構
成を説明する。同図において、1は被充電電池であり、
充電器4により充電されるようになっている。充電器4
には制御手段としてのCPU5が内蔵されており、CP
U5には電池1の温度と内部抵抗より定電圧充電時間及
び充電終止電流を求めるマップが記憶されている。2は
電池1の電圧を検出する電池電圧検出手段、3は電池1
の電流を検出する電池電流検出手段、6は電池1の温度
を検出する電池温度検出手段である。
FIG. 1 to FIG. 5 are views showing a first embodiment of the present invention. First, the configuration of the charging device will be described with reference to FIG. In FIG. 1, reference numeral 1 denotes a battery to be charged;
The battery is charged by the charger 4. Charger 4
Has a built-in CPU 5 as control means.
U5 stores a map for obtaining the constant voltage charging time and the charge termination current from the temperature and the internal resistance of the battery 1. 2 is a battery voltage detecting means for detecting the voltage of the battery 1 and 3 is a battery 1
The battery current detecting means 6 detects the current of the battery 1, and the battery temperature detecting means 6 detects the temperature of the battery 1.

【0023】次に、上記構成の充電装置を用いた電池1
の充電方法を、図2乃至図5を用いて説明する。電池電
圧検出手段2で電池電圧を検出し、電池電流検出手段3
で電池電流を監視しつつ、電池1の電圧が所定電圧値に
達するまで定電流で充電する。その後、電流値を定電流
値より小さくし、電圧は、その所定電圧値に保って定電
圧充電する。このとき、CPU5により、電池電圧検出
手段2で検出された電池電圧と電池電流検出手段3で検
出された電池電流から電池1の内部抵抗を求め、この内
部抵抗値と電池温度検出手段6で検出された電池温度に
より定電圧充電時間及び充電終止電流を決定する。
Next, the battery 1 using the charging device having the above-described configuration will be described.
The charging method will be described with reference to FIGS. The battery voltage detecting means 2 detects the battery voltage, and the battery current detecting means 3
While monitoring the battery current, the battery 1 is charged with a constant current until the voltage of the battery 1 reaches a predetermined voltage value. Thereafter, the current value is made smaller than the constant current value, and the voltage is charged at a constant voltage while maintaining the predetermined voltage value. At this time, the CPU 5 determines the internal resistance of the battery 1 from the battery voltage detected by the battery voltage detecting means 2 and the battery current detected by the battery current detecting means 3, and detects the internal resistance value and the battery temperature detecting means 6. The constant voltage charging time and the charge termination current are determined based on the battery temperature.

【0024】図2は、負極活物質に炭素材料、正極活物
質にLiCoO2 を用い、電解液として炭酸プロピレン
と1−2−ジメトキシエタンとの混合溶液に六フッカ化
リン酸リチウムを1モル/l溶解させて得られた非水電
解液を用いた電池を例にとって、電池温度及び所定の温
度における内部抵抗と定電圧充電時間の関係を示してい
る。同図より電池温度が高いほど、また所定の温度にお
ける内部抵抗の値が大きいほど充電時間は短かく決定す
る。電池の内部抵抗は電池の容量劣化とともに大きくな
るため、所定の温度における電池の内部抵抗が大きいほ
ど電池は劣化している。図3は、上記と同様の電池の電
池温度及び所定の温度における内部抵抗と充電終止電流
値の関係を示している。充電終止電流値は、電池温度が
高いほど、また所定の温度における内部抵抗が大きいほ
ど大きく決定する。
FIG. 2 shows that a carbon material is used as a negative electrode active material, LiCoO 2 is used as a positive electrode active material, and a lithium hexafukafide phosphate is mixed with 1 mol / liter of a mixed solution of propylene carbonate and 1-2-dimethoxyethane as an electrolytic solution. 1 shows the relationship between the battery temperature, the internal resistance at a predetermined temperature, and the constant voltage charging time, taking a battery using a non-aqueous electrolyte obtained by dissolution as an example. As shown in the figure, the charging time is determined to be shorter as the battery temperature is higher and the value of the internal resistance at a predetermined temperature is larger. Since the internal resistance of a battery increases as the capacity of the battery deteriorates, the battery deteriorates as the internal resistance of the battery at a predetermined temperature increases. FIG. 3 shows the relationship between the battery temperature and the internal resistance at a predetermined temperature and the charge termination current value of the same battery as described above. The charge termination current value is determined to be larger as the battery temperature is higher and the internal resistance at a predetermined temperature is higher.

【0025】電池の内部抵抗値は、電池の放電時に、前
記したように電流値と電圧降下値より算出可能である。
また図4に示すように、定電流(定電力)充電から定電
圧充電へ切り替わるときの電圧降下値又は電流値を減少
させて充電するときの電圧降下値を、そのとき流れてい
た電流値で割ることにより求めることも可能である。
The internal resistance of the battery can be calculated from the current value and the voltage drop value when the battery is discharged, as described above.
Further, as shown in FIG. 4, the voltage drop value when switching from constant current (constant power) charging to constant voltage charging or the voltage drop value when charging by reducing the current value is represented by the current value flowing at that time. It is also possible to obtain by dividing.

【0026】図5に、従来法(充電時間一定及び充電終
止電流値一定)で充電したときと本実施の形態の充電方
法で充電したときの、サイクル数と放電容量の関係を比
較して示す。同図より、本実施の形態の充電方法で充電
することにより、従来方法に比べて充放電サイクル寿命
が向上していることがわかる。
FIG. 5 shows the relationship between the number of cycles and the discharge capacity when charging by the conventional method (constant charging time and constant charging end current value) and when charging by the charging method of the present embodiment. . From the figure, it can be seen that charging by the charging method of the present embodiment has improved the charge / discharge cycle life as compared with the conventional method.

【0027】上述したように、本実施の形態によれば、
定電圧充電時間又は充電終止電流値を電池温度及び内部
抵抗値より決定することにより、充放電サイクル寿命を
向上させることができる。
As described above, according to the present embodiment,
By determining the constant voltage charging time or the charge termination current value from the battery temperature and the internal resistance value, the charge / discharge cycle life can be improved.

【0028】図6乃至図8には、本発明の第2の実施の
形態を示す。図6を用いて、本実施の形態の充電装置の
構成を説明する。本実施の形態では、CPU5に電池1
の充電回数又は使用日数より定電圧充電時間及び充電終
止電流を求めるマップが記憶されている。そして、電池
1の電圧が所定電圧値に達するまで定電流で充電し、そ
の後、電流値を定電流値より小さくし、電圧は、その所
定電圧値に保って定電圧充電する。このとき、CPU5
により、定電圧充電時の定電圧充電時間及び充電終止電
流値を電池1の充電回数又は使用日数の少なくとも何れ
かによって決定する。図7は、充放電回数と充電終止電
流値の関係を示している。また図8は、電池の使用日数
と充電終止電流値の関係を示している。充電回数や使用
日数を記憶していることにより、電池の容量劣化ととも
に充電終止電流は大きく決定する。
FIGS. 6 to 8 show a second embodiment of the present invention. The configuration of the charging device according to the present embodiment will be described with reference to FIG. In the present embodiment, the battery 1 is provided to the CPU 5.
A map for obtaining the constant voltage charging time and the charge termination current from the number of times of charging or the number of days of use is stored. Then, the battery 1 is charged with a constant current until the voltage of the battery 1 reaches a predetermined voltage value. Thereafter, the current value is made smaller than the constant current value, and the voltage is charged at a constant voltage while maintaining the predetermined voltage value. At this time, the CPU 5
Thus, the constant voltage charging time and the charge termination current value at the time of constant voltage charging are determined by at least one of the number of times of charging of the battery 1 and the number of days of use. FIG. 7 shows the relationship between the number of times of charge / discharge and the charge termination current value. FIG. 8 shows the relationship between the number of days of use of the battery and the charge termination current value. By storing the number of times of charging and the number of days of use, the charge termination current is largely determined along with the deterioration of the battery capacity.

【0029】上記各実施の形態の充電方法は、複数の電
池が直列に接続されている組電池にも適用可能である。
組電池に適用する場合には組電池中最も内部抵抗の大き
い電池の温度及び内部抵抗値によって充電制御すること
により、総電圧で制御するよりも電圧ばらつきを考慮し
た最適な充電が可能となる。
The charging method of each of the above embodiments can be applied to a battery pack in which a plurality of batteries are connected in series.
When the present invention is applied to an assembled battery, by performing charge control on the basis of the temperature and the internal resistance value of the battery having the largest internal resistance among the assembled batteries, it becomes possible to perform optimal charging in consideration of voltage variations rather than controlling the total voltage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る充電装置の第1の実施の形態を示
すブロック図である。
FIG. 1 is a block diagram showing a first embodiment of a charging device according to the present invention.

【図2】上記第1の実施の形態において電池温度及び所
定温度における内部抵抗と定電圧充電時間の関係を示す
図である。
FIG. 2 is a diagram showing a relationship between a battery temperature and an internal resistance at a predetermined temperature and a constant voltage charging time in the first embodiment.

【図3】上記第1の実施の形態において電池温度及び所
定温度における内部抵抗と充電終止電流値の関係を示す
図である。
FIG. 3 is a diagram showing a relationship between a battery temperature and an internal resistance at a predetermined temperature and a charge termination current value in the first embodiment.

【図4】上記第1の実施の形態において電池の電流値と
電圧降下値から電池内部抵抗の算出例を説明するための
図である。
FIG. 4 is a diagram for explaining an example of calculating a battery internal resistance from a battery current value and a voltage drop value in the first embodiment.

【図5】上記第1の実施の形態において充放電サイクル
数と放電容量の関係を比較例とともに示す図である。
FIG. 5 is a diagram showing the relationship between the number of charge / discharge cycles and the discharge capacity in the first embodiment, together with a comparative example.

【図6】本発明に係る充電装置の第2の実施の形態を示
すブロック図である。
FIG. 6 is a block diagram showing a second embodiment of the charging device according to the present invention.

【図7】上記第2の実施の形態において充放電回数と充
電終止電流値の関係を示す図である。
FIG. 7 is a diagram showing a relationship between the number of times of charging and discharging and a charge termination current value in the second embodiment.

【図8】上記第2の実施の形態において電池の使用日数
と充電終止電流値の関係を示す図である。
FIG. 8 is a diagram showing a relationship between the number of days of use of a battery and a charge termination current value in the second embodiment.

【図9】従来の電池の充電方法を説明するための図であ
る。
FIG. 9 is a view for explaining a conventional battery charging method.

【符号の説明】[Explanation of symbols]

1 被充電電池 2 電池電圧検出手段 3 電池電流検出手段 4 充電器 5 CPU(制御手段) 6 電池温度検出手段 DESCRIPTION OF SYMBOLS 1 Battery to be charged 2 Battery voltage detecting means 3 Battery current detecting means 4 Charger 5 CPU (control means) 6 Battery temperature detecting means

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 電池の電圧が所定電圧値に達するまで定
電流で充電し、その後、電流値を小さくし、電圧を前記
所定電圧値に保って定電圧充電する電池の充電方法にお
いて、前記定電圧充電する時間を電池温度と電池内部抵
抗によって決定することを特徴とする電池の充電方法。
1. A method for charging a battery, wherein the battery is charged with a constant current until the voltage of the battery reaches a predetermined voltage value, and thereafter, the current value is reduced, and the voltage is maintained at the predetermined voltage value and the battery is charged at a constant voltage. A method for charging a battery, wherein a time for voltage charging is determined by a battery temperature and a battery internal resistance.
【請求項2】 所定の電池温度における前記電池内部抵
抗から前記電池の劣化を判断し、前記定電圧充電時間は
前記電池の劣化とともに短くすることを特徴とする請求
項1記載の電池の充電方法。
2. The battery charging method according to claim 1, wherein the deterioration of the battery is determined from the internal resistance of the battery at a predetermined battery temperature, and the constant voltage charging time is shortened with the deterioration of the battery. .
【請求項3】 電池の電圧が所定電圧値に達するまで定
電流で充電し、その後、電流値を小さくし、電圧を前記
所定電圧値に保って定電圧充電する電池の充電方法にお
いて、前記定電圧充電時の充電終止電流値を電池温度と
電池内部抵抗によって決定することを特徴とする電池の
充電方法。
3. The method of charging a battery according to claim 1, wherein the battery is charged at a constant current until the voltage of the battery reaches a predetermined voltage value, and then the current value is reduced, and the voltage is maintained at the predetermined voltage value at a constant voltage. A method for charging a battery, comprising determining a charge termination current value during voltage charging based on a battery temperature and a battery internal resistance.
【請求項4】 電池の電圧が所定電圧値に達するまで定
電流で充電し、その後、電流値を小さくし、電圧を前記
所定電圧値に保って定電圧充電する電池の充電方法にお
いて、前記定電圧充電時の充電終止電流値を前記電池の
充電回数又は使用時間の少なくとも何れかによって決定
することを特徴とする電池の充電方法。
4. The method of charging a battery according to claim 1, wherein the battery is charged at a constant current until the voltage of the battery reaches a predetermined voltage value, and then the current value is reduced, and the voltage is maintained at the predetermined voltage value at a constant voltage. A method for charging a battery, wherein the charge termination current value at the time of voltage charging is determined based on at least one of the number of times of charging of the battery and the usage time.
【請求項5】 所定の電池温度における前記電池内部抵
抗、前記充電回数又は使用時間から前記電池の劣化を判
断し、前記充電終止電流値は前記電池の劣化とともに大
きくすることを特徴とする請求項3又は4記載の電池の
充電方法。
5. The battery according to claim 1, wherein the deterioration of the battery is determined from the internal resistance of the battery at a predetermined battery temperature, the number of times of charging, or the use time, and the charge termination current value increases with the deterioration of the battery. 5. The method for charging a battery according to 3 or 4.
【請求項6】 複数個の電池が直列に接続された組電池
において、前記電池温度と電池内部抵抗は前記組電池中
最も内部抵抗の大きい電池を基準にすることを特徴とす
る請求項1,2,3,4又は5記載の電池の充電方法。
6. An assembled battery in which a plurality of batteries are connected in series, wherein the battery temperature and the battery internal resistance are based on the battery having the largest internal resistance among the assembled batteries. The method for charging a battery according to 2, 3, 4 or 5.
【請求項7】 電池の電圧が所定電圧値に達するまで定
電流で充電し、その後、電流値を小さくし、電圧を前記
所定電圧値に保って定電圧充電する充電装置において、
前記電池の温度を検出する電池温度検出手段と、前記電
池の電圧を検出する電池電圧検出手段と、前記電池の電
流を検出する電池電流検出手段と、前記電池電圧検出手
段で検出された電池電圧及び前記電池電流検出手段で検
出された電池電流から求めた電池内部抵抗と前記電池温
度検出手段で検出された電池温度から前記定電圧充電す
る時間を決定する制御手段とを有することを特徴とする
充電装置。
7. A charging device for charging at a constant current until the voltage of a battery reaches a predetermined voltage value, and thereafter reducing the current value and maintaining the voltage at the predetermined voltage value to perform constant-voltage charging,
Battery temperature detecting means for detecting the temperature of the battery, battery voltage detecting means for detecting the voltage of the battery, battery current detecting means for detecting the current of the battery, and battery voltage detected by the battery voltage detecting means And control means for determining the time for constant voltage charging from the battery internal resistance obtained from the battery current detected by the battery current detection means and the battery temperature detected by the battery temperature detection means. Charging device.
【請求項8】 電池の電圧が所定電圧値に達するまで定
電流で充電し、その後、電流値を小さくし、電圧を前記
所定電圧値に保って定電圧充電する充電装置において、
前記電池の温度を検出する電池温度検出手段と、前記電
池の電圧を検出する電池電圧検出手段と、前記電池の電
流を検出する電池電流検出手段と、前記電池電圧検出手
段で検出された電池電圧及び前記電池電流検出手段で検
出された電池電流から求めた電池内部抵抗と前記電池温
度検出手段で検出された電池温度から前記定電圧充電時
の充電終止電流値を決定する制御手段とを有することを
特徴とする充電装置。
8. A charging device for charging at a constant current until the voltage of a battery reaches a predetermined voltage value, and thereafter reducing the current value and maintaining the voltage at the predetermined voltage value to perform constant-voltage charging,
Battery temperature detecting means for detecting the temperature of the battery, battery voltage detecting means for detecting the voltage of the battery, battery current detecting means for detecting the current of the battery, and battery voltage detected by the battery voltage detecting means And control means for determining a charge termination current value at the time of constant voltage charging from a battery internal resistance obtained from the battery current detected by the battery current detection means and a battery temperature detected by the battery temperature detection means. A charging device characterized by the above-mentioned.
JP30033396A 1996-11-12 1996-11-12 Battery charging method and charging device Expired - Lifetime JP3641885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30033396A JP3641885B2 (en) 1996-11-12 1996-11-12 Battery charging method and charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30033396A JP3641885B2 (en) 1996-11-12 1996-11-12 Battery charging method and charging device

Publications (2)

Publication Number Publication Date
JPH10145981A true JPH10145981A (en) 1998-05-29
JP3641885B2 JP3641885B2 (en) 2005-04-27

Family

ID=17883516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30033396A Expired - Lifetime JP3641885B2 (en) 1996-11-12 1996-11-12 Battery charging method and charging device

Country Status (1)

Country Link
JP (1) JP3641885B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004152755A (en) * 2002-10-11 2004-05-27 Canon Inc Internal resistance detection method of secondary battery, internal resistance detecting device, internal resistance detection program, and medium storing the program
JP2007234252A (en) * 2006-02-27 2007-09-13 Matsushita Electric Works Ltd Charger
WO2007110691A1 (en) * 2006-03-27 2007-10-04 Sony Ericsson Mobile Communications Ab Battery charge temperature control
JP2009106118A (en) * 2007-10-25 2009-05-14 Hitachi Koki Co Ltd Charging device
US7535201B2 (en) 2006-10-05 2009-05-19 Densei-Lambda Kabushiki Kaisha Uninterruptible power supply system
WO2011001268A1 (en) * 2009-07-01 2011-01-06 Toyota Jidosha Kabushiki Kaisha Battery control system and vehicle
JP2013062905A (en) * 2011-09-12 2013-04-04 Panasonic Eco Solutions Power Tools Co Ltd Battery charger
WO2014010312A1 (en) * 2012-07-12 2014-01-16 日産自動車株式会社 Charging control method for secondary cell and charging control device for secondary cell
JP2015521020A (en) * 2012-06-07 2015-07-23 エルジー・ケム・リミテッド Rechargeable battery charging method
JP2016092943A (en) * 2014-11-04 2016-05-23 株式会社豊田自動織機 Device and method for charge control
JP2016123267A (en) * 2012-02-27 2016-07-07 京セラ株式会社 Control device, storage battery, and control method
CN111525651A (en) * 2020-05-27 2020-08-11 广东小天才科技有限公司 Charging method, charging chip and terminal equipment
WO2020175233A1 (en) 2019-02-27 2020-09-03 三洋電機株式会社 Pack battery charging method, pack battery, and power source device
CN113138348A (en) * 2020-01-17 2021-07-20 北京新能源汽车股份有限公司 Lithium battery detection method and device
US20220069590A1 (en) * 2018-12-25 2022-03-03 Sanyo Electric Co., Ltd. Standby power supply device and method for charging secondary battery
US12009683B2 (en) * 2018-12-25 2024-06-11 Panasonic Energy Co., Ltd. Standby power supply device and method for charging secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104319861B (en) * 2014-11-20 2016-06-08 李斌武 A kind of efficient quick charge stake circuit of differential low-voltage

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004152755A (en) * 2002-10-11 2004-05-27 Canon Inc Internal resistance detection method of secondary battery, internal resistance detecting device, internal resistance detection program, and medium storing the program
JP2007234252A (en) * 2006-02-27 2007-09-13 Matsushita Electric Works Ltd Charger
WO2007110691A1 (en) * 2006-03-27 2007-10-04 Sony Ericsson Mobile Communications Ab Battery charge temperature control
US7521897B2 (en) 2006-03-27 2009-04-21 Sony Ericsson Mobile Communications Ab Battery charge temperature control
US7535201B2 (en) 2006-10-05 2009-05-19 Densei-Lambda Kabushiki Kaisha Uninterruptible power supply system
JP2009106118A (en) * 2007-10-25 2009-05-14 Hitachi Koki Co Ltd Charging device
US8629655B2 (en) 2009-07-01 2014-01-14 Toyota Jidosha Kabushiki Kaisha Battery control system and vehicle
WO2011001268A1 (en) * 2009-07-01 2011-01-06 Toyota Jidosha Kabushiki Kaisha Battery control system and vehicle
CN102472793A (en) * 2009-07-01 2012-05-23 丰田自动车株式会社 Battery control system and vehicle
US8390253B2 (en) 2009-07-01 2013-03-05 Toyota Jidosha Kabushiki Kaisha Battery control system and vehicle
US9178380B2 (en) 2011-09-12 2015-11-03 Panasonic Intellectual Property Management Co., Ltd. Charger apparatus capable of determining deterioration of second battery
EP2568569B1 (en) * 2011-09-12 2016-11-09 Panasonic Intellectual Property Management Co., Ltd. Charger
JP2013062905A (en) * 2011-09-12 2013-04-04 Panasonic Eco Solutions Power Tools Co Ltd Battery charger
JP2016123267A (en) * 2012-02-27 2016-07-07 京セラ株式会社 Control device, storage battery, and control method
JP2015521020A (en) * 2012-06-07 2015-07-23 エルジー・ケム・リミテッド Rechargeable battery charging method
US9490642B2 (en) 2012-06-07 2016-11-08 Lg Chem, Ltd. Charging method of secondary battery with constant current using high charge rate
US9190864B2 (en) 2012-07-12 2015-11-17 Nissan Motor Co., Ltd. Charging control method for secondary cell and charging control device for secondary cell
JPWO2014010312A1 (en) * 2012-07-12 2016-06-20 日産自動車株式会社 Charge control method and charge control device for secondary battery
JP5896024B2 (en) * 2012-07-12 2016-03-30 日産自動車株式会社 Charge control method and charge control device for secondary battery
WO2014010312A1 (en) * 2012-07-12 2014-01-16 日産自動車株式会社 Charging control method for secondary cell and charging control device for secondary cell
EP2874272A4 (en) * 2012-07-12 2015-09-02 Nissan Motor Charging control method for secondary cell and charging control device for secondary cell
JP2016092943A (en) * 2014-11-04 2016-05-23 株式会社豊田自動織機 Device and method for charge control
US20220069590A1 (en) * 2018-12-25 2022-03-03 Sanyo Electric Co., Ltd. Standby power supply device and method for charging secondary battery
US12009683B2 (en) * 2018-12-25 2024-06-11 Panasonic Energy Co., Ltd. Standby power supply device and method for charging secondary battery
WO2020175233A1 (en) 2019-02-27 2020-09-03 三洋電機株式会社 Pack battery charging method, pack battery, and power source device
CN113424354A (en) * 2019-02-27 2021-09-21 三洋电机株式会社 Battery pack charging method, battery pack, and power supply device
EP3934002A4 (en) * 2019-02-27 2022-04-27 SANYO Electric Co., Ltd. Pack battery charging method, pack battery, and power source device
CN113138348A (en) * 2020-01-17 2021-07-20 北京新能源汽车股份有限公司 Lithium battery detection method and device
CN113138348B (en) * 2020-01-17 2023-08-25 北京新能源汽车股份有限公司 Lithium battery detection method and device
CN111525651A (en) * 2020-05-27 2020-08-11 广东小天才科技有限公司 Charging method, charging chip and terminal equipment

Also Published As

Publication number Publication date
JP3641885B2 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
EP0948075B1 (en) Method for managing charge/discharge of secondary battery
JP4009537B2 (en) Charge control device, battery management system, battery pack, and secondary battery deterioration determination method using the same
US7071653B2 (en) Method for charging a non-aqueous electrolyte secondary battery and charger therefor
JPH10145981A (en) Battery charging and device therefor
JPH07255134A (en) Series connection circuit of secondary cells
US9780592B2 (en) Battery pack for selectively setting a high capacity mode having a high charge capacity until a full charge of a secondary battery
JPH08317572A (en) Controller of charge state of battery assembly
KR20130109038A (en) Battery pack
US20100285339A1 (en) SYSTEM AND METHOD FOR CHARGING AND DISCHARGING A Li-ION BATTERY
JP4248854B2 (en) Battery management system and battery pack
US20140159664A1 (en) Method of manufacturing battery pack and battery pack
JP3849541B2 (en) Charge / discharge control method for battery pack
EP4016698A1 (en) Apparatus and method for controlling operation of secondary battery by using relative degree of aging of electrode
JP2011109840A (en) Charging system which guarantees lifespan of secondary battery
CN109655753B (en) Estimation method of SOC of battery pack
JP2003017138A (en) Cell pack
JP2000270491A (en) Lithium ion battery charging method and lithium ion battery charger
JPH1051968A (en) Method for charging battery
JP3721690B2 (en) Secondary battery protection device
JP3653873B2 (en) How to charge the battery
JP4472415B2 (en) Non-aqueous electrolyte secondary battery charging method and charger
JP3742137B2 (en) How to charge the battery
JP3829453B2 (en) Lithium ion battery charging device and charging method
US20220271550A1 (en) Management apparatus for energy storage device, energy storage apparatus, and input/output control method for energy storage device
JP3435613B2 (en) Battery pack charging device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 9

EXPY Cancellation because of completion of term