JPH10141884A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH10141884A
JPH10141884A JP30181796A JP30181796A JPH10141884A JP H10141884 A JPH10141884 A JP H10141884A JP 30181796 A JP30181796 A JP 30181796A JP 30181796 A JP30181796 A JP 30181796A JP H10141884 A JPH10141884 A JP H10141884A
Authority
JP
Japan
Prior art keywords
refrigerant
flow path
heat exchanger
outlet
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30181796A
Other languages
Japanese (ja)
Other versions
JP3185687B2 (en
Inventor
Katsumi Mochizuki
克己 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP30181796A priority Critical patent/JP3185687B2/en
Publication of JPH10141884A publication Critical patent/JPH10141884A/en
Application granted granted Critical
Publication of JP3185687B2 publication Critical patent/JP3185687B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a higher heat exchange capacity by reducing a heat exchange loss attributed to 'thermal interference' and 'retention of a refrigerant' as much as possible. SOLUTION: This heat exchanger is made up of a plurality of fins 1, 1..., which are arranged facing each other at a specified interval being erected across the thickness thereof, by piercing the fins while a plurality of refrigerant passages P1 -P8 independent of each other are arranged in multiple stages in the direction of the erection of the fins 1. In this case, it is so arranged that a refrigerant inlet 2 and a refrigerant outlet 3 in the same refrigerant passage or the refrigerant inlet 2 of one refrigerant passage and the refrigerant outlet 3 of the other refrigerant passage vertically adjacent to each other will not adjoin each other at least. With such an arrangement, in the use of this heat exchanger as a condenser, thermal interference can be restricted as much as possible between the side of the refrigerant inlet 2 into which a high temperature gas refrigerant flows and the side of the refrigerant outlet 3 out of which a low temperature refrigerant flows thereby enhancing a condensing capacity in the heat exchanger accordingly.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は、熱交換器に関
し、さらに詳しくは熱交換器における冷媒流路のパス取
り構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger and, more particularly, to a structure for taking a refrigerant flow path in a heat exchanger.

【0002】[0002]

【従来の技術】図5及び図6には、従来のクロスフィン
型の熱交換器Z01,Z02における冷媒流路のパス取り構
造を示している。
2. Description of the Related Art FIGS. 5 and 6 show a structure for taking a path of a refrigerant flow path in a conventional cross-fin type heat exchanger Z 01 , Z 02 .

【0003】図5に示す熱交換器Z01は、フィン11に
対してその上下方向に多段状に配置された複数の冷媒流
路P01〜P08を、風上側の流路と風下側の流路との間に
おいて蛇行状に上下方向に延びる構成とし、且つ風下側
の最上段の流路に冷媒入口12を、風上側の最下段の流
路に冷媒出口13をそれぞれ設定している。尚、ここで
は冷房運転時を基準に考えて、冷房運転時に冷媒の流入
側となる部位を「冷媒入口12」、流出側となる部位を
「冷媒出口13」としている。従って、暖房運転時にお
いては上記冷媒出口13側から冷媒が流入し、冷媒入口
12側から流出することになる。
[0003] The heat exchanger Z 01 shown in FIG. 5, a plurality of refrigerant flow paths P 01 to P 08 arranged in multi-stage in the vertical direction relative to the fins 11, the windward side flow passage and the downwind side of the It is configured to extend vertically in a meandering manner with the flow path, and the refrigerant inlet 12 is set in the uppermost flow path on the leeward side, and the refrigerant outlet 13 is set in the lowermost flow path on the leeward side. Here, considering the cooling operation as a reference, a portion on the refrigerant inflow side during the cooling operation is referred to as a “refrigerant inlet 12”, and a portion on the outflow side is referred to as a “refrigerant outlet 13”. Therefore, during the heating operation, the refrigerant flows in from the refrigerant outlet 13 side and flows out from the refrigerant inlet 12 side.

【0004】図6に示す熱交換器Z02は、所謂「冷房対
向流」の冷媒流れをもつ熱交換器であって、フィン11
に対してその上下方向に多段状に配置された複数の冷媒
流路P01〜P08は、風下側の最上段の流路に設定された
冷媒入口12から流入した冷媒を該冷媒入口12からそ
のまま風下側の各流路を降下させた後、風上側の最下段
の流路から最上段の流路に設定した冷媒出口13に向け
てそのまま上昇させる構成となっている。
A heat exchanger Z 02 shown in FIG. 6 is a heat exchanger having a so-called “cooling counter-flow” refrigerant flow, and includes fins 11.
The plurality of refrigerant flow paths P 01 to P 08 arranged in a multi-stage manner in the vertical direction with respect to the refrigerant flow from the refrigerant inlet 12 set in the uppermost flow path on the leeward side through the refrigerant inlet 12. After the respective channels on the leeward side are lowered as they are, they are directly raised from the lowermost channel on the leeward side toward the refrigerant outlet 13 set as the uppermost channel.

【0005】[0005]

【発明が解決しようとする課題】ところが、これら従来
の各熱交換器Z01,Z02においてはそれぞれ以下のよう
な問題があった。
However, these conventional heat exchangers Z 01 and Z 02 have the following problems, respectively.

【0006】図5に示す熱交換器Z01においては、上下
方向に並設された上記各冷媒流路P01〜P08のうち、上
側に位置する冷媒流路、例えば第2冷媒流路P02の冷媒
出口13と、下側に位置する冷媒流路、例えば第3冷媒
流路P03の冷媒入口12とが近接していることから、例
えばこの熱交換器Z01を凝縮器として使用する場合にお
いては、一方の冷媒流路P03の冷媒入口12に流入する
高温のガス冷媒と、他方の冷媒流路P02から流出する低
温の液冷媒との間において熱干渉が生じ、該液冷媒の温
度上昇により熱交換器Z01の凝縮能力が著しく低下する
という問題があった。
[0006] In the heat exchanger Z 01 shown in FIG. 5, of the vertically juxtaposed the above refrigerant passage P 01 to P 08, the refrigerant flow path on the upper side, for example, the second refrigerant flow P a refrigerant outlet 13 of 02, coolant channel located on the lower side, since the example is a refrigerant inlet 12 of the third refrigerant flow path P 03 are close, for example, to use this heat exchanger Z 01 as a condenser in case, thermal interference occurs between the one and the high-temperature gas refrigerant flowing into the refrigerant inlet 12 of the coolant channel P 03, the low-temperature liquid refrigerant flowing out from the other refrigerant passage P 02, the liquid refrigerant condensation capacity of the heat exchanger Z 01 is lowered considerably by the temperature rise.

【0007】図6に示す熱交換器Z02では、各冷媒流路
01〜P08のそれぞれにおいて冷媒入口12と冷媒出口
13とが近接しているため該熱交換器Z02を凝縮器とし
て使用する場合に上述の如き熱干渉による凝縮能力の低
下という問題が生じることに加えて、冷媒の液溜まりに
よる熱交換能力の低下という問題が生じる。即ち、熱交
換器Z02を凝縮器として使用する場合には、上記冷媒入
口12から各冷媒流路P01〜P08内に流入したガス冷媒
は次第に凝縮して液冷媒として上記冷媒出口13から流
出する。この時、冷媒は、一旦、風下側の最下段の流路
まで降下した後、風上側の最下段の流路から最上段の流
路に設定された上記冷媒出口13まで上昇するが、この
上昇過程にある冷媒は液冷媒であるためこれを最下段の
流路から最上段の流路まで押し上げるには高い冷媒圧力
が必要となる。このため、特に、冷媒循環量に対応して
圧縮機の運転周波数が変化する所謂「インバータ式」の
空調機に適用される熱交換器においては、冷媒循環量の
少ない時には冷媒圧力が低くなるため液冷媒を押し上げ
ることができず、液冷媒が流路中に溜まる「冷媒溜ま
り」が生じる。かかる「冷媒溜まり」が生じると、この
「冷媒溜まり」部分においては熱交換機能が消滅した状
態となり、結果的にこの「冷媒溜まり」の領域分だけ熱
交換器における伝熱面積が減少し熱交換能力が低下する
ものである。
[0007] In the heat exchanger Z 02 shown in FIG. 6, the condenser heat exchanger Z 02 for the coolant inlet 12 and coolant outlet 13 is proximate in each of the refrigerant flow paths P 01 to P 08 When used, in addition to the problem that the condensation ability is reduced due to the heat interference as described above, there is a problem that the heat exchange capacity is reduced by the liquid pool of the refrigerant. In other words, when using a heat exchanger Z 02 as a condenser, from the refrigerant outlet 13 as the liquid refrigerant condensed gradually inflow gas refrigerant in the refrigerant inlet 12 each of the refrigerant flow path from P 01 to P in 08 leak. At this time, the refrigerant once descends to the lowermost flow path on the leeward side, and then rises from the lowermost flow path on the leeward side to the refrigerant outlet 13 set in the uppermost flow path. Since the refrigerant in the process is a liquid refrigerant, a high refrigerant pressure is required to push it up from the lowermost channel to the uppermost channel. For this reason, especially in a heat exchanger applied to a so-called “inverter type” air conditioner in which the operating frequency of the compressor changes in accordance with the amount of circulating refrigerant, the refrigerant pressure becomes low when the amount of circulating refrigerant is small. The liquid refrigerant cannot be pushed up, and a “refrigerant pool” in which the liquid refrigerant accumulates in the flow path occurs. When such "refrigerant pool" occurs, the heat exchange function is extinguished in the "refrigerant pool" portion, and as a result, the heat transfer area in the heat exchanger is reduced by the area of the "refrigerant pool", resulting in a heat exchange. The ability is reduced.

【0008】そこで本願発明は、「熱干渉」及び「冷媒
溜まり」による熱交換損失を可及的に低減して高い熱交
換能力を得るようにした熱交換器を提供することを目的
としてなされたものである。
Accordingly, the present invention has been made to provide a heat exchanger capable of obtaining a high heat exchange capacity by minimizing a heat exchange loss due to "heat interference" and "coolant pool". Things.

【0009】[0009]

【課題を解決するための手段】本願発明ではかかる課題
を解決するための具体的手段として次のような構成を採
用している。
Means for Solving the Problems In the present invention, the following configuration is adopted as specific means for solving such problems.

【0010】本願の第1の発明では、図1〜図4に例示
するように、立設状態でその板厚方向に所定間隔で対向
配置された複数枚のフィンを貫通して形成され且つ相互
に独立した複数の冷媒流路を上記フィンの立設方向にお
いて多段に設けてなる熱交換器において、同一の冷媒流
路における冷媒入口と冷媒出口、又は上下方向において
隣接する一方の冷媒流路の冷媒入口と他方の冷媒流路の
冷媒出口とを、少なくとも隣接しないように配置したこ
とを特徴としている。
According to the first aspect of the present invention, as shown in FIGS. 1 to 4, a plurality of fins are formed so as to penetrate through a plurality of fins which are arranged in a standing state and are opposed to each other at a predetermined interval in a plate thickness direction. In a heat exchanger in which a plurality of independent refrigerant flow paths are provided in multiple stages in the erection direction of the fins, a refrigerant inlet and a refrigerant outlet in the same refrigerant flow path, or one of the adjacent refrigerant flow paths in the vertical direction The refrigerant inlet and the refrigerant outlet of the other refrigerant passage are arranged so as to be at least not adjacent to each other.

【0011】本願の第2の発明では、図1に例示するよ
うに、上記第1の発明にかかる熱交換器において、上記
各冷媒流路を、風下側と風上側との間において蛇行状に
上下方向へ延びる構成とし、且つ風下側の最上段の流路
に上記冷媒入口を、風上側の最下段から1ピッチだけ上
側に位置する流路に上記冷媒出口を設定したことを特徴
としている。
According to a second aspect of the present invention, as shown in FIG. 1, in the heat exchanger according to the first aspect, each of the refrigerant flow paths is formed in a meandering shape between a leeward side and an leeward side. It is characterized in that it is configured to extend in the vertical direction, and the refrigerant inlet is set in the uppermost flow path on the leeward side, and the refrigerant outlet is set in the flow path located one pitch above the lowermost stage on the leeward side.

【0012】本願の第3の発明では、図2に例示するよ
うに、上記第1の発明にかかる熱交換器において、上記
各冷媒流路を、風下側と風上側との間において蛇行状に
上下方向へ延びる構成とし、且つ風下側の最上段から1
ピッチだけ下側に位置する流路に上記冷媒入口を、風上
側の最下段の流路に上記冷媒出口を設定したことを特徴
としている。
According to a third aspect of the present invention, as shown in FIG. 2, in the heat exchanger according to the first aspect, each of the refrigerant flow paths is formed in a meandering shape between a leeward side and an leeward side. It is configured to extend in the up-down direction, and 1
The refrigerant inlet is set in a flow path located on the lower side by the pitch, and the refrigerant outlet is set in a lowermost flow path on the windward side.

【0013】本願の第4の発明では、図3に例示するよ
うに、上記第1の発明にかかる熱交換器において、上記
各冷媒流路を、冷房運転時に冷媒が風下側の流路から風
上側の流路へ流れる構成とし、且つ上記各冷媒流路にお
ける風上側の流路の中段位置に上記冷媒入口を、風下側
の流路に上記冷媒出口をそれぞれ設定するとともに、上
記各冷媒流路のそれぞれにおける上記冷媒入口と冷媒出
口のヘッド差を略同一となるように設定したことを特徴
としている。
In a fourth aspect of the present invention, as shown in FIG. 3, in the heat exchanger according to the first aspect, the refrigerant flows through the leeward flow path during cooling operation. The refrigerant flow path is configured to flow to an upper side flow path, and the refrigerant inlet is set at a middle position of a leeward side flow path in each of the refrigerant flow paths, and the refrigerant outlet is set to a leeward side flow path. Are characterized in that the head difference between the refrigerant inlet and the refrigerant outlet is set to be substantially the same.

【0014】本願の第5の発明では、図4に例示するよ
うに、上記第1の発明にかかる熱交換器において、上記
各冷媒流路を、冷房運転時に冷媒が風下側の流路から風
上側の流路へ流れる構成とし、且つ上記各冷媒流路をそ
れぞれ上記冷媒入口から上記冷媒出口にかけての経路の
略前半部分において上昇し後半部分において下降する経
路をとる一対の分流路で構成するともに、該一対の分流
路の上記各冷媒入口を近接配置する一方、上記各冷媒出
口を上記各冷媒入口から所定のヘッド差をもった位置に
設定するとともに少なくとも上記各冷媒出口から1ピッ
チ以上上方側位置において合流させたことを特徴として
いる。
According to a fifth aspect of the present invention, as shown in FIG. 4, in the heat exchanger according to the first aspect, the refrigerant flows through the refrigerant flow path from the leeward flow path during cooling operation. The refrigerant flow path is configured to flow to the upper flow path, and each of the refrigerant flow paths is configured by a pair of branch flow paths that take a path that rises in a substantially first half of a path from the refrigerant inlet to the refrigerant outlet and descends in a second half of the path. The respective refrigerant inlets of the pair of branch channels are arranged close to each other, and the respective refrigerant outlets are set at positions having a predetermined head difference from the respective refrigerant inlets, and at least one pitch above the respective refrigerant outlets. It is characterized by merging at the position.

【0015】[0015]

【発明の効果】本願発明ではかかる構成とすることによ
り次のような効果が得られる。
According to the present invention, the following effects can be obtained by adopting such a configuration.

【0016】本願の第1の発明にかかる熱交換器によ
れば、立設状態でその板厚方向に所定間隔で対向配置さ
れた複数枚のフィンを貫通して形成され且つ相互に独立
した複数の冷媒流路を上記フィンの立設方向において多
段に設けてなる熱交換器において、同一の冷媒流路にお
ける冷媒入口と冷媒出口、又は上下方向において隣接す
る一方の冷媒流路の冷媒入口と他方の冷媒流路の冷媒出
口とを、少なくとも隣接しないように配置しているの
で、この熱交換器を凝縮器として使用する場合において
も、高温のガス冷媒が流入する冷媒入口側と低温の液冷
媒が流出する冷媒出口側との間における熱干渉が可及的
に抑制され、それだけ該熱交換器における凝縮能力が高
められることになる。
According to the heat exchanger according to the first aspect of the present invention, a plurality of fins which are formed in an upright state and penetrate through a plurality of fins which are opposed to each other at a predetermined interval in a thickness direction thereof and are independent from each other. In the heat exchanger in which the refrigerant passages are provided in multiple stages in the erection direction of the fins, the refrigerant inlet and the refrigerant outlet in the same refrigerant passage, or the refrigerant inlet and the other refrigerant passage in one of the vertically adjacent refrigerant passages The refrigerant outlet of the refrigerant flow path is arranged so as not to be at least adjacent to the refrigerant outlet. Therefore, even when this heat exchanger is used as a condenser, the refrigerant inlet side into which the high-temperature gas refrigerant flows and the low-temperature liquid refrigerant As a result, heat interference with the refrigerant outlet side from which water flows out is suppressed as much as possible, and condensing capacity of the heat exchanger is increased accordingly.

【0017】本願の第2の発明にかかる熱交換器によ
れば、上記第1の発明にかかる熱交換器において、上記
各冷媒流路を、風下側と風上側との間において蛇行状に
上下方向へ延びる構成とし、且つ風下側の最上段の流路
に上記冷媒入口を、風上側の最下段から1ピッチだけ上
側に位置する流路に上記冷媒出口を設定しているので、
同一の冷媒流路における冷媒入口と冷媒出口との間隔が
大きいと共に、上下方向に隣接する一対の冷媒流路間に
おいてもその一方の冷媒流路の冷媒入口と他方の冷媒流
路の冷媒出口とが隣接せず比較的大きな間隔が確保され
る。この結果、高温のガス冷媒が流入する冷媒入口側と
低温の液冷媒が流出する冷媒出口側との間における熱干
渉が可及的に抑制され、それだけ該熱交換器における凝
縮能力が高められることになる。
According to the heat exchanger according to the second aspect of the present invention, in the heat exchanger according to the first aspect, each of the refrigerant flow paths is vertically moved between the leeward side and the leeward side. Since the refrigerant inlet is set in the uppermost flow path on the leeward side and the refrigerant outlet is set in the flow path located one pitch above the lowermost step on the leeward side,
The distance between the refrigerant inlet and the refrigerant outlet in the same refrigerant flow path is large, and also between the pair of vertically adjacent refrigerant flow paths, the refrigerant inlet of one refrigerant flow path and the refrigerant outlet of the other refrigerant flow path. However, they are not adjacent to each other and a relatively large interval is secured. As a result, thermal interference between the refrigerant inlet side where the high-temperature gas refrigerant flows in and the refrigerant outlet side where the low-temperature liquid refrigerant flows out is suppressed as much as possible, and the condensing capacity of the heat exchanger is increased accordingly. become.

【0018】本願の第3の発明にかかる熱交換器によ
れば、上記第1の発明にかかる熱交換器において、上記
各冷媒流路を、風下側と風上側との間において蛇行状に
上下方向へ延びる構成とし、且つ風下側の最上段から1
ピッチだけ下側に位置する流路に上記冷媒入口を、風上
側の最下段の流路に上記冷媒出口を設定しているので、
同一の冷媒流路における冷媒入口と冷媒出口との間隔が
大きいと共に、上下方向に隣接する一対の冷媒流路間に
おいてもその一方の冷媒流路の冷媒入口と他方の冷媒流
路の冷媒出口とが隣接せず比較的大きな間隔が確保され
る。この結果、高温のガス冷媒が流入する冷媒入口側と
低温の液冷媒が流出する冷媒出口側との間における熱干
渉が可及的に抑制され、それだけ該熱交換器における凝
縮能力が高められることになる。
According to the heat exchanger according to the third aspect of the present invention, in the heat exchanger according to the first aspect, each of the refrigerant passages is vertically moved between the leeward side and the leeward side. Direction, and 1
Since the refrigerant inlet is set in the flow path located just below the pitch, the refrigerant outlet is set in the lowermost flow path on the windward side,
The distance between the refrigerant inlet and the refrigerant outlet in the same refrigerant flow path is large, and also between the pair of vertically adjacent refrigerant flow paths, the refrigerant inlet of one refrigerant flow path and the refrigerant outlet of the other refrigerant flow path. However, they are not adjacent to each other and a relatively large interval is secured. As a result, thermal interference between the refrigerant inlet side where the high-temperature gas refrigerant flows in and the refrigerant outlet side where the low-temperature liquid refrigerant flows out is suppressed as much as possible, and the condensing capacity of the heat exchanger is increased accordingly. become.

【0019】本願の第4の発明にかかる熱交換器によ
れば、上記第1の発明にかかる熱交換器において、上記
各冷媒流路を、冷房運転時に冷媒が風下側の流路から風
上側の流路へ流れる構成とし、且つ上記各冷媒流路にお
ける風上側の流路の中段位置に上記冷媒入口を、風下側
の流路に冷媒出口をそれぞれ設定するとともに、上記各
冷媒流路のそれぞれにおける上記冷媒入口と冷媒出口の
ヘッド差を略同一となるように設定している。
According to the heat exchanger according to the fourth aspect of the present invention, in the heat exchanger according to the first aspect, the refrigerant flows from the leeward side to the leeward side during the cooling operation. And the refrigerant inlet is set at the middle position of the leeward channel in each of the refrigerant channels, and the refrigerant outlet is set in the leeward channel, respectively. Are set so that the head difference between the refrigerant inlet and the refrigerant outlet is substantially the same.

【0020】かかる構成によれば次のような効果が得ら
れる。
According to this configuration, the following effects can be obtained.

【0021】(イ)同一の冷媒流路における冷媒入口と
冷媒出口との間隔が大きいと共に、上下方向に隣接する
一対の冷媒流路間においてもその一方の冷媒流路の冷媒
入口と他方の冷媒流路の冷媒出口とが隣接せず比較的大
きな間隔が確保され、この結果、高温のガス冷媒が流入
する冷媒入口側と低温の液冷媒が流出する冷媒出口側と
の間における熱干渉が可及的に抑制され、それだけ該熱
交換器における凝縮能力が高められることになる。
(A) The distance between the refrigerant inlet and the refrigerant outlet in the same refrigerant flow path is large, and between the pair of vertically adjacent refrigerant flow paths, the refrigerant inlet of one refrigerant flow path and the other refrigerant flow path A relatively large gap is secured without being adjacent to the refrigerant outlet of the flow path. As a result, thermal interference between the refrigerant inlet side where the high-temperature gas refrigerant flows in and the refrigerant outlet side where the low-temperature liquid refrigerant flows out is possible. As a result, the condensing capacity of the heat exchanger is increased accordingly.

【0022】(ロ)各冷媒流路における上記冷媒入口と
冷媒出口とのヘッド差が同一に設定されていることで、
該各冷媒流路における圧損差が可及的に小さくなり、冷
媒の偏流が抑制されることで熱交換性能のより一層の向
上が図れるものである。
(B) Since the head difference between the refrigerant inlet and the refrigerant outlet in each refrigerant flow passage is set to be the same,
The pressure loss difference in each of the refrigerant flow paths is as small as possible, and the drift of the refrigerant is suppressed, so that the heat exchange performance can be further improved.

【0023】本願の第5の発明にかかる熱交換器によ
れば、上記第1の発明にかかる熱交換器において、上記
各冷媒流路を、冷房運転時に冷媒が風下側の流路から風
上側の流路へ流れる構成とし、且つ上記各冷媒流路をそ
れぞれ上記冷媒入口から上記冷媒出口にかけての経路の
略前半部分において上昇し後半部分において下降する経
路をとる一対の分流路で構成するともに、該一対の分流
路の上記各冷媒入口を近接配置する一方、上記各冷媒出
口を上記各冷媒入口から所定のヘッド差をもった位置に
設定するとともに少なくとも上記各冷媒出口から1ピッ
チ以上上方側位置において合流させている。
According to the heat exchanger according to the fifth aspect of the present invention, in the heat exchanger according to the first aspect, the refrigerant flows from the leeward side to the leeward side during the cooling operation. And a pair of branch channels that take a path that rises in a substantially first half of a path from the refrigerant inlet to the refrigerant outlet and descends in a second half thereof, respectively, and The respective refrigerant inlets of the pair of branch channels are arranged close to each other, and the respective refrigerant outlets are set at positions having a predetermined head difference from the respective refrigerant inlets and at least one pitch or more upward from the respective refrigerant outlets. Are joined.

【0024】かかる構成によれば次のような効果が得ら
れる。
According to this configuration, the following effects can be obtained.

【0025】(イ)上記各冷媒流路を冷房運転時に冷媒
が風下側の流路から風上側の流路へ流れる構成としてい
るので、必然的に冷媒の降下過程と上昇過程とが存在
し、液溜まりが生じ易い構造となるが、その場合、経路
の前半部、即ち、冷媒がガス冷媒である時にこれを上昇
させ、経路の後半部、即ち、冷媒が液冷媒である時には
これを降下させる構成とすることで、冷媒流路における
液溜まりの発生が可及的に防止され、高い熱交換能力が
確保される。
(A) Since the refrigerant flows from the leeward channel to the leeward channel during the cooling operation in each of the refrigerant channels, a refrigerant descending process and an ascending process necessarily exist. In this case, the liquid is likely to accumulate, but in that case, the first half of the path, that is, when the refrigerant is a gas refrigerant, is raised, and the second half of the path, that is, when the refrigerant is a liquid refrigerant, is lowered. With this configuration, the occurrence of liquid pool in the refrigerant flow path is prevented as much as possible, and a high heat exchange capacity is secured.

【0026】(ロ)一つの冷媒流路を構成する一対の分
流路の各冷媒入口を近接配置して熱交換器を凝縮器とし
て使用する場合における高温部位を集中させると共に、
上記各冷媒出口を上記各冷媒入口から所定のヘッド差を
もった位置に設定することで、該冷媒入口と冷媒出口と
の間における熱干渉が可及的に防止され、それだけ高い
凝縮能力が得られる。
(B) In the case where the refrigerant inlets of a pair of branch channels constituting one refrigerant channel are arranged close to each other, a high-temperature portion in a case where the heat exchanger is used as a condenser is concentrated.
By setting each of the refrigerant outlets at a position having a predetermined head difference from each of the refrigerant inlets, heat interference between the refrigerant inlet and the refrigerant outlet is prevented as much as possible, and a higher condensation capacity is obtained. Can be

【0027】(ハ)一つの冷媒流路を構成する一対の分
流路の下流側を上記冷媒出口から1ピッチ以上上方側位
置において合流させているので、熱交換器を蒸発器とし
て使用する場合には、該熱交換器への着霜が抑制される
ものである。即ち、熱交換器を蒸発器として使用する場
合には、上記冷媒出口側から液冷媒が流入し、上記冷媒
入口からガス冷媒が流出する。この場合、上記一対の分
流路が上記冷媒出口から1ピッチ以上上方側位置におい
て合流されていることで、上記冷媒出口から流入した液
冷媒は該冷媒出口から合流部(分岐部)に至る間に減圧
されるが、分岐前の冷媒は飽和状態であるため、その冷
媒温度は分岐後のそれに比して高温となる。かかる高温
部位が各冷媒流路毎に存在することで、フィンへの着霜
が抑制されると共に、デフロスト運転時間の短縮が図ら
れる。
(C) Since the downstream sides of the pair of branch channels constituting one refrigerant flow path are merged at a position one pitch or more above the refrigerant outlet, when the heat exchanger is used as an evaporator. Is to suppress frost formation on the heat exchanger. That is, when the heat exchanger is used as an evaporator, liquid refrigerant flows in from the refrigerant outlet side, and gas refrigerant flows out from the refrigerant inlet. In this case, since the pair of branch channels merge at a position one pitch or more above the refrigerant outlet, the liquid refrigerant flowing from the refrigerant outlet reaches the junction (branch) from the refrigerant outlet. Although the pressure is reduced, the refrigerant temperature before the branch is saturated, so that the refrigerant temperature becomes higher than that after the branch. The presence of such a high-temperature portion in each of the coolant flow paths suppresses frost formation on the fins and shortens the defrost operation time.

【0028】[0028]

【発明の実施の形態】第1の実施形態 図1には、本願の請求項1及び2に記載の発明の実施形
態にかかるクロスフィン型の熱交換器Z1における冷媒
流路のパス取り構造を示している。この熱交換器Z
1は、複数本のヘアピン状の伝熱管4,4,・・をU型
の連絡管5,5,・・により順次接続して構成され且つ
相互に独立した複数の冷媒流路P1〜P8を、フィン1に
対してその上下方向に多段状に配置してなる。そして、
この各冷媒流路P1〜P8のパス取りに際しては、風上側
の流路と風下側の流路との間において蛇行状に上下方向
へ延びる構成とし、且つ風下側の最上段の流路に冷媒入
口2を、風上側の最下段の流路から1ピッチだけ上側の
流路に冷媒出口3をそれぞれ設定している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The first embodiment Figure 1, the path up the structure of the refrigerant passage in the cross fin type heat exchanger Z 1 of according to an embodiment of the invention described in claim 1 and 2 of this application Is shown. This heat exchanger Z
1, a plurality of hairpin-shaped heat transfer tubes 4, 4, connecting pipe 5,5 a · U type, successively connected to be constructed and mutually independent plurality of refrigerant flow paths P 1 to P by ... The fins 8 are arranged in multiple stages in the vertical direction with respect to the fin 1. And
When the paths of the respective refrigerant flow paths P 1 to P 8 are taken, a configuration is provided in which the leeward side flow path extends vertically in a meandering manner between the leeward side flow path and the leeward side flow path. And a refrigerant outlet 3 in a flow path one pitch above the lowermost flow path on the windward side.

【0029】尚、ここでは冷房運転時を基準に考えて、
冷房運転時に冷媒の流入側となる部位を「冷媒入口
2」、流出側となる部位を「冷媒出口3」としており、
従って、暖房運転時においては上記冷媒出口3側から冷
媒が流入し、冷媒入口2側から流出することになる。
Here, the cooling operation is considered as a reference,
The portion on the refrigerant inflow side during the cooling operation is referred to as “refrigerant inlet 2”, and the portion on the outflow side is referred to as “refrigerant outlet 3”.
Therefore, during the heating operation, the refrigerant flows in from the refrigerant outlet 3 side and flows out from the refrigerant inlet 2 side.

【0030】かかるパス取り構造とすると、各冷媒流路
1〜P8それぞれにおける冷媒入口2と冷媒出口3との
間隔を大きく設定できると共に、上下方向に隣接する一
対の冷媒流路間、例えば第1冷媒流路P1と第2冷媒流
路P2の間においても、該第1冷媒流路P1の冷媒出口3
と第2冷媒流路P2の冷媒入口2とはそれらの間に上記
第1冷媒流路P1の最下段側の伝熱管4を挟んで離間配
置され、これらが相互に隣接することが防止されてい
る。
With such a path taking structure, the distance between the refrigerant inlet 2 and the refrigerant outlet 3 in each of the refrigerant flow paths P 1 to P 8 can be set large, and between a pair of vertically adjacent refrigerant flow paths, for example, Also between the first refrigerant flow path P 1 and the second refrigerant flow path P 2 , the refrigerant outlet 3 of the first refrigerant flow path P 1
When the refrigerant inlet 2 of the second refrigerant flow P 2 are spaced across the heat transfer tubes 4 of the lowermost side of the first coolant channel P 1 therebetween, preventing that these are adjacent to each other Have been.

【0031】従って、この熱交換器Z1を凝縮器として
使用する場合、高温のガス冷媒が流入する冷媒入口2側
と低温の液冷媒が流出する冷媒出口3側との間における
熱干渉が可及的に抑制され、それだけ該熱交換器Z1
おける凝縮能力が高められることになる。
[0031] Thus, thermal interference variable between cases, the refrigerant outlet 3 side of the refrigerant inlet 2 side and the low-temperature liquid refrigerant hot gas refrigerant flows will flow out to use this heat exchanger Z 1 as a condenser It is suppressed retroactively, correspondingly so that the condensation capacity is increased in the heat exchanger Z 1.

【0032】また、この実施形態のものにおいては、冷
媒出口3を風上側の最下段よりも1ピッチ上側の流路に
設定したことで液冷媒をその最終段階で上昇させる必要
があり、従って「液溜まり」が懸念される構造と言え
る。しかしながら、冷媒の上昇幅は1ピッチだけである
ので、例えばインバータ式空調機の如く少冷媒循環量時
には圧縮機の運転周波数が低下しその吐出圧力が小さく
なるようなものであったとしても、液冷媒を容易に循環
させることができ、「液溜まり」による熱交換器Z1
熱交換能力の低下を抑制することができるものである。
In this embodiment, since the refrigerant outlet 3 is set at a flow path one pitch above the lowermost stage on the windward side, it is necessary to raise the liquid refrigerant at the final stage. It can be said that the structure is concerned with "liquid accumulation". However, since the rising width of the refrigerant is only one pitch, even when the operating frequency of the compressor is reduced and the discharge pressure is reduced when the refrigerant is circulated with a small amount of refrigerant, as in an inverter type air conditioner, for example, it can be easily circulated refrigerant, in which it is possible to suppress the reduction of the heat exchanging capacity of the heat exchanger Z 1 by "liquid pool".

【0033】第2の実施形態 図2には、本願の請求項1及び3に記載の発明の実施形
態にかかるクロスフィン型の熱交換器Z2における冷媒
流路のパス取り構造を示している。この熱交換器Z
2は、上記第1の実施形態における熱交換器Z1と同様の
冷媒流れをもつ熱交換器であって、パス取り構造におい
て上記第1の実施形態における熱交換器Z1と異なる点
は、冷媒入口2を風下側の上から二段目の流路に設定す
るとともに、冷媒出口3を風上側の最下段の流路に設定
した点である。
[0033] The second embodiment Figure 2 shows a path up the structure of the refrigerant passage in the heat exchanger Z 2 a cross-fin type according to an embodiment of the invention described in claim 1 and 3 of this application . This heat exchanger Z
2 is a heat exchanger having the same refrigerant flow heat exchanger Z 1 of the first embodiment, the heat exchanger Z 1 different from in the first embodiment in the path up structure, This is the point that the refrigerant inlet 2 is set to the second-stage flow path from the leeward side, and the refrigerant outlet 3 is set to the lowest flow path on the leeward side.

【0034】かかるパス取り構造とすることで、同一冷
媒流路内における冷媒入口2と冷媒出口3、及び上下方
向に隣接する一対の冷媒流路における上側の冷媒流路の
冷媒出口3と下側の冷媒流路における冷媒入口2とが、
共に隣接せずそれぞれ所定の間隔をもつことから、該熱
交換器Z2を凝縮器として使用する場合において、冷媒
入口2と冷媒出口3との間における熱干渉が可及的に防
止され、それだけ高い凝縮能力が得られることは上記第
1の実施形態にかかる熱交換器Z1の場合と同様であ
る。
By adopting such a path taking structure, the refrigerant inlet 2 and the refrigerant outlet 3 in the same refrigerant flow path, and the refrigerant outlet 3 and the lower side of the upper refrigerant flow path in a pair of vertically adjacent refrigerant flow paths. And the refrigerant inlet 2 in the refrigerant flow path of
Both because of its respectively not adjacent predetermined intervals, in the case of using the heat exchanger Z 2 as a condenser, thermal interference between the refrigerant inlet 2 and the refrigerant outlet 3 is prevented as much as possible, only that that a high condensation capacity is obtained is the same as that of the heat exchanger Z 1 according to the first embodiment.

【0035】さらに、この熱交換器Z2においては、冷
媒入口2に流入したガス冷媒を1ピッチ上昇させ、後は
全て降下させるようにしているので、冷媒流路の後半側
において液冷媒が溜まることがなく、例えば上記第1の
実施形態にかかる熱交換器Z1の如く冷媒出口3側にお
いて1ピッチだけ上昇させる構成をとる場合に比して、
さらに高い熱交換能力を確保することができるものであ
る。
Furthermore, in this heat exchanger Z 2, the gas refrigerant flowing into the refrigerant inlet 2 is raised by one pitch, so that so as to all be lowered, the liquid refrigerant is accumulated in the second half side of the coolant channel after it is not, for example, as compared with the case where a configuration to increase by one pitch in the refrigerant outlet 3 side as the heat exchanger Z 1 according to the first embodiment,
Further, a higher heat exchange capacity can be secured.

【0036】第3の実施形態 図3には、本願の請求項1及び4に記載の発明の実施形
態にかかる熱交換器Z3のパス取り構造を示している。
この熱交換器Z3は、冷房運転時に冷媒を風下側の流路
を循環させた後、風上側の流路を循環させる所謂「冷房
対向流」の冷媒流れをもつものであって、フィン1に対
してその上下方向に複数の冷媒流路P1〜P8を多段状に
配置して構成される。
[0036] The Third Embodiment FIG. 3 shows a path up the structure of the heat exchanger Z 3 according to an embodiment of the invention described in claim 1 and 4 of the present application.
The heat exchanger Z 3, after the refrigerant was circulated leeward side of the flow path during cooling operation, there is with refrigerant flow so-called "cooling counterflow" circulating the windward side of the flow channel, the fin 1 It constituted by arranging a plurality of refrigerant flow paths P 1 to P 8 in the multi-stage in the vertical direction with respect to.

【0037】上記各冷媒流路P1〜P8のパス取り構造は
次の通りである。第1冷媒流路P1は、風下側に6本の
伝熱管4,4,・・を、風上側に8本の伝熱管4,4,
・・を、それぞれ配置するとともに、風下側の最上段の
伝熱管4に冷媒入口2を、風上側の上から三番目の伝熱
管4に冷媒出口3を、それぞれ設定している。そして、
パス取りは、冷媒を、上記冷媒入口2から風下側の各伝
熱管4,4,・・を順次降下させた後、風上側の最上段
の伝熱管4まで一気に上昇させるとともに、該最上段の
伝熱管4から二番目の伝熱管4に1ピッチだけ降下させ
た後、該二番目の伝熱管4から最下段の伝熱管4まで一
気に降下させ、さらにこの最下段の伝熱管4から三番目
の伝熱管4まで上昇させて上記冷媒出口3に至らしめる
ようにしている。従って、上記冷媒入口2と冷媒出口3
とのヘッド差は2.5ピッチとなっている。
The structure of each of the refrigerant flow paths P 1 to P 8 is as follows. The first refrigerant flow path P 1 has six heat transfer tubes 4, 4,...
Are arranged, and the refrigerant inlet 2 is set in the uppermost heat transfer tube 4 on the leeward side, and the refrigerant outlet 3 is set in the third heat transfer tube 4 from the top on the leeward side. And
Passing is performed by sequentially lowering the refrigerant from the refrigerant inlet 2 to each of the heat transfer tubes 4, 4,... On the leeward side, and then raising the refrigerant at a stroke to the uppermost heat transfer tube 4 on the leeward side. After lowering by one pitch from the heat transfer tube 4 to the second heat transfer tube 4, it is dropped from the second heat transfer tube 4 to the lowermost heat transfer tube 4 at a stretch, and further from the lowermost heat transfer tube 4 to the third heat transfer tube 4. The heat is transferred to the heat transfer tube 4 to reach the refrigerant outlet 3. Therefore, the refrigerant inlet 2 and the refrigerant outlet 3
Is 2.5 pitches.

【0038】第2冷媒流路P2は、風下側に8本の伝熱
管4,4,・・を、風上側に6本の伝熱管4,4,・・
をそれぞれ配置するとともに、風下側の上から四番目の
伝熱管4に冷媒入口2を、風上側の上から四番目の伝熱
管4に冷媒出口3をそれぞれ設定している。そして、パ
ス取りは、冷媒を、風下側の上から四番目の伝熱管4か
ら1ピッチだけ上昇させた後、最下段の伝熱管4まで一
気に降下させ、さらにこの最下段の伝熱管4から一気に
最上段の伝熱管4まで上昇させるとともに1ピッチ降下
させ、ここから風上側の上から二番目の伝熱管4まで降
下させた後、最上段の伝熱管4まで上昇させ、しかる
後、最下段の伝熱管4まで一気に降下させ、ここから3
ピッチだけ上昇させた後、1ピッチだけ降下させて上記
冷媒出口3に至らしめるようにしている。従って、上記
冷媒入口2と冷媒出口3とのヘッド差は2.5ピッチと
なっている。
The second refrigerant flow path P 2 has eight heat transfer tubes 4, 4,... On the leeward side and six heat transfer tubes 4, 4,.
And a refrigerant inlet 2 is set in the fourth heat transfer tube 4 from the top on the leeward side, and a refrigerant outlet 3 is set in the fourth heat transfer tube 4 from the top on the leeward side. Then, in the pass taking, the refrigerant is raised by one pitch from the fourth heat transfer tube 4 from the top on the leeward side, then is dropped to the lowest heat transfer tube 4 at a stretch, and further from the lowest heat transfer tube 4 at a stretch. After being raised to the uppermost heat transfer tube 4 and lowered by one pitch, from there to the second heat transfer tube 4 from the top of the windward side, it is raised to the uppermost heat transfer tube 4, and then the lowermost heat transfer tube 4 Drop down to heat transfer tube 4 at a stretch, and from here 3
After being raised by the pitch, it is lowered by one pitch to reach the refrigerant outlet 3. Therefore, the head difference between the refrigerant inlet 2 and the refrigerant outlet 3 is 2.5 pitches.

【0039】第3冷媒流路P3〜第7冷媒流路P7は、同
一のパス取り構造をもつものであって、風下側と風上側
とにそれぞれ6本の伝熱管4,4,・・を配置するとと
もに、風下側の上から四番目の伝熱管4に冷媒入口2
を、風上側の最下段の伝熱管4に冷媒出口3をそれぞれ
設定している。そして、パス取りは、冷媒を、風下側の
上から四番目の伝熱管4から1ピッチだけ上昇させた
後、最下段の伝熱管4まで一気に降下させ、さらにこの
最下段の伝熱管4から一気に最上段の伝熱管4まで上昇
させるとともに1ピッチ降下させ、ここから風上側の上
から四番目の伝熱管4まで降下させた後、最上段の伝熱
管4まで上昇させ、しかる後、最下段の伝熱管4まで一
気に降下させて上記冷媒出口3に至らしめるようにして
いる。従って、上記冷媒入口2と冷媒出口3とのヘッド
差は2.5ピッチとなっている。
The third to seventh refrigerant passages P 3 to P 7 have the same path taking structure, and have six heat transfer tubes 4, 4,. And a refrigerant inlet 2 in the fourth heat transfer tube 4 from the top on the leeward side.
And the refrigerant outlet 3 is set in the lowermost heat transfer tube 4 on the windward side. Then, in the pass taking, the refrigerant is raised by one pitch from the fourth heat transfer tube 4 from the top on the leeward side, then is dropped to the lowest heat transfer tube 4 at a stretch, and further from the lowest heat transfer tube 4 at a stretch. It is raised to the uppermost heat transfer tube 4 and lowered by one pitch. From this, it is lowered to the fourth heat transfer tube 4 from the top of the windward side, and then it is raised to the uppermost heat transfer tube 4, and then the lowermost heat transfer tube 4. The heat is transferred to the refrigerant outlet 3 by lowering the heat transfer tube 4 at a stretch. Therefore, the head difference between the refrigerant inlet 2 and the refrigerant outlet 3 is 2.5 pitches.

【0040】第8冷媒流路P8は、風下側に8本の伝熱
管4,4,・・を、風上側に8本の伝熱管4,4,・・
をそれぞれ配置するとともに、風下側の上から四番目の
伝熱管4に冷媒入口2を、風上側の最下段の伝熱管4に
冷媒出口3をそれぞれ設定している。そして、パス取り
は、冷媒を、風下側の上から四番目の伝熱管4から1ピ
ッチだけ上昇させた後、最下段の伝熱管4まで一気に降
下させ、さらにこの最下段の伝熱管4から一気に最上段
の伝熱管4まで上昇させるとともに1ピッチ降下させ、
ここから風上側の上から六番目の伝熱管4まで降下させ
た後、最上段の伝熱管4まで上昇させ、しかる後、最下
段の伝熱管4まで一気に降下させて上記冷媒出口3に至
らしめるようにしている。従って、上記冷媒入口2と冷
媒出口3とのヘッド差は2.5ピッチとなっている。
The eighth refrigerant flow path P 8 has eight heat transfer tubes 4, 4,... On the leeward side and eight heat transfer tubes 4, 4,.
And the refrigerant inlet 2 is set in the fourth heat transfer tube 4 on the leeward side, and the refrigerant outlet 3 is set in the lowest heat transfer tube 4 on the leeward side. Then, in the pass taking, the refrigerant is raised by one pitch from the fourth heat transfer tube 4 from the top on the leeward side, then is dropped to the lowest heat transfer tube 4 at a stretch, and further from the lowest heat transfer tube 4 at a stretch. Raise it to the top heat transfer tube 4 and lower it by one pitch.
After descending from the top of the windward side to the sixth heat transfer tube 4, the heat transfer tube 4 is moved up to the uppermost heat transfer tube 4, and then is dropped to the lowermost heat transfer tube 4 to reach the refrigerant outlet 3. Like that. Therefore, the head difference between the refrigerant inlet 2 and the refrigerant outlet 3 is 2.5 pitches.

【0041】以上のように、この実施形態の熱交換器Z
3においては、その全ての冷媒流路P1〜P8において、
その冷媒入口2と冷媒出口3とが離間状態にあり、また
上記冷媒入口2と冷媒出口3とのヘッド差は全て同一と
されている。
As described above, the heat exchanger Z of this embodiment
In 3, in all its coolant channel P 1 to P 8,
The refrigerant inlet 2 and the refrigerant outlet 3 are separated from each other, and the head difference between the refrigerant inlet 2 and the refrigerant outlet 3 is all the same.

【0042】従って、同一の冷媒流路における冷媒入口
2と冷媒出口3との間隔が大きく、且つ上下方向に隣接
する一対の冷媒流路間においてもその一方の冷媒流路の
冷媒入口2と他方の冷媒流路の冷媒出口3とが隣接せず
比較的大きな間隔が確保されることで、高温のガス冷媒
が流入する冷媒入口2側と低温の液冷媒が流出する冷媒
出口3側との間における熱干渉が可及的に抑制され、そ
れだけ該熱交換器Z3における凝縮能力が高められるこ
とになる。
Accordingly, the distance between the refrigerant inlet 2 and the refrigerant outlet 3 in the same refrigerant flow path is large, and between the pair of vertically adjacent refrigerant flow paths, the refrigerant inlet 2 of one of the refrigerant flow paths and the other of the refrigerant flow path 2 The refrigerant outlet 3 of the refrigerant flow path is not adjacent to the refrigerant outlet 3 and a relatively large space is secured, so that the refrigerant outlet 2 side where the high-temperature gas refrigerant flows and the refrigerant outlet 3 side where the low-temperature liquid refrigerant flows out thermal interference is suppressed as much as possible, the more so that the condensation capacity is increased in the heat exchanger Z 3 in.

【0043】また、各冷媒流路P1〜P8における上記冷
媒入口2と冷媒出口3とのヘッド差が同一に設定されて
いることで、該各冷媒流路P1〜P8における圧損差が可
及的に小さくなり、冷媒の偏流が抑制されることで熱交
換性能のより一層の向上が図れるものである。
[0043] Also, the head difference between the refrigerant inlet 2 and the refrigerant outlet 3 of the respective refrigerant flow paths P 1 to P 8 are set to the same pressure loss difference at respective refrigerant passage P 1 to P 8 Is reduced as much as possible, and the drift of the refrigerant is suppressed, so that the heat exchange performance can be further improved.

【0044】第4の実施形態 図4には、本願の請求項1及び5に記載の発明の実施形
態にかかる熱交換器Z4のパス取り構造を示している。
この熱交換器Z4は、上記第3の実施形態にかかる熱交
換器Z3と同様に、冷房運転時に冷媒を風下側の流路を
循環させた後、風上側の流路を循環させる所謂「冷房対
向流」の冷媒流れをもつものであって、フィン1に対し
てその上下方向に複数の冷媒流路P1〜P4を多段状に配
置して構成される。
[0044] In the fourth embodiment FIG. 4 shows a path up the structure of the heat exchanger Z 4 according to an embodiment of the invention described in claim 1 and 5 of the present application.
The heat exchanger Z 4, like the heat exchanger Z 3 according to the third embodiment, after the refrigerant during the cooling operation by circulating a leeward side of the channel, so-called circulating the windward side of the flow path It has a “cooling counterflow” refrigerant flow, and is configured by arranging a plurality of refrigerant flow paths P 1 to P 4 in the vertical direction with respect to the fin 1 in multiple stages.

【0045】上記各冷媒流路P1〜P4のパス取り構造は
次の通りである。第1冷媒流路P1は、上側に位置する
第1分流路P11と下側に位置する第2分流路P12とで構
成されている。
The structure of each of the refrigerant flow paths P 1 to P 4 is as follows. The first refrigerant flow path P 1 is composed of a second branch passage P 12 located in the first branch passage P 11 and a lower positioned above.

【0046】上記第1分流路P11は、風下側に1ピッチ
毎に上下方向に並んだ6本の伝熱管4,4,・・を備え
るとともに、風上側に8本の伝熱管4,4,・・を、二
番目の伝熱管4と三番目の伝熱管4との間に5ピッチだ
け間隔を空けた状態で上下方向に配置しており、風下側
の最下段の伝熱管4に冷媒入口2を、風上側の最下段の
伝熱管4に冷媒出口3をそれぞれ設定している。
[0046] The first branch passage P 11 is downwind six heat transfer tubes arranged vertically on each pitch side 4,4, provided with a ..., eight heat exchanger tube on the windward side 4,4 Are vertically arranged at intervals of 5 pitches between the second heat transfer tube 4 and the third heat transfer tube 4, and the refrigerant is provided to the lowermost heat transfer tube 4 on the leeward side. The inlet 2 is provided with the refrigerant outlet 3 in the lowermost heat transfer tube 4 on the windward side.

【0047】上記第2分流路P12は、風下側に1ピッチ
毎に上下方向に並んだ8本の伝熱管4,4,・・を備え
るとともに、風上側に6本の伝熱管4,4,・・を、四
番目の伝熱管4と五番目の伝熱管4との間に5ピッチだ
け間隔を空けた状態で上下方向に配置しており、風下側
の最上段の伝熱管4に冷媒入口2を、風上側の最下段の
伝熱管4に冷媒出口3をそれぞれ設定している。
[0047] The second branch passage P 12 is the leeward side in one pitch eight heat exchanger tubes aligned in the vertical direction for each 4,4, provided with a ..., six heat exchanger tubes in the windward 4,4 Are vertically arranged at intervals of 5 pitches between the fourth heat transfer tube 4 and the fifth heat transfer tube 4, and the refrigerant is provided in the uppermost heat transfer tube 4 on the leeward side. The inlet 2 is provided with the refrigerant outlet 3 in the lowermost heat transfer tube 4 on the windward side.

【0048】また、上記第1分流路P11と第2分流路P
12とは、風上側の下から二番目の伝熱管4と三番目の伝
熱管4との間で合流しており、この両者は風上側の最下
段の伝熱管4と下から二番目の伝熱管4とを共用してい
る。
[0048] Also, with the first branch passage P 11 second branch passage P
12 joins the second heat transfer tube 4 from the lower side of the windward side and the third heat transfer tube 4, both of which join the lowermost heat transfer tube 4 on the windward side and the second heat transfer tube from the bottom. The heat pipe 4 is shared.

【0049】第2冷媒流路P2は、上側に位置する第1
分流路P21と下側に位置する第2分流路P22とで構成さ
れている。
The second refrigerant flow path P 2 is connected to the first
It is composed of a second branch passage P 22 located in branch passage P 21 and the lower side.

【0050】上記第1分流路P21は、風下側に1ピッチ
毎に上下方向に並んだ6本の伝熱管4,4,・・を備え
るとともに、風上側に8本の伝熱管4,4,・・を、四
番目の伝熱管4と五番目の伝熱管4との間に7ピッチだ
け間隔を空けた状態で上下方向に配置しており、風下側
の最下段の伝熱管4に冷媒入口2を、風上側の最下段の
伝熱管4に冷媒出口3をそれぞれ設定している。
[0050] The first branch passage P 21 is downwind six heat transfer tubes arranged vertically on each pitch side 4,4, provided with a ..., eight heat exchanger tube on the windward side 4,4 Are vertically arranged at intervals of 7 pitches between the fourth heat transfer tube 4 and the fifth heat transfer tube 4, and the refrigerant is placed in the lowest heat transfer tube 4 on the leeward side. The inlet 2 is provided with the refrigerant outlet 3 in the lowermost heat transfer tube 4 on the windward side.

【0051】上記第2分流路P22は、風下側に1ピッチ
毎に上下方向に並んだ6本の伝熱管4,4,・・を備え
るとともに、風上側に8本の伝熱管4,4,・・を、六
番目の伝熱管4と七番目の伝熱管4との間に3ピッチだ
け間隔を空けた状態で上下方向に配置しており、風下側
の最上段の伝熱管4に冷媒入口2を、風上側の最下段の
伝熱管4に冷媒出口3をそれぞれ設定している。
[0051] The second branch passage P 22 is downwind six heat transfer tubes arranged vertically on each pitch side 4,4, provided with a ..., eight heat exchanger tube on the windward side 4,4 Are vertically arranged at intervals of three pitches between the sixth heat transfer tube 4 and the seventh heat transfer tube 4, and the refrigerant is placed in the uppermost heat transfer tube 4 on the leeward side. The inlet 2 is provided with the refrigerant outlet 3 in the lowermost heat transfer tube 4 on the windward side.

【0052】また、上記第1分流路P21と第2分流路P
22とは、風上側の下から二番目の伝熱管4と三番目の伝
熱管4との間で合流しており、この両者は風上側の最下
段の伝熱管4と下から二番目の伝熱管4とを共用してい
る。
The first branch P 21 and the second branch P
22 joins between the second and third heat transfer tubes 4 from the lower side of the windward side, and both of them join the lowermost heat transfer tube 4 on the windward side and the second heat transfer tube from the lower side. The heat pipe 4 is shared.

【0053】第3冷媒流路P3は、上側に位置する第1
分流路P31と下側に位置する第2分流路P32とで構成さ
れている。
The third refrigerant flow path P 3 is connected to the first
It is composed of a second branch passage P 32 located in branch passage P 31 and the lower side.

【0054】上記第1分流路P31は、風下側に1ピッチ
毎に上下方向に並んだ6本の伝熱管4,4,・・を備え
るとともに、風上側に8本の伝熱管4,4,・・を、二
番目の伝熱管4と三番目の伝熱管4との間に5ピッチだ
け間隔を空けた状態で上下方向に配置しており、風下側
の最下段の伝熱管4に冷媒入口2を、風上側の最下段の
伝熱管4に冷媒出口3をそれぞれ設定している。
[0054] The first branch passage P 31 is downwind six heat transfer tubes arranged vertically on each pitch side 4,4, provided with a ..., eight heat exchanger tube on the windward side 4,4 Are vertically arranged at intervals of 5 pitches between the second heat transfer tube 4 and the third heat transfer tube 4, and the refrigerant is provided to the lowermost heat transfer tube 4 on the leeward side. The inlet 2 is provided with the refrigerant outlet 3 in the lowermost heat transfer tube 4 on the windward side.

【0055】上記第2分流路P32は、風下側に1ピッチ
毎に上下方向に並んだ8本の伝熱管4,4,・・を備え
るとともに、風上側に6本の伝熱管4,4,・・を、四
番目の伝熱管4と五番目の伝熱管4との間に5ピッチだ
け間隔を空けた状態で上下方向に配置しており、風下側
の最上段の伝熱管4に冷媒入口2を、風上側の最下段の
伝熱管4に冷媒出口3をそれぞれ設定している。
[0055] The second branch passage P 32 is the leeward side in one pitch eight heat exchanger tubes aligned in the vertical direction for each 4,4, provided with a ..., six heat exchanger tubes in the windward 4,4 Are vertically arranged at intervals of 5 pitches between the fourth heat transfer tube 4 and the fifth heat transfer tube 4, and the refrigerant is provided in the uppermost heat transfer tube 4 on the leeward side. The inlet 2 is provided with the refrigerant outlet 3 in the lowermost heat transfer tube 4 on the windward side.

【0056】また、上記第1分流路P31と第2分流路P
32とは、風上側の下から二番目の伝熱管4と三番目の伝
熱管4との間で合流しており、この両者は風上側の最下
段の伝熱管4と下から二番目の伝熱管4とを共用してい
る。
The first branch P 31 and the second branch P
32 joins between the second and third heat transfer tubes 4 from the lower windward side, and both of them merge with the lowermost heat transfer tube 4 on the windward side and the second lowermost heat transfer tube. The heat pipe 4 is shared.

【0057】第4冷媒流路P4は、上側に位置する第1
分流路P41と下側に位置する第2分流路P42とで構成さ
れている。
The fourth refrigerant flow path P 4 is connected to the first
It is composed of a second branch passage P 42 located in the branch passage P 41 lower.

【0058】上記第1分流路P41は、風下側に1ピッチ
毎に上下方向に並んだ6本の伝熱管4,4,・・を備え
るとともに、風上側に8本の伝熱管4,4,・・を、五
番目の伝熱管4と六番目の伝熱管4との間に7ピッチだ
け間隔を空けた状態で上下方向に配置しており、風下側
の最下段の伝熱管4に冷媒入口2を、風上側の最下段の
伝熱管4に冷媒出口3をそれぞれ設定している。
[0058] The first branch passage P 41 is downwind six heat transfer tubes arranged vertically on each pitch side 4,4, provided with a ..., eight heat exchanger tube on the windward side 4,4 Are vertically arranged at intervals of 7 pitches between the fifth heat transfer tube 4 and the sixth heat transfer tube 4, and the refrigerant is disposed in the lowermost heat transfer tube 4 on the leeward side. The inlet 2 is provided with the refrigerant outlet 3 in the lowermost heat transfer tube 4 on the windward side.

【0059】上記第2分流路P42は、風下側に1ピッチ
毎に上下方向に並んだ6本の伝熱管4,4,・・を備え
るとともに、風上側に8本の伝熱管4,4,・・を、六
番目の伝熱管4と七番目の伝熱管4との間に3ピッチだ
け間隔を空けた状態で上下方向に配置しており、風下側
の最上段の伝熱管4に冷媒入口2を、風上側の最下段の
伝熱管4に冷媒出口3をそれぞれ設定している。
[0059] The second branch passage P 42 is downwind six heat transfer tubes arranged vertically on each pitch side 4,4, provided with a ..., eight heat exchanger tube on the windward side 4,4 Are vertically arranged at intervals of three pitches between the sixth heat transfer tube 4 and the seventh heat transfer tube 4, and the refrigerant is placed in the uppermost heat transfer tube 4 on the leeward side. The inlet 2 is provided with the refrigerant outlet 3 in the lowermost heat transfer tube 4 on the windward side.

【0060】また、上記第1分流路P41と第2分流路P
42とは、風上側の下から二番目の伝熱管4と三番目の伝
熱管4との間で合流しており、この両者は風上側の最下
段の伝熱管4と下から二番目の伝熱管4とを共用してい
る。
The first branch P 41 and the second branch P
42 joins between the second heat transfer tube 4 and the third heat transfer tube 4 from the lower side on the windward side, and both of them join the heat transfer tube 4 at the lowermost stage on the windward side and the second heat transfer tube from the lower side. The heat pipe 4 is shared.

【0061】以上の如き構成の各冷媒流路P1〜P4を備
えた熱交換器Z4においては、該各冷媒流路P1〜P4
二つの冷媒入口2,2が接近して配置され且つこれら二
つの冷媒入口2,2は冷媒出口3から大きく離間した配
置となっている。従って、上記冷媒入口2と冷媒出口3
との間における熱干渉が可及的に防止され、それだけ高
い凝縮能力が得られることになる。
[0061] In the heat exchanger Z 4 having the respective refrigerant flow paths P 1 to P 4 of the above-described configuration, two refrigerant inlet 2,2 of the respective refrigerant flow paths P 1 to P 4 is approached These two refrigerant inlets 2 and 2 are arranged so as to be largely separated from the refrigerant outlet 3. Therefore, the refrigerant inlet 2 and the refrigerant outlet 3
As much as possible, and a higher condensation capacity is obtained.

【0062】また、上記各冷媒流路P1〜P4を冷房運転
時に冷媒が風下側の流路から風上側の流路へ流れる構成
としているので、必然的に冷媒の降下過程と上昇過程と
が存在し、液溜まりが生じ易い構造となる。ところが、
この実施形態のものにおいては、各冷媒流路P1〜P4
おける経路の前半部、即ち、冷媒がガス冷媒である時に
これを上昇させ、経路の後半部、即ち、冷媒が液冷媒で
ある時にはこれを降下させる構成としているので、冷媒
流路における液溜まりの発生が可及的に防止され、各冷
媒流路P1〜P4が共に有効に機能し、高い熱交換能力が
確保されることになる。
Since the refrigerant flows through the respective refrigerant flow paths P 1 to P 4 from the leeward side flow path to the leeward side flow path during the cooling operation, it is inevitable that the refrigerant descends and rises. Exist, and a structure in which a liquid pool easily occurs is obtained. However,
In this embodiment, when the refrigerant is a gas refrigerant, the first half of the path in each of the refrigerant flow paths P 1 to P 4 is raised when the refrigerant is a gas refrigerant, and the second half of the path, that is, the liquid refrigerant is a liquid refrigerant. since a structure in which sometimes lower the result, the occurrence of liquid pool in the coolant channel can be prevented as much as possible functions each refrigerant passage P 1 to P 4 are both effective, it is ensured a high heat exchange capacity Will be.

【0063】さらに、この実施形態のものにおいては、
各冷媒流路P1〜P4を構成する一対の分流路P11と同P
12、分流路P21と同P22、分流路P31と同P32、分流路
41と同P42においてその下流側を上記冷媒出口3から
1.5ピッチだけ上方側位置において合流させているの
で、熱交換器Z4を蒸発器として使用する場合には、該
熱交換器Z4への着霜が可及的に抑制される。即ち、熱
交換器Z4を蒸発器として使用する場合には、上記冷媒
出口2側から液冷媒が流入し、上記冷媒入口3からガス
冷媒が流出する。この場合、上記一対の分流路P11と同
12、分流路P21と同P22、分流路P31と同P32、分流
路P41と同P42、とを上記冷媒出口3から1ピッチ以上
上方側位置において合流させているので、上記冷媒出口
3から流入した液冷媒は該冷媒出口3から合流部(分岐
部)に至る間に減圧されるが、分岐前の冷媒は飽和状態
であるため、その冷媒温度は分岐後のそれに比して高温
となる。かかる高温部位が各冷媒流路毎に存在すること
で、フィン1への着霜が抑制されると共に、デフロスト
運転時間の短縮が図られることになる。
Further, in this embodiment,
A pair of branch channels P 11 constituting the respective refrigerant flow paths P 1 to P 4 the P
12, the divisional channel P 21 the same P 22, the divisional channel P 31 the same P 32, and the downstream side is combined at the upper side position by 1.5 pitch from the refrigerant outlet 3 branch passage P 41 at the P 42 because there, in the case of using a heat exchanger Z 4 as an evaporator, frost to the heat exchanger Z 4 is suppressed as much as possible. In other words, when using a heat exchanger Z 4 as an evaporator, liquid refrigerant flows from the refrigerant outlet 2 side, the gas refrigerant flows out from the refrigerant inlet 3. In this case, the pair of branch channels P 11 the same P 12, the divisional channel P 21 the same P 22, the divisional channel P 31 the same P 32, the divisional channel P 41 the same P 42, the city from the refrigerant outlet 3 1 The liquid refrigerant flowing from the refrigerant outlet 3 is decompressed while flowing from the refrigerant outlet 3 to the merging portion (branch portion) since it is merged at a position higher than the pitch, but the refrigerant before branching is saturated. Therefore, the refrigerant temperature becomes higher than that after branching. The presence of such a high-temperature portion in each of the coolant flow paths suppresses frost formation on the fins 1 and shortens the defrost operation time.

【0064】尚、この第4の実施形態にかかる熱交換器
4では、これを構成する各冷媒流路P1〜P4を、それ
ぞれパス取り構造が異なったものとしているが、他の実
施形態においては、上記各冷媒流路P1〜P4を同一のパ
ス取り構造とすることもできる。例えば、四つの冷媒流
路の全てを、上記第1冷媒流路P1のパス取り構造のも
としたり、上記第2冷媒流路P2のパス取り構造のもの
とすることができるものである。
[0064] In the heat exchanger Z 4 according to the fourth embodiment, the respective refrigerant flow paths P 1 to P 4 to configure this, although it is assumed that the path up structure is different, other implementations in the embodiment, it is also possible to the respective refrigerant flow paths P 1 to P 4 as the same path up structure. For example, those which all four of the coolant channel, the original or the first pass-up structure of the coolant channel P 1, may be of the path up the structure of the second refrigerant flow path P 2 .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明の第1の実施形態にかかる熱交換器に
おける冷媒流路のパス取り構造の説明図である。
FIG. 1 is an explanatory diagram of a structure for taking a path of a refrigerant channel in a heat exchanger according to a first embodiment of the present invention.

【図2】本願発明の第2の実施形態にかかる熱交換器に
おける冷媒流路のパス取り構造の説明図である。
FIG. 2 is an explanatory diagram of a structure for taking a path of a refrigerant channel in a heat exchanger according to a second embodiment of the present invention.

【図3】本願発明の第3の実施形態にかかる熱交換器に
おける冷媒流路のパス取り構造の説明図である。
FIG. 3 is an explanatory diagram of a structure for taking a path of a refrigerant channel in a heat exchanger according to a third embodiment of the present invention.

【図4】本願発明の第4の実施形態にかかる熱交換器に
おける冷媒流路のパス取り構造の説明図である。
FIG. 4 is an explanatory diagram of a structure for taking a path of a refrigerant channel in a heat exchanger according to a fourth embodiment of the present invention.

【図5】従来の熱交換器における冷媒流路のパス取り構
造の説明図である。
FIG. 5 is an explanatory diagram of a structure for taking a path of a refrigerant channel in a conventional heat exchanger.

【図6】従来の熱交換器における冷媒流路のパス取り構
造の説明図である。
FIG. 6 is an explanatory diagram of a structure for taking a path of a refrigerant channel in a conventional heat exchanger.

【符号の説明】[Explanation of symbols]

1はフィン、2は冷媒入口、3は冷媒出口、4は伝熱
管、5は連絡管、P1〜P8は冷媒流路、P11〜P41は第
1分流路、P12〜P42は第2分流路、PZ1〜Z4は熱交
換器である。
1 fin 2 refrigerant inlet, a refrigerant outlet 3, 4 heat transfer tube, the connecting pipe 5, P 1 to P 8 is a refrigerant flow path, P 11 to P 41 are first branch passage, P 12 to P 42 the second branch passage, PZ 1 to Z 4 is a heat exchanger.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 立設状態でその板厚方向に所定間隔で対
向配置された複数枚のフィンを貫通して形成され且つ相
互に独立した複数の冷媒流路を上記フィンの立設方向に
おいて多段に設けてなる熱交換器であって、 同一の冷媒流路における冷媒入口と冷媒出口、又は上下
方向において隣接する一方の冷媒流路の冷媒入口と他方
の冷媒流路の冷媒出口とが、少なくとも隣接しないよう
に配置されていることを特徴とする熱交換器。
1. A plurality of mutually independent refrigerant flow paths formed through a plurality of fins which are opposed to each other at predetermined intervals in a thickness direction of the fins in an upright state and are formed in multiple stages in the upright direction of the fins. Wherein the refrigerant inlet and the refrigerant outlet in the same refrigerant flow path, or the refrigerant inlet of one of the adjacent refrigerant flow paths in the vertical direction and the refrigerant outlet of the other refrigerant flow path, at least A heat exchanger characterized by being arranged so as not to be adjacent to each other.
【請求項2】 請求項1において、 上記各冷媒流路が、風下側と風上側との間において蛇行
状に上下方向へ延びる構成とされ、且つ風下側の最上段
の流路に上記冷媒入口が、風上側の最下段から1ピッチ
だけ上側に位置する流路に上記冷媒出口が設定されてい
ることを特徴とする熱交換器。
2. The refrigerant flow path according to claim 1, wherein each of the refrigerant flow paths extends vertically in a meandering manner between a leeward side and an leeward side, and the refrigerant inlet is provided in a topmost flow path on a leeward side. Wherein the refrigerant outlet is set in a flow path located one pitch above the lowermost stage on the windward side.
【請求項3】 請求項1において、 上記各冷媒流路が、風下側と風上側との間において蛇行
状に上下方向へ延びる構成とされ、且つ風下側の最上段
から1ピッチだけ下側に位置する流路に上記冷媒入口
が、風上側の最下段の流路に上記冷媒出口が設定されて
いることを特徴とする熱交換器。
3. The refrigerant flow path according to claim 1, wherein each of the refrigerant flow paths extends vertically in a meandering manner between the leeward side and the leeward side, and is shifted downward by one pitch from the uppermost stage on the leeward side. A heat exchanger, wherein the refrigerant inlet is set in a flow path located, and the refrigerant outlet is set in a lowermost flow path on the windward side.
【請求項4】 請求項1において、 上記各冷媒流路が、冷房運転時に冷媒が風下側の流路か
ら風上側の流路へ流れる構成とされ、且つ上記各冷媒流
路における風上側の流路の中段位置に上記冷媒入口が、
風下側の流路に上記冷媒出口がそれぞれ設定されるとと
もに、上記各冷媒流路のそれぞれにおける上記冷媒入口
と冷媒出口のヘッド差が略同一となるように設定されて
いることを特徴とする熱交換器。
4. The refrigerant flow path according to claim 1, wherein each of the refrigerant flow paths is configured such that refrigerant flows from a leeward flow path to a leeward flow path during a cooling operation, and a windward flow in each of the refrigerant flow paths. The refrigerant inlet at the middle position of the road,
The heat outlet, wherein the refrigerant outlets are respectively set in the leeward flow passages, and the head difference between the refrigerant inlet and the refrigerant outlet in each of the refrigerant flow passages is set to be substantially the same. Exchanger.
【請求項5】 請求項1において、 上記各冷媒流路が、冷房運転時に冷媒が風下側の流路か
ら風上側の流路へ流れる構成とされ、且つ上記各冷媒流
路がそれぞれ上記冷媒入口から上記冷媒出口にかけての
経路の略前半部分において上昇し後半部分において下降
する経路をとる一対の分流路で構成されるともに、該一
対の分流路の上記各冷媒入口が近接配置される一方、上
記各冷媒出口は上記各冷媒入口から所定のヘッド差をも
った位置に設定されるとともに少なくとも上記各冷媒出
口から1ピッチ以上上方側位置において合流されている
ことを特徴とする熱交換器。
5. The refrigerant flow path according to claim 1, wherein each of the refrigerant flow paths is configured such that a refrigerant flows from a leeward flow path to a leeward flow path during a cooling operation, and each of the refrigerant flow paths is connected to the refrigerant inlet. While comprising a pair of branch flow paths that take a path that rises in the approximately first half of the path from the refrigerant outlet to the refrigerant outlet and that descends in the second half of the path, the refrigerant inlets of the pair of flow paths are arranged close to each other, A heat exchanger, wherein each of the refrigerant outlets is set at a position having a predetermined head difference from each of the refrigerant inlets, and is joined at least one pitch or more upward from each of the refrigerant outlets.
JP30181796A 1996-11-13 1996-11-13 Heat exchanger Expired - Lifetime JP3185687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30181796A JP3185687B2 (en) 1996-11-13 1996-11-13 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30181796A JP3185687B2 (en) 1996-11-13 1996-11-13 Heat exchanger

Publications (2)

Publication Number Publication Date
JPH10141884A true JPH10141884A (en) 1998-05-29
JP3185687B2 JP3185687B2 (en) 2001-07-11

Family

ID=17901527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30181796A Expired - Lifetime JP3185687B2 (en) 1996-11-13 1996-11-13 Heat exchanger

Country Status (1)

Country Link
JP (1) JP3185687B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014767A3 (en) * 2000-08-15 2002-05-23 American Standard Int Inc Stepped heat exchanger coils
EP1512925A2 (en) * 2003-09-02 2005-03-09 LG Electronics Inc. Condenser
CN1327173C (en) * 2003-03-27 2007-07-18 海尔集团公司 Condenser of air conditioner outdoor unit
EP1416242A3 (en) * 2002-10-30 2011-12-14 Coiltech AB A liquid-operated heat exchanger, particularly a heat recovery battery
CN103528284A (en) * 2013-09-23 2014-01-22 青岛海信日立空调系统有限公司 VRF air conditioning system and condenser thereof
CN104596155A (en) * 2015-01-27 2015-05-06 珠海格力电器股份有限公司 Fin type heat exchanger and air conditioner
JP2015121351A (en) * 2013-12-24 2015-07-02 株式会社富士通ゼネラル Heat exchanger
CN112240654A (en) * 2019-07-17 2021-01-19 日立江森自控空调有限公司 Heat exchanger, air conditioner, indoor unit, and outdoor unit

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014767A3 (en) * 2000-08-15 2002-05-23 American Standard Int Inc Stepped heat exchanger coils
EP1416242A3 (en) * 2002-10-30 2011-12-14 Coiltech AB A liquid-operated heat exchanger, particularly a heat recovery battery
CN1327173C (en) * 2003-03-27 2007-07-18 海尔集团公司 Condenser of air conditioner outdoor unit
EP1512925A2 (en) * 2003-09-02 2005-03-09 LG Electronics Inc. Condenser
EP1512925A3 (en) * 2003-09-02 2007-12-26 LG Electronics Inc. Condenser
CN103528284A (en) * 2013-09-23 2014-01-22 青岛海信日立空调系统有限公司 VRF air conditioning system and condenser thereof
CN103528284B (en) * 2013-09-23 2016-03-02 青岛海信日立空调系统有限公司 Multi-online air-conditioning system and condenser thereof
JP2015121351A (en) * 2013-12-24 2015-07-02 株式会社富士通ゼネラル Heat exchanger
CN104596155A (en) * 2015-01-27 2015-05-06 珠海格力电器股份有限公司 Fin type heat exchanger and air conditioner
CN112240654A (en) * 2019-07-17 2021-01-19 日立江森自控空调有限公司 Heat exchanger, air conditioner, indoor unit, and outdoor unit
CN112240654B (en) * 2019-07-17 2022-05-06 日立江森自控空调有限公司 Heat exchanger, air conditioner, indoor unit, and outdoor unit

Also Published As

Publication number Publication date
JP3185687B2 (en) 2001-07-11

Similar Documents

Publication Publication Date Title
JP6091641B2 (en) Heat exchanger and air conditioner
JP2000249479A (en) Heat exchanger
EP3156752B1 (en) Heat exchanger
JP4178472B2 (en) Heat exchanger and air conditioner
US6142220A (en) Finned heat exchanger
JP2006284134A (en) Heat exchanger
JP6239159B2 (en) Refrigeration cycle equipment
JP3185687B2 (en) Heat exchanger
JP2006284133A (en) Heat exchanger
JP5608478B2 (en) Heat exchanger and air conditioner using the same
WO2020129180A1 (en) Heat exchanger and refrigeration cycle device
JP3888000B2 (en) Air conditioner
JP4068312B2 (en) Carbon dioxide radiator
JP2016050718A (en) Air conditioner
JP2019215161A (en) Outdoor machine of air conditioner, and air conditioner
WO2019130394A1 (en) Heat exchanger and refrigeration cycle device
CN210425644U (en) Evaporator, evaporator assembly and air conditioning unit
JP4624146B2 (en) Air conditioner indoor unit
JP3918284B2 (en) Cross fin tube heat exchanger
JP2015121351A (en) Heat exchanger
JPH10185359A (en) Finned heat exchanger
JP2002081797A (en) Condenser
JP2001263862A (en) Heat exchanger
JP6915714B1 (en) Heat exchanger
JPH11264629A (en) Cross fin coil type heat exchanger

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080511

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 12

EXPY Cancellation because of completion of term