JPH10130716A - Method for estimating decarburizing quantity in vacuum decarburizing furnace - Google Patents
Method for estimating decarburizing quantity in vacuum decarburizing furnaceInfo
- Publication number
- JPH10130716A JPH10130716A JP28533796A JP28533796A JPH10130716A JP H10130716 A JPH10130716 A JP H10130716A JP 28533796 A JP28533796 A JP 28533796A JP 28533796 A JP28533796 A JP 28533796A JP H10130716 A JPH10130716 A JP H10130716A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- exhaust gas
- flow rate
- booster
- vol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、真空脱炭炉におけ
る排ガス分析による脱炭量推定方法に関する。The present invention relates to a method for estimating the amount of decarburization by exhaust gas analysis in a vacuum decarburization furnace.
【0002】[0002]
【従来の技術】一般に真空脱炭炉の排ガス分析方法では
次のような方法がある。 (a)炉付近でガスをサンプリングする方法。 特開平4−143210号公報、特開平6−81027
号公報で提供されるように真空度の高い(=圧力の低
い)場所でのガスサンプリング技術がある。 (b)真空排気設備経由後(中)の位置でガスをサンプ
リングする方法。2. Description of the Related Art In general, there are the following methods for analyzing exhaust gas from a vacuum decarburization furnace. (A) A method of sampling gas near a furnace. JP-A-4-143210, JP-A-6-81027
There is a gas sampling technique in a place where the degree of vacuum is high (= low pressure) as provided in Japanese Patent Application Laid-Open Publication No. H10-260,086. (B) A method of sampling a gas at a position (middle) after passing through a vacuum exhaust system.
【0003】前記(a)の方法に対する方式として、例
えば特開平4−72121号公報にあるように、排ガス
分析方法におけるガスのサンプリング位置を限定してい
ないので、真空排気設備経由後(中)の位置でガスをサ
ンプリングする方法も含まれる。[0003] As a method for the method (a), for example, as disclosed in Japanese Patent Application Laid-Open No. 4-72121, the gas sampling position in the exhaust gas analysis method is not limited, so that the gas after passing through the vacuum exhaust equipment (middle). Methods for sampling gas at locations are also included.
【0004】[0004]
【発明が解決しようとする課題】従来の方法の問題点を
整理すると次のとおりである。上記(a)の方法では、
炉からの発生ガスが充分に混合しないことやダストが大
量に発生することから、長期間の安定した分析は困難で
ある。上記(b)の方法は、ガスの混合は充分で、ダス
トもバグフィルタによって大幅に削減されているので長
期間の安定した分析には適しているものの、ブースタ
(エジェクタポンプ)動作開始時のガスの移動がノイズ
となって分析値や排ガス流量測定ひいては脱炭量計算に
入ってしまい正確な数値を求めることが困難であった。The problems of the conventional method are summarized as follows. In the above method (a),
Since the gas generated from the furnace is not sufficiently mixed and a large amount of dust is generated, stable analysis for a long time is difficult. The method (b) is suitable for long-term stable analysis because the gas mixture is sufficient and dust is greatly reduced by the bag filter, but the gas at the start of the operation of the booster (ejector pump) is used. As a result, it was difficult to obtain an accurate numerical value because the movement of the gas became a noise and the analysis value and the flow rate of the exhaust gas were measured.
【0005】本発明は、上記(b)の方法がもつ課題を
解決した方法を提供することを目的とする。An object of the present invention is to provide a method which solves the problem of the method (b).
【0006】[0006]
【課題を解決するための手段】本発明は、真空脱炭炉に
おける排ガス分析値及び排ガス流量に基づいて脱炭量を
推定するに当り、エジェクタポンプ動作直後の排ガス流
量増大分のうちブースタ容積と圧力変化から計算される
ブースタガス体積を差引いた値を排ガス流量として用い
ることを特徴とする真空脱炭炉における脱炭量推定方法
を提供するものである。According to the present invention, when estimating a decarburization amount based on an exhaust gas analysis value and an exhaust gas flow rate in a vacuum decarburization furnace, the booster volume and the booster exhaust gas increase amount immediately after the operation of an ejector pump are used. An object of the present invention is to provide a method for estimating a decarburization amount in a vacuum decarburization furnace, wherein a value obtained by subtracting a booster gas volume calculated from a pressure change is used as an exhaust gas flow rate.
【0007】ブースタ(エジェクタポンプ)始動後、排
ガス流量の急激な増加は実際のプロセス反応によるもの
ではなく、排ガス流量の増加分をブースタ(エジェクタ
ポンプ)の容積と圧力変化から逆算して、排ガス流量積
算値から引き去ったうえで脱炭計算を行う。After the start of the booster (ejector pump), the rapid increase in the exhaust gas flow rate is not due to the actual process reaction, but the increase in the exhaust gas flow rate is calculated back from the booster (ejector pump) volume and pressure change to obtain the exhaust gas flow rate. After deducting from the integrated value, calculate the decarburization.
【0008】[0008]
【発明の実施の形態】本発明の適用される真空脱炭炉の
排気系統を図1に示した。真空脱炭炉1の排気は、排ガ
ス配管2を経てガスクーラ3、バグフィルタ4を経て、
ブースタ5によって吸引される。ブースタ5を通った排
ガスは、コンデンサ6、ミストセパレータ7を通って、
アフターバーナ9に供給され、燃焼ガス10となって排
出される。アフターバーナ9に供給されるガスの内から
その一部がサンプリング孔8から採取され、ガス分析さ
れる。図2は、真空脱炭炉1としてVOD脱ガス装置1
2を用いた例を示すもので、ランス11から送酸し、脱
炭炉内において、 C+(1/2)O2 =CO CO+(1/2)O2 =CO2 の反応式により溶鋼の脱炭を図る。排ガス配管2には、
生成したCO、CO2 が排出され、ガス分析配管8を経
て、質量分析計13で分析され、高速計算機14、演算
装置15で演算される。図3は真空脱炭炉1として、R
H装置を用いたもので、ランス21から送酸され、装置
内で反応生成したCO、CO2 が排出され、図2と同様
に、ガス分析配管8を経て、質量分析計13で分析さ
れ、高速計算機14、演算装置15で演算される。FIG. 1 shows an exhaust system of a vacuum decarburization furnace to which the present invention is applied. The exhaust gas from the vacuum decarburization furnace 1 passes through an exhaust gas pipe 2, passes through a gas cooler 3, passes through a bag filter 4,
It is sucked by the booster 5. The exhaust gas passing through the booster 5 passes through the condenser 6 and the mist separator 7,
It is supplied to an afterburner 9 and is discharged as a combustion gas 10. Part of the gas supplied to the afterburner 9 is sampled from the sampling hole 8 and analyzed for gas. FIG. 2 shows a VOD degassing apparatus 1 as a vacuum decarburization furnace 1.
In this example, acid is fed from the lance 11 and the molten steel is deoxidized in a decarburizing furnace by the reaction formula of C + (1/2) O 2 = CO CO + (1/2) O 2 = CO 2 . Try to decarburize. In the exhaust gas pipe 2,
The generated CO and CO 2 are discharged, analyzed by the mass spectrometer 13 through the gas analysis pipe 8, and calculated by the high-speed computer 14 and the arithmetic unit 15. FIG. 3 shows a vacuum decarburization furnace 1 with R
In the apparatus using the H apparatus, CO and CO 2 which are sent from the lance 21 and produced by the reaction in the apparatus are discharged, and analyzed by the mass spectrometer 13 through the gas analysis pipe 8 as in FIG. The calculation is performed by the high-speed computer 14 and the calculation device 15.
【0009】ブースタ5(エジェクタポンプ)運転直後
の真空排気系内ガスの移動量を脱炭量計算内の排ガス積
算流量から引き去ることによって、流量の把握がより正
確になる。ブースタ(エジェクタポンプ)移動ガス削除
処理を下記に示す。 Qtotal = V × Δt − Qbst Qtotal :積算排ガス流量 V :排ガス流量 Δt :積算周期 Qbst :ブースタ移動ガス Qbst = {Vvac × (Pst−Pend )}/RT Vvac :真空排気系統体積 Pst−Pend :ブースタ移動前後圧力変化 R :気体定数 T :気体温度 以上の結果を模式的に図4に示した。図4は、排ガス流
量の時間的な推移を流量曲線31で示した。削除処理さ
れるガス量は領域32で示され上記Qbst に相当し、脱
炭量計算に算入されるガス量33は斜線を施した領域と
なり、これが上記Qtotal となる。The flow rate of the gas in the vacuum exhaust system immediately after the operation of the booster 5 (ejector pump) is subtracted from the integrated flow rate of the exhaust gas in the calculation of the decarburization amount, so that the flow rate can be grasped more accurately. The booster (ejector pump) moving gas elimination processing is shown below. Q total = V × Δt -Q bst Q total : integrated exhaust gas flow V: exhaust gas flow Δ t : integrated cycle Q bst : booster moving gas Q bst = {V vac × (P st -P end )} / RT V vac : Vacuum exhaust system volume P st -P end : Pressure change before and after the booster movement R: Gas constant T: Gas temperature The results above are schematically shown in FIG. FIG. 4 shows the change over time of the exhaust gas flow rate with a flow rate curve 31. The amount of gas to be deleted is indicated by a region 32 and corresponds to the above Q bst , and the gas amount 33 included in the decarburization amount calculation is a hatched region, which is the above Q total .
【0010】[0010]
【発明の効果】本発明は真空排気設備のブースタ(エジ
ェクタポンプ)が動作するときの、排ガス流量急増を脱
炭計算に入らないようにフィルタリングしたことによっ
て、鋼中の脱炭量を正確に予測することができ、鋼中の
[C]量の予測が正確になった。According to the present invention, the amount of decarburization in steel is accurately predicted by filtering a sudden increase in the flow rate of exhaust gas when the booster (ejector pump) of the vacuum exhaust system operates so as not to be included in the decarburization calculation. And the prediction of the amount of [C] in the steel became accurate.
【図面の簡単な説明】[Brief description of the drawings]
【図1】真空排気系統図である。FIG. 1 is a diagram of an evacuation system.
【図2】実施例の脱炭計算を行う系統のフローシートで
ある。FIG. 2 is a flow sheet of a system for performing decarburization calculation according to the embodiment.
【図3】実施例の脱炭計算を行う系統のフローシートで
ある。FIG. 3 is a flow sheet of a system for performing decarburization calculation according to the embodiment.
【図4】脱炭計算の流量計算例を示す模式的なチャート
である。FIG. 4 is a schematic chart showing a flow rate calculation example of a decarburization calculation.
1 真空脱炭炉 2 排ガス配管 3 ガスクーラ 4 バグフィルタ 5 ブースタ 6 コンデンサ 7 ミストセパレータ 8 サンプリング孔(ガス分析配管) 9 アフターバーナ 10 燃焼ガス 11 ランス 12 VOD脱ガス装置 13 質量分析計 14 高速計算機 15 演算装置 21 ランス 22 RH装置 31 流量曲線 32 削除処理されるガス量領域 33 脱炭量計算に算入されるガス量 DESCRIPTION OF SYMBOLS 1 Vacuum decarburization furnace 2 Exhaust gas pipe 3 Gas cooler 4 Bag filter 5 Booster 6 Capacitor 7 Mist separator 8 Sampling hole (Gas analysis pipe) 9 Afterburner 10 Combustion gas 11 Lance 12 VOD degassing device 13 Mass spectrometer 14 High-speed calculator 15 Calculation Device 21 Lance 22 RH device 31 Flow rate curve 32 Gas volume region to be deleted 33 Gas volume included in decarburization calculation
Claims (1)
ガス流量に基づいて脱炭量を推定するに当り、エジェク
タポンプ動作直後の排ガス流量増大分のうちブースタ容
積と圧力変化から計算されるブースタガス体積を差引い
た値を排ガス流量として用いることを特徴とする真空脱
炭炉における脱炭量推定方法。When estimating a decarburization amount based on an exhaust gas analysis value and an exhaust gas flow rate in a vacuum decarburization furnace, a booster gas calculated from a booster volume and a pressure change in an increase in the exhaust gas flow rate immediately after the operation of an ejector pump. A method for estimating a decarburization amount in a vacuum decarburization furnace, wherein a value obtained by subtracting a volume is used as an exhaust gas flow rate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28533796A JPH10130716A (en) | 1996-10-28 | 1996-10-28 | Method for estimating decarburizing quantity in vacuum decarburizing furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28533796A JPH10130716A (en) | 1996-10-28 | 1996-10-28 | Method for estimating decarburizing quantity in vacuum decarburizing furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10130716A true JPH10130716A (en) | 1998-05-19 |
Family
ID=17690253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28533796A Withdrawn JPH10130716A (en) | 1996-10-28 | 1996-10-28 | Method for estimating decarburizing quantity in vacuum decarburizing furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10130716A (en) |
-
1996
- 1996-10-28 JP JP28533796A patent/JPH10130716A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10130716A (en) | Method for estimating decarburizing quantity in vacuum decarburizing furnace | |
JP6007887B2 (en) | Vacuum degassing apparatus and method for decarburizing molten steel using the same | |
JP3965008B2 (en) | Estimation method for vacuum decarburization of molten steel | |
KR102697257B1 (en) | Method for decarburization and refining of molten steel under reduced pressure | |
WO2023218915A1 (en) | State estimation method for vacuum degasification process, operation method, molten steel manufacturing method, and state estimation device for vacuum degasification process | |
JPH10130717A (en) | Method for estimating decarburizing quantity in vacuum decarburizing furnace | |
JP5079382B2 (en) | Method for refining molten steel | |
JP2002363635A (en) | Method for determining decarburization terminating point in vacuum degassing apparatus | |
JP3827852B2 (en) | Denitrification method for chromium-containing molten steel | |
JPH06256832A (en) | Blowing method of converter | |
JP3415997B2 (en) | Guidance method for vacuum decarburization treatment of melting | |
JP2001234230A (en) | Method for deciding end point of decarburization refining | |
SU1010140A1 (en) | Method for vacuum treating molten steel in ladle | |
KR20000045516A (en) | Method and device for predicting concentration of carbon in molten metal in electric furnace work | |
KR970005385B1 (en) | Control method of carbon concentration with low carbon steel | |
JP2885620B2 (en) | Converter refining method | |
JP2006104521A (en) | Molten steel decarburizing method in rh vacuum degassing device | |
JP3126374B2 (en) | Vacuum decarburization control method for molten steel | |
JP3231555B2 (en) | Vacuum degassing refining method | |
JP4289214B2 (en) | Method for decarburizing molten steel and method for producing molten steel | |
JP3678132B2 (en) | Dehydrogenation refining method for molten steel | |
JP2005517812A (en) | Method for deep decarburization of molten steel | |
JPH03134114A (en) | Method for estimating carbon concentration in molten steel in rh refining | |
JPH10195525A (en) | Method for refining chromium-containing steel and apparatus therefor | |
JP3293674B2 (en) | Control method of end point carbon concentration in RH degassing process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20040106 |