JPH10128071A - Separation of isotopic gas using velocity separation type adsorbent - Google Patents

Separation of isotopic gas using velocity separation type adsorbent

Info

Publication number
JPH10128071A
JPH10128071A JP8284794A JP28479496A JPH10128071A JP H10128071 A JPH10128071 A JP H10128071A JP 8284794 A JP8284794 A JP 8284794A JP 28479496 A JP28479496 A JP 28479496A JP H10128071 A JPH10128071 A JP H10128071A
Authority
JP
Japan
Prior art keywords
isotope gas
adsorbent
adsorption
isotope
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8284794A
Other languages
Japanese (ja)
Other versions
JP3462677B2 (en
Inventor
Jun Izumi
順 泉
Akinori Yasutake
昭典 安武
Hiroyuki Tsutaya
博之 蔦谷
Nariyuki Tomonaga
成之 朝長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP28479496A priority Critical patent/JP3462677B2/en
Publication of JPH10128071A publication Critical patent/JPH10128071A/en
Application granted granted Critical
Publication of JP3462677B2 publication Critical patent/JP3462677B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To inexpensively separate an isotopic gas by using the adsorbent having a similar sized microhole as the molecular diameter of the isotopic gas and finishing an adsorption process before the adsorbing quantity of the isotopic gas reaches the saturated adsorbing quantity to increase the ratio of the isotopic gas more than in a vapor phase. SOLUTION: At the time of separating the isotope by adsorbing NH3 to an Na-A type zeolite, a gaseous starting material discharged from a gas holder 1 is introduced into an adsorption column 6 from a valve 5 through a mass rate controller 3. NH3 is adsorbed from the front side of the adsorption column 6 with valves 5 and 8 opened and valve 9 and 10 closed and gradually moves to the rear side. At the time of reaching a prescribed adsorption time, the adsorption column 6 is evacuated to vacuum by a vacuum pump 11 with the valves 5, 8 and 9 closed and the valve 10 opened and, when the absorption column 6 reaches a prescribed pressure, the valve 9 is opened and He is introduced at a flow rate corresponding to the displacement of the vacuum pump 11 into the adsorption column 6 by controlling a flow control valve 12 and the adsorbed NH3 is recovered from the rear side of the vacuum pump 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、速度分離型吸着剤
を利用した同位体ガスの分離方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for separating an isotope gas using a rate separation type adsorbent.

【0002】[0002]

【従来の技術】同位体を分離して濃縮回収または除去す
る技術は、原子力産業における核反応の制御技術、化学
または医療における特定元素に対するラベル技術として
重要である。従来、同位体ガスの分離で最も広く用いら
れている方法は拡散法と呼ばれるものであり、これは微
小孔を有する膜を介して高圧のガスを低圧側に拡散させ
るものである。微小孔内での拡散についてはグラハムの
法則が広く知られている。この法則は、等温等圧の気体
が同じ条件の下で細孔を通って圧力の低い側へ流出する
速度は、その質量数の平方根の逆数に比例するというも
のである。
2. Description of the Related Art Isotope separation, concentration and recovery or removal techniques are important as nuclear reaction control techniques in the nuclear industry and labeling techniques for specific elements in chemistry or medicine. Conventionally, the most widely used method for separating isotope gases is called a diffusion method, in which a high-pressure gas is diffused to a low-pressure side through a membrane having micropores. Graham's law is widely known for diffusion in micropores. This law states that the rate at which an isothermal, isobaric gas flows out through a pore to the lower pressure under the same conditions is proportional to the reciprocal of the square root of its mass number.

【0003】つまり、軽い方の同位体ガスの添字を1、
重い方の同位体ガスの添字を2とすると、細孔内の流速
の同位体ガスの濃度比u1 /u2 は同位体ガスの質量数
の平
[0003] That is, the subscript of the lighter isotope gas is 1,
When 2 the index of heavier isotopes gas, the concentration ratio u 1 / u 2 of the proportional gas flow rate in the pores of the mass number of the isotope gas Rights

【外1】 濃縮し、高圧側には重い同位体ガスが残る。[Outside 1] Concentrates, leaving heavy isotope gas on the high pressure side.

【0004】一段での濃縮は1%以下に停まるため、カ
スケード型に多段に濃縮ユニットを構成し、漸近的に濃
縮する方法が取られる。
[0004] Since the concentration in one stage stops at 1% or less, a method is adopted in which a concentration unit is configured in multiple stages in a cascade type and the concentration is asymptotically performed.

【0005】他の方法として遠心分離法が挙げられる。
これは、同位体ガスを高真空状態の遠心分離器にかける
と、同位体ガスは半径方向の外側に行くほど重い方の同
位体ガスの比率が増すので、中心部と外周部からガスを
採取して同位体の分離を行なう方法である。この場合に
おける分離でも一段での濃縮は1%以下に停まるため、
カスケード型に多段に濃縮ユニットを構成し漸近的に濃
縮する方法が取られている。
Another method is a centrifugation method.
This is because when isotopic gas is centrifuged in a high-vacuum state, the proportion of heavier isotope gas increases as it goes radially outward, so gas is collected from the center and the outer periphery. To separate isotopes. Even in the separation in this case, the concentration in one step stops at 1% or less.
A method has been adopted in which a concentration unit is configured in multiple stages in a cascade type and concentration is asymptotically performed.

【0006】また、重水素、トリチウム、重水、トリチ
ウム水のような軽元素については、それらの同位体は物
性値に若干の差異が生ずることから、精密蒸留法、同位
体変換法、電気分解法等の分離方法が採用されている。
これらの方法は比較的大きな分離効率を有することが特
徴である。
Light elements such as deuterium, tritium, deuterium water and tritium water have slight differences in their physical properties. Therefore, the precise distillation method, the isotope conversion method, the electrolysis method, etc. Etc. are employed.
These methods are characterized by having relatively high separation efficiency.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来の拡散法と遠心分離法は、一段での分離効率はわずか
なため、多段のカスケード条件下での真空操作が必要で
あり、該備費および変動費が極めて大きいという問題が
あった。また、上記精密蒸留法、同位体変換法、電気分
解法等の方法は、水素同位体に限定して適用され、それ
以外については分離効率が低下するため適用されなかっ
た。
However, the above-mentioned conventional diffusion method and centrifugal separation method require a vacuum operation under cascade conditions of multiple stages because the efficiency of separation in one stage is very small. There was a problem that the cost was extremely large. The methods such as the precision distillation method, the isotope conversion method, and the electrolysis method were applied only to hydrogen isotopes, and the other methods were not applied because the separation efficiency was lowered.

【0008】本発明は、上記事情に鑑みてなされたもの
で、コストが安価な同位体ガスの分離方法を提供するこ
とにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for separating an isotope gas at low cost.

【0009】[0009]

【課題を解決するための手段】本発明は、上記目的を解
決するためになされたものであり、その要旨は、同位体
ガスの分離方法において、ミクロ孔の大きさが同位体ガ
スの分子径に近接した吸着剤を用い、同位体ガスの吸着
量が飽和吸着量に到達する以前に吸着工程を終了し、質
量数が小さい同位体ガスの吸着速度が、質量数が大きい
同位体ガスの吸着速度よりも大きいことを利用して、吸
着剤中の質量数が小さい同位体ガスの比率を気相中より
も高めることにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned object, and the gist of the present invention is to provide a method for separating an isotope gas, wherein the size of the micropores is reduced by the molecular diameter of the isotope gas. Using an adsorbent close to, the adsorption process is completed before the adsorption amount of the isotope gas reaches the saturated adsorption amount, and the adsorption rate of the isotope gas with a small mass number is reduced to the adsorption rate of the isotope gas with a large mass number. By utilizing the fact that it is larger than the velocity, the ratio of the isotope gas having a small mass number in the adsorbent is to be higher than that in the gas phase.

【0010】[0010]

【発明の実施の形態】以下に、本発明に係る速度分離型
吸着剤を利用した同位体ガスの分離方法を詳細に説明す
る。ゼオライト系の吸着剤では、結晶の空隙部をガスが
拡散して内部に吸着されることから、この空隙部を窓と
呼び、結晶の形や交換イオンの種類により3〜10Åの
窓の大きさを有する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method for separating an isotope gas using a rate separation type adsorbent according to the present invention will be described in detail. In a zeolite-based adsorbent, gas diffuses through the voids of the crystal and is adsorbed inside. Therefore, these voids are called windows, and the size of the window is 3 to 10 mm depending on the shape of the crystal and the type of exchanged ions. Having.

【0011】発明者等は、このゼオライトの窓の大きさ
を吸着分子の直径に近接させることにより以下の事実を
見い出した。すなわち、ゼオライトの窓径を同位体ガス
の分子径に近接させると、質量数の大きい方の同位体
(以下、重同位体という)ガスの吸着速度は著しく低下
するのに対し、質量数の小さい方の同位体(以下、軽同
位体という)ガスの吸着速度はあまり大きく低下しな
い。また、比較的短時間の吸着では、軽同位体ガスが重
同位体ガスより多く吸着され、吸着剤には軽同位体ガス
が濃縮される速度分離型吸着を示す。上記窓径と分子径
の近接の程度については、目的とする吸着速度の有意差
が得られる範囲内であればよく、以下の実施例の値に限
定されるものではない。
The present inventors have found the following facts by making the size of the zeolite window close to the diameter of the adsorbed molecule. That is, when the window diameter of the zeolite is brought close to the molecular diameter of the isotope gas, the adsorption rate of the isotope having a larger mass number (hereinafter, referred to as a heavy isotope) is significantly reduced, while the adsorption rate of the gas having a larger mass number is significantly reduced. The adsorption rate of the isotope (hereinafter referred to as light isotope) gas does not decrease so much. In addition, in the case of adsorption for a relatively short time, light isotope gas is adsorbed more than heavy isotope gas, and the adsorbent exhibits rate separation type adsorption in which light isotope gas is concentrated. The degree of closeness between the window diameter and the molecular diameter may be within a range in which a significant difference in the target adsorption rate can be obtained, and is not limited to the values in the following examples.

【0012】[0012]

【外2】 軽同位体の質量、m2 が重同位体の質量)を大きく上回
り、同位体ガスの分離に使用できる。
[Outside 2] The mass of the light isotope, m 2 , greatly exceeds the mass of the heavy isotope), and can be used for isotopic gas separation.

【0013】また、吸着剤に吸着された同位体ガスの回
収については、相対的に減圧に導いて回収する圧力スイ
ング法(PSA)、相対的に高温に導いて回収する温度
スイング法(TSA)、同位体ガスと分離容易なガスと
置換する置換スイング法(DSA)等がある。しかし、
吸着工程における比較的短時間の吸着剤との接触により
吸着速度の差で同位体ガスを分離する点が重要であり、
回収及び再生はいずれの方法でもかまわない。なお、一
段の濃縮で不充分な場合には多段の吸着塔を構成し、回
収ガスについて繰り返し上記工程を操作することによ
り、所定の濃度まで同位体を濃縮することができる。
As for the recovery of the isotope gas adsorbed by the adsorbent, a pressure swing method (PSA) for recovering by introducing a relatively reduced pressure, and a temperature swing method (TSA) for recovering by introducing a relatively high temperature. And a replacement swing method (DSA) in which an isotope gas is replaced with a gas which can be easily separated. But,
It is important to separate the isotope gas by the difference of the adsorption speed by the contact with the adsorbent for a relatively short time in the adsorption process,
Collection and regeneration may be performed by any method. If one-stage concentration is not sufficient, a multi-stage adsorption tower is constituted, and the above-mentioned steps are repeatedly performed on the recovered gas, whereby the isotope can be concentrated to a predetermined concentration.

【0014】第1実施例 本発明の一実施態様としてNa−A型ゼオライト(窓径
4Å)に対して分子直径3.8ÅのNH3 を吸着して同
位体の分離を試みた。この内容を図1を用いて説明す
る。図1において、1は、NH3 10vol%,He
90vol%のガスホールダであり、NH3 の同位体の
存在比が14NH3 15NH3 =1:0.0035なの
で、14NH3 10vol% ,15NH3 350ppmの
濃度となる。ガスホールダ1を出た原料ガスは流路2、
質量流量制御器3、流路4を経てバルブ5から吸着塔6
に至る。このとき吸着量塔6には吸着剤7としてNa−
A型ゼオライトが充填されており、吸着剤7は再生され
て、気相は吸着工程と同一の圧力1.2atmのHeで
満たされている。ここで、バルブ5,8を開き、バルブ
9,10を閉じると、NH3 は吸着塔6の前方から吸着
されて徐々に後方に移動する。バルブ8の後方には圧力
調整弁18が設置されて吸着圧力1.2atmが維持さ
れる。
First Example As an embodiment of the present invention, isotope separation was attempted by adsorbing NH 3 having a molecular diameter of 3.8 ° on Na-A type zeolite (window diameter 4 °). This will be described with reference to FIG. In FIG. 1, 1 is NH 3 10 vol%, He
Since the gas holder is 90 vol% and the abundance ratio of NH 3 isotope is 14 NH 3 : 15 NH 3 = 1: 0.0035, the concentration of 14 NH 3 is 10 vol% and 15 NH 3 is 350 ppm. The raw material gas leaving the gas holder 1
From the valve 5 via the mass flow controller 3 and the flow path 4 to the adsorption tower 6
Leads to. At this time, Na-
The A-type zeolite is packed, the adsorbent 7 is regenerated, and the gas phase is filled with He at the same pressure of 1.2 atm as in the adsorption step. When the valves 5 and 8 are opened and the valves 9 and 10 are closed, NH 3 is adsorbed from the front of the adsorption tower 6 and gradually moves backward. A pressure regulating valve 18 is provided behind the valve 8 to maintain an adsorption pressure of 1.2 atm.

【0015】所定の吸着時間に到達すると、バルブ5,
8,9を閉じ、バルブ10を開き、真空ポンプ11によ
り吸着塔6を真空状態にし、吸着塔6が所定の圧力に達
したところでバルブ9を開き、真空ポンプ11の排気量
に見合った流量のHeを流量制御弁12を調整して吸着
塔6に導くと該吸着塔6の後方から徐々に吸着したNH
3 は離脱して真空ポンプ11の後方から回収される。こ
こで、吸着工程出口の同位体組成については、吸着塔6
の後方の流路13を分岐して流路14から質量分岐計1
5に導いて測定する。一方、脱着側の同位体組成につい
ては、真空ポンプ11の出口流路16を分岐して流路1
7から質量分岐計19にて計測を行なった。減圧再生が
終了するとバルブ5,8,10を閉じ、バルブ9を開い
てHeを吸着塔6に導いて吸着工程と同じ圧力まで昇圧
して、最初の吸着工程に戻る。このときの操作条件を表
1に示す。
When a predetermined adsorption time is reached, the valves 5,
8 and 9 are closed, the valve 10 is opened, and the adsorption tower 6 is evacuated by the vacuum pump 11. When the adsorption tower 6 reaches a predetermined pressure, the valve 9 is opened, and the flow rate is adjusted to the displacement of the vacuum pump 11. When He is introduced into the adsorption tower 6 by adjusting the flow control valve 12, NH gradually adsorbed from the rear of the adsorption tower 6.
3 is removed and collected from behind the vacuum pump 11. Here, regarding the isotope composition at the outlet of the adsorption step, the adsorption tower 6
Of the mass branch meter 1
Lead to 5 and measure. On the other hand, regarding the isotope composition on the desorption side, the outlet flow path 16 of the vacuum pump 11 is branched to form the flow path 1
The measurement was performed from 7 using a mass branch meter 19. When the decompression regeneration is completed, the valves 5, 8, and 10 are closed, the valve 9 is opened, and He is led to the adsorption tower 6 to increase the pressure to the same pressure as in the adsorption step, and then returns to the first adsorption step. Table 1 shows the operating conditions at this time.

【0016】[0016]

【表1】 [Table 1]

【0017】この条件で、吸着工程出口側の15NH3
14NH3 濃度比を質量分析計により測定し、得られた15
NH3 14NH3 濃度計測値を解析した。吸着時間と出
口側 15NH3 14NH3 濃度比の関係を図2のグラフに
示す。これからわかるように、吸着時間が短い程15NH
3 14NH3 の濃度比は大きく、10秒の吸着時間では
15NH3 14NH3 は0.007と入口側の濃度比の2
倍に達するが、300secの吸着時間では入口側の濃
度比とほぼ同じレベルまで減少する。このことから、N
a−A型ゼオライトは吸着速度分離型の挙動を同位体に
対しても示すことが確認された。このような挙動を示す
吸着剤については、1サイクル当たりの時間が0.1〜
30secで吸着と脱着を繰り返すラピッドPSAが最
適である。本実施例では一段で15NH3 は約2倍に濃縮
された。
Under these conditions, the suction process outlet sideFifteenNHThree/
14NHThreeThe concentration ratio was measured with a mass spectrometer andFifteen
NHThree,14NHThreeThe concentration measurements were analyzed. Adsorption time and output
Mouth side FifteenNHThree/14NHThreeThe relationship of the concentration ratio is shown in the graph of FIG.
Show. As can be seen, the shorter the adsorption time,FifteenNH
Three/14NHThreeConcentration ratio is large and with an adsorption time of 10 seconds
FifteenNHThree/14NHThreeIs 0.007 and the concentration ratio on the inlet side is 2
However, the concentration on the inlet side is increased for 300 sec.
It decreases to almost the same level as the power ratio. From this, N
a-A type zeolite isotope-isolated by the behavior of adsorption rate separation type
It was also confirmed that it showed. Show such behavior
For the adsorbent, the time per cycle is 0.1 to
Rapid PSA that repeats adsorption and desorption in 30 seconds
Suitable. In this embodiment, one stepFifteenNHThreeIs about twice as concentrated
Was done.

【0018】第2実施例 吸着剤として使用したNa−A型ゼオライトは、水分吸
着ののち再焼成をすると窓径が縮少することが知られて
いる。NH3 の分子径3.8ÅとNa−A型ゼオライト
の窓径4Åを考慮すると、窓径を縮少するとさらに選択
性が向上することが期待された。このため、Na−A型
ゼオライトに水分を吸着させたのち、温度680〜78
0℃で、熱処理時間1時間で再焼成して窓径の縮少を行
ない、第1実施例と同一の方法で15NH3 14NH3
分離を試みた。図3に熱処理温度と吸着塔6の出口側15
NH3 14NH3 濃度比の関係を吸着時間10秒の条件
で示す。760℃、1時間再燃焼したNa−A型ゼオラ
イトでは15NH3 14NH3 の同位体比は0.0098
である。これは、入口側濃度比の2.8倍であり、熱処
理をしない場合に比べ大きく改善されている。
Second Example It is known that the window diameter of Na-A type zeolite used as an adsorbent is reduced when recalcining after adsorbing moisture. Considering the molecular size 3.8Å and Na-A type zeolite Mado径4Å of NH 3, further selectivity when scaled down to Mado径is expected to be improved. For this reason, after adsorbing moisture to the Na-A type zeolite, the temperature is 680-78.
The window diameter was reduced by re-firing at 0 ° C. for one hour in the heat treatment time, and the separation of 15 NH 3 and 14 NH 3 was attempted in the same manner as in the first embodiment. FIG. 3 shows the heat treatment temperature and the outlet side 15 of the adsorption tower 6.
NH 3/14 NH 3 shows the relationship between the concentration ratio in the conditions of the adsorption time of 10 seconds. 760 ° C., isotopic ratios of 15 NH 3/14 NH 3 is 1 hour re-burned Na-A zeolite 0.0098
It is. This is 2.8 times the inlet-side concentration ratio, and is greatly improved as compared with the case where no heat treatment is performed.

【0019】第3実施例 Na−A型ゼオライトの窓径を決定する結晶格子のNa
は、温度によってその束縛力が大きく変化し、温度が低
くなるほど吸着を疎外するようになる。このため、吸着
温度を75℃から60℃の範囲で変化させて出口側15
3 14NH3濃度比への影響を検証した。この結果を
図4に示す。図中○が再熱処理したNa−A型ゼオライ
ト、●が未処理のNa−A型ゼオライトである。再熱処
理したNa−A型ゼオライトでは、0℃付近で15NH3
14NH3 濃度比が最大値0.011と入口側濃度比の
3.2倍を示し、未処理Na−A型ゼオライトでは、−
30℃付近で15NH3 14NH3 濃度比は0.0087
5と入口側濃度比の2.5倍を示した。このことから吸
着時間の短縮、吸着剤の熱処理を併せて吸着温度を低温
側に設定しても15NH3 の吸着は疎外されることがわか
る。
Third Embodiment The crystal lattice Na which determines the window diameter of Na-A type zeolite
The binding force greatly changes depending on the temperature, and the lower the temperature, the more the adsorption is alienated. For this reason, the adsorption temperature is changed in the range of 75 ° C. to 60 ° C., and the outlet side 15 N
To verify the effect of the H 3/14 NH 3 concentration ratio. The result is shown in FIG. In the figure, ○ indicates the re-heat-treated Na-A type zeolite, and ● indicates the untreated Na-A type zeolite. In the re-heat-treated Na-A type zeolite, 15 NH 3
/ 14 NH 3 concentration ratio shows a maximum value of 0.011 and 3.2 times of the concentration ratio on the inlet side, and in the untreated Na-A type zeolite, −
15 NH around 30 ℃ 3/14 NH 3 concentration ratio 0.0087
5 and 2.5 times the concentration ratio on the inlet side. This shows that the adsorption of 15 NH 3 is excluded even if the adsorption temperature is set to a low temperature side in combination with the shortening of the adsorption time and the heat treatment of the adsorbent.

【0020】第4実施例 Cに関して12CH4 13CH4 の分離を試みた。このと
きの操作条件において、上記第1実施例の表1と違う点
を表2に示す。CH4 の分子径は4Åであり、Na−A
型ゼオライトによる吸着が可能なので、第1〜第3実施
例と同様の比較的短時間の吸着を行ない同位体の濃縮比
を評価した。
With respect to the fourth embodiment C, separation of 12 CH 4 and 13 CH 4 was attempted. Table 2 shows differences in operating conditions at this time from Table 1 of the first embodiment. CH 4 has a molecular diameter of 4 ° and Na-A
Since adsorption by the zeolite was possible, adsorption was performed for a relatively short time as in the first to third examples, and the enrichment ratio of the isotope was evaluated.

【0021】[0021]

【表2】 [Table 2]

【0022】吸着時間と出口側13CH4 12CH4 濃度
比を図5に示す。10秒の吸着時間における13CH4
12CH4 濃度比は0.286と入口の2.6倍を示し、
ここでもNa−A型ゼオライトが速度分離型の吸着剤と
して同位体の分離能力を有することが示された。
[0022] Figure 5 shows the adsorption time and the outlet side 13 CH 4/12 CH 4 concentration ratio. 13 CH 4 / at an adsorption time of 10 seconds
The concentration ratio of 12 CH 4 is 0.286, which is 2.6 times that of the inlet.
Here also, it was shown that the Na-A type zeolite has an isotope separation ability as a rate separation type adsorbent.

【0023】第5実施例 第1実施例のNa−A型ゼオライトの代わりに、これと
ほぼ同一の大きさ(3.8〜4Å)の窓を有するカーボ
ン分子篩3Aによる上記15NH3 14NH3 の分離を試
みた。吸着時間10秒で出口側15NH3 14NH3 濃度
比は0.00875と入口側の濃度比の2.5倍に達し
た。分子篩カーボンも同じく速度分離型吸着剤として同
位体ガスの分離の可能性が有る。
Fifth Embodiment Instead of the Na-A type zeolite of the first embodiment, the above-mentioned 15 NH 3 and 14 NH by a carbon molecular sieve 3 A having a window of almost the same size (3.8 to 4 °). Tried to separate 3 . And an outlet side 15 NH 3/14 NH 3 concentration ratio reached 2.5 times the 0.00875 and the inlet side of the concentration ratio in the adsorption time of 10 seconds. Molecular sieve carbon also has the potential to separate isotope gases as a rate separating adsorbent.

【0024】第6実施例 Na−A型ゼオライトの表面にトリメチルシランガスを
接触させると、結晶表面水酸基と反応して窓径が縮少す
ることが知られている。トリメチルシランガスにより表
面の10%をケイ酸でコーティングして窓径を縮少した
ものについて、第一実施例の方法で15NH3 14NH3
の分離を試みた。吸着時間10秒で出口側15NH3 14
NH3 濃度比は0.00945と入口側の濃度比の2.
7倍に達した。
Sixth Embodiment It is known that when trimethylsilane gas is brought into contact with the surface of Na-A type zeolite, it reacts with hydroxyl groups on the crystal surface to reduce the window diameter. For the case where the window diameter is reduced by coating 10% of the surface with silicic acid using trimethylsilane gas, 15 NH 3 and 14 NH 3 were obtained by the method of the first embodiment.
Attempted to separate. Outlet 15 at adsorption time 10 sec NH 3/14
The NH 3 concentration ratio was 0.00945, which is 2.
7-fold.

【0025】[0025]

【発明の効果】上述したように、本発明に係る同位体ガ
スの分離方法によれば、設備費および変動費等のコスト
が安価で、種々の同位体ガスの分離に適用することが可
能である。
As described above, according to the isotope gas separation method of the present invention, equipment costs and variable costs are inexpensive and can be applied to the separation of various isotope gases. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る同位体ガスの分離工程を示す工程
図である。
FIG. 1 is a process chart showing an isotope gas separation process according to the present invention.

【図2】第1実施例における吸着塔出口側の同位体ガス
濃度比と吸着時間の関係を示すグラフである。
FIG. 2 is a graph showing a relationship between an isotope gas concentration ratio on the outlet side of an adsorption tower and an adsorption time in the first embodiment.

【図3】第2実施例における吸着塔出口側の同位体ガス
濃度比と熱処理温度の関係を示すグラフである。
FIG. 3 is a graph showing a relationship between an isotope gas concentration ratio on the outlet side of an adsorption tower and a heat treatment temperature in a second embodiment.

【図4】第3実施例における吸着塔出口側の同位体ガス
濃度比と吸着温度の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the isotope gas concentration ratio on the outlet side of the adsorption tower and the adsorption temperature in the third embodiment.

【図5】第4実施例における吸着塔出口側の同位体ガス
濃度比と吸着時間の関係を示すグラフである。
FIG. 5 is a graph showing a relationship between an isotope gas concentration ratio on the outlet side of an adsorption tower and an adsorption time in a fourth embodiment.

【符号の説明】[Explanation of symbols]

1 ガスホールダ 2 流路 3 質量流量制御器 4 流路 5 バルブ 6 吸着塔 7 吸着剤 8 バルブ 9 バルブ 10 バルブ 11 真空ポンプ 12 流量制御弁 13 流路 14 流路 15 質量分析計 16 流路 17 流路 18 圧力調整弁 19 質量分析計 DESCRIPTION OF SYMBOLS 1 Gas holder 2 Flow path 3 Mass flow controller 4 Flow path 5 Valve 6 Adsorption tower 7 Adsorbent 8 Valve 9 Valve 10 Valve 11 Vacuum pump 12 Flow control valve 13 Flow path 14 Flow path 15 Mass spectrometer 16 Flow path 17 Flow path 18 Pressure control valve 19 Mass spectrometer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 朝長 成之 長崎県長崎市深堀町五丁目717番1号 三 菱重工業株式会社長崎研究所内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shigeyuki Asana Nagase Prefecture Nagasaki-shi 5-717-1 Fukahori-cho Sanishi Heavy Industries, Ltd. Nagasaki Laboratory

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 同位体ガスの分離方法において、ミクロ
孔の大きさが同位体ガスの分子径に近接した吸着剤を用
い、同位体ガスの吸着量が飽和吸着量に到達する以前に
吸着工程を終了し、質量数が小さい同位体ガスの吸着速
度が、質量数が大きい同位体ガスの吸着速度よりも大き
いことを利用して、吸着剤中の質量数が小さい同位体ガ
スの比率を気相中よりも高めることを特徴とする同位体
ガスの分離方法。
In an isotope gas separation method, an adsorbent whose micropore size is close to the molecular diameter of the isotope gas is used, and the adsorbing step is performed before the amount of adsorbed isotope gas reaches a saturated adsorption amount. And the ratio of the isotope gas having the lower mass number in the adsorbent is determined by utilizing the fact that the adsorption rate of the isotope gas having the lower mass number is higher than that of the isotope gas having the higher mass number. A method for separating isotope gas, characterized in that it is higher than in phase.
【請求項2】 同位体ガスの吸着工程が終了したのち、
吸着塔を減圧に導いて吸着剤中の同位体ガスを回収する
ことを特徴とする請求項1に記載の同位体ガスの分離方
法。
2. After the isotope gas adsorption step is completed,
The method for separating isotope gas according to claim 1, wherein the isotope gas in the adsorbent is recovered by reducing the pressure in the adsorption tower.
【請求項3】 吸着剤としてNa−A型ゼオライトを用
いて15NH3 14NH3 を分離することを特徴とする請
求項1に記載の同位体ガスの分離方法。
3. The method for separating isotope gas according to claim 1, wherein 15 NH 3 and 14 NH 3 are separated by using Na-A type zeolite as an adsorbent.
【請求項4】 吸着剤として水分を吸着したのち再熱処
理したNa−A型ゼオライトを用いて15NH3 14NH
3 を分離することを特徴とする請求項1に記載の同位体
ガスの分離方法。
4. Use of a Na-A type zeolite which has been subjected to a heat treatment after adsorbing water as an adsorbent, and using 15 Na 3 and 14 NH
3. The method for separating an isotope gas according to claim 1, wherein 3 is separated.
【請求項5】 吸着剤としてケイ酸でコーティングした
Na−A型ゼオライトを用いて15NH3 14NH3 を分
離することを特徴とする請求項1に記載の同位体ガスの
分離方法。
5. The method for separating isotope gas according to claim 1, wherein 15 NH 3 and 14 NH 3 are separated using a Na-A type zeolite coated with silicic acid as an adsorbent.
【請求項6】 吸着剤としてNa−A型ゼオライトを用
いて13CH4 12CH4 を分離することを特徴とする請
求項1に記載の同位体ガスの分離方法。
6. The method for separating isotope gas according to claim 1, wherein 13 CH 4 and 12 CH 4 are separated by using Na-A type zeolite as an adsorbent.
【請求項7】 吸着剤として水分を吸着したのち再熱処
理したNa−A型ゼオライトを用いて13CH4 12CH
4 を分離することを特徴とする請求項1に記載の同位体
ガスの分離方法。
7. Use of a Na-A type zeolite which has been adsorbed as an adsorbent and re-heat treated, to obtain 13 CH 4 and 12 CH.
4. The method for separating an isotope gas according to claim 1, wherein 4 is separated.
【請求項8】 吸着剤としてケイ酸でコーティングした
Na−A型ゼオライトを用いて13CH4 12CH4 を分
離することを特徴とする請求項1に記載の同位体ガスの
分離方法。
8. The method for separating isotope gas according to claim 1, wherein 13 CH 4 and 12 CH 4 are separated by using Na-A type zeolite coated with silicic acid as an adsorbent.
【請求項9】 吸着剤としてNa−A型ゼオライトおよ
び熱処理したNa−A型ゼオライトを用い、室温以下の
低温で同位体ガスを回収することを特徴とする請求項1
に記載の同位体ガスの分離方法。
9. The method according to claim 1, wherein Na-A type zeolite and heat-treated Na-A type zeolite are used as the adsorbent, and the isotope gas is recovered at a low temperature below room temperature.
4. The method for separating an isotope gas described in 1. above.
JP28479496A 1996-10-28 1996-10-28 Isotope gas separation method using velocity separation type adsorbent Expired - Lifetime JP3462677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28479496A JP3462677B2 (en) 1996-10-28 1996-10-28 Isotope gas separation method using velocity separation type adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28479496A JP3462677B2 (en) 1996-10-28 1996-10-28 Isotope gas separation method using velocity separation type adsorbent

Publications (2)

Publication Number Publication Date
JPH10128071A true JPH10128071A (en) 1998-05-19
JP3462677B2 JP3462677B2 (en) 2003-11-05

Family

ID=17683111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28479496A Expired - Lifetime JP3462677B2 (en) 1996-10-28 1996-10-28 Isotope gas separation method using velocity separation type adsorbent

Country Status (1)

Country Link
JP (1) JP3462677B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001219035A (en) * 2000-02-14 2001-08-14 Mitsubishi Heavy Ind Ltd Method of manufacturing 13co enriched gaseous co
JP2003210945A (en) * 2002-01-18 2003-07-29 Tokyo Gas Co Ltd Method and apparatus for separating isotropic gas
JP2004089767A (en) * 2002-08-29 2004-03-25 Mitsubishi Heavy Ind Ltd Isotope selectively adsorbing agent and method and apparatus for separating/concentrating isotope
JP2004230267A (en) * 2003-01-29 2004-08-19 Tokyo Electric Power Co Inc:The Adsorbent and method for separating carbon isotope using the same
JP2005262208A (en) * 2004-02-16 2005-09-29 Tokyo Gas Co Ltd Method for separating isotope of gas and isotope selective adsorbent
JP2010094654A (en) * 2008-10-20 2010-04-30 Tokyo Electric Power Co Inc:The Selective adsorbent for isotope and method for separating/concentrating isotope
JP2015017003A (en) * 2013-07-09 2015-01-29 富士チタン工業株式会社 Artificial zeolite excellent in adsorption capacity of both of cesium and strontium and production method of the same
WO2019004102A1 (en) * 2017-06-30 2019-01-03 国立大学法人信州大学 Method for producing deuterium-depleted water and method for producing deuterium-concentrated water
WO2022149499A1 (en) * 2021-01-05 2022-07-14 国立大学法人信州大学 Oxygen isotope separation method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001219035A (en) * 2000-02-14 2001-08-14 Mitsubishi Heavy Ind Ltd Method of manufacturing 13co enriched gaseous co
JP2003210945A (en) * 2002-01-18 2003-07-29 Tokyo Gas Co Ltd Method and apparatus for separating isotropic gas
JP2004089767A (en) * 2002-08-29 2004-03-25 Mitsubishi Heavy Ind Ltd Isotope selectively adsorbing agent and method and apparatus for separating/concentrating isotope
JP2004230267A (en) * 2003-01-29 2004-08-19 Tokyo Electric Power Co Inc:The Adsorbent and method for separating carbon isotope using the same
JP2005262208A (en) * 2004-02-16 2005-09-29 Tokyo Gas Co Ltd Method for separating isotope of gas and isotope selective adsorbent
JP4738833B2 (en) * 2004-02-16 2011-08-03 東京瓦斯株式会社 Method for selective adsorption separation of 12CH4
JP2010094654A (en) * 2008-10-20 2010-04-30 Tokyo Electric Power Co Inc:The Selective adsorbent for isotope and method for separating/concentrating isotope
JP2015017003A (en) * 2013-07-09 2015-01-29 富士チタン工業株式会社 Artificial zeolite excellent in adsorption capacity of both of cesium and strontium and production method of the same
WO2019004102A1 (en) * 2017-06-30 2019-01-03 国立大学法人信州大学 Method for producing deuterium-depleted water and method for producing deuterium-concentrated water
JPWO2019004102A1 (en) * 2017-06-30 2019-11-07 国立大学法人信州大学 Method for producing deuterium reduced water and method for producing deuterium concentrated water
WO2022149499A1 (en) * 2021-01-05 2022-07-14 国立大学法人信州大学 Oxygen isotope separation method

Also Published As

Publication number Publication date
JP3462677B2 (en) 2003-11-05

Similar Documents

Publication Publication Date Title
JP3693626B2 (en) Adsorbent
US5922107A (en) Process for the separation of gas mixtures containing oxygen and nitrogen
JP3553568B2 (en) Adsorbent for separating nitrogen from oxygen / nitrogen mixed gas and method for producing nitrogen using the same
KR101107196B1 (en) Apparatus and method for separating gas
NO316950B1 (en) Process for pressure swing adsorption of carbon dioxide from a gas
JPH11290680A (en) Adsorbent having heterogeneous exchange rate and psa method using the adsorbent
JPH10128071A (en) Separation of isotopic gas using velocity separation type adsorbent
JP2010042381A (en) Xenon sorbent, method for enriching xenon, xenon concentrator, and air liquefaction separation apparatus
JP2003342010A (en) Gas purifying method and apparatus
US20100115994A1 (en) Adsorbent for carbon monoxide, gas purification method, and gas purification apparatus
JP2011173059A (en) Carbon dioxide adsorbent and carbon dioxide recovery apparatus using the same
JP4738833B2 (en) Method for selective adsorption separation of 12CH4
JP6978042B2 (en) Oxygen isotope separation method and separation device
JP4087117B2 (en) Isotope gas separation method and isotope gas separation apparatus
RU2706653C2 (en) Method of producing oxygen by vpsa, comprising using four adsorbers
JP7004690B2 (en) Improved carbon molecule sieving adsorbent
JP2005021891A (en) Method and apparatus for gas refining
JP4444208B2 (en) Isotope gas separation method and isotope gas separation apparatus
JPH10128073A (en) Separation of n(14) ammonia and n(15) ammonia using copper ion exchanged zeolite
JPH1095611A (en) Zeolite for gas adsorption and its production and adsorption and separation of gas using the same
CN111495328A (en) Ammonia modification method of calcium squarate and application of ammonia modification method in efficient separation of ethylene and ethane
JPS61293548A (en) Carbon monoxide separating and adsorbing agent
RU2701016C2 (en) Method of producing oxygen by vpsa
JP4509886B2 (en) Gas processing method and gas processing apparatus
JP4107781B2 (en) Method for producing 13CO enriched CO gas

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

EXPY Cancellation because of completion of term