JP3693626B2 - Adsorbent - Google Patents

Adsorbent Download PDF

Info

Publication number
JP3693626B2
JP3693626B2 JP2002117726A JP2002117726A JP3693626B2 JP 3693626 B2 JP3693626 B2 JP 3693626B2 JP 2002117726 A JP2002117726 A JP 2002117726A JP 2002117726 A JP2002117726 A JP 2002117726A JP 3693626 B2 JP3693626 B2 JP 3693626B2
Authority
JP
Japan
Prior art keywords
gas
nitrogen
adsorbent
zsm
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002117726A
Other languages
Japanese (ja)
Other versions
JP2003311148A (en
Inventor
和彦 藤江
雅人 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2002117726A priority Critical patent/JP3693626B2/en
Publication of JP2003311148A publication Critical patent/JP2003311148A/en
Application granted granted Critical
Publication of JP3693626B2 publication Critical patent/JP3693626B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸着剤に関し、詳しくは、精製対象ガスである高純度ガス中に含まれるアンモニア、三フッ化窒素、二酸化炭素、水素、酸素等の微量不純物を選択的吸着剤により吸着除去して超高純度のガスを得るための吸着剤に関する。
【0002】
【従来の技術】
ヘリウム、アルゴン、クリプトン、キセノンあるいは窒素等の不活性ガス、その他各種のガスが、エレクトロニクス産業において広く使用されている。このようなエレクトロニクス分野で使用される不活性ガス等は、半導体の製造プロセス自体で使用するものと、あらゆる工程でパージあるいは希釈用のガスとして使用する一般用途のものとがあり、それぞれで必要とされる純度のレベルは大きく異なるが、少なくとも99.999%以上は必要とされる。
【0003】
特に、半導体製造プロセスで使用されるガスは、純度に対する要求が厳しく、各不純物量ともppbレベルであることが要求されている。半導体製造プロセスで使用されるガス中の不純物として除去すべきとされるガスは、酸素、二酸化炭素、水、一酸化炭素、水素あるいは炭化水素類等である。また、希ガス類にあっては、先に挙げた不純物に加えて窒素も除去対象となる。
【0004】
一方、ガス吸着分離の分野において、Ca−A型、Na−X、Ca−X型等のゼオライトは、一般に窒素及び一酸化炭素を比較的よく吸着することが知られており、実用に供されている。しかし、これらのゼオライトの吸着等温線は、低圧領域においては略直線であり、極めて低い濃度の窒素や一酸化炭素に対する吸着量が小さいため、ppmレベルでの精製に供することは事実上不可能だった。
【0005】
また、特開昭60−156548号公報には、シリカ対アルミナ比が19以下で、かつ、銅イオンを含むZSM−5型ゼオライトを使用し、比較的高い濃度の一酸化炭素を含むガスから一酸化炭素を回収する方法が開示されている。この方法は、比較的高濃度に一酸化炭素を含むガスから一酸化炭素を分離回収する際に、一酸化炭素のみに選択性を示し、かつ、吸着容量の大きい吸着剤に関するものであって、捕捉方法に関する詳しい説明が無く、基本的に、ガス中に微量不純物として存在する一酸化炭素を除去する可能性を示唆するものではない。
【0006】
さらに、特開昭61−18431号公報には、シリカ対アルミナ比が10以下のY型、A型又はX型ゼオライトに1価の銅又は銀あるいはその両方を担持させた吸着剤により、窒素と比較的高濃度の一酸化炭素とを含む混合ガスから一酸化炭素を吸着分離する技術が開示されている。前記公報記載の実施例に示された原料ガス中の一酸化炭素は、比較的高い濃度範囲であって、ppmレベルでの除去については触れられていないし、ZSM−5を基本吸着剤とすることについては何の示唆もない。
【0007】
また、特開平3−65242号公報には、銅−ゼオライト触媒の製法として、シリカ対アルミナ比が5〜1000のゼオライトに銅をイオン交換により担持させて乾燥した後、該ゼオライトを容積比で0.05〜0.5%の水素を添加した不活性ガス気流中で熱処理することが開示されている。ここで使用するゼオライトは、ZSM−5ゼオライトが最も好ましいとされているが、浄化結果として示されているものは、モデルガス中の一酸化炭素濃度が0.11容積%に対して浄化率は50〜75%であって、ppmレベルの精製ではなく、しかも、窒素等の除去には触れていない。
【0008】
【発明が解決しようとする課題】
このように、従来の吸着技術では、ガス中に微量に含まれる一酸化炭素、窒素、一酸化二窒素、一酸化窒素、二酸化窒素、アンモニア、三フッ化窒素、二酸化炭素、メタン、水素、酸素等の不純物を同時に除去することが困難であり、特に、不純物の除去のレベルをppmレベルの極微量とすることができないという問題があった。そこで本発明は、各種ガス中に含まれるアンモニア、三フッ化窒素、二酸化炭素、水素、酸素等の微量不純物を選択的にppmレベル以下まで吸着除去して超高純度のガスを得ることができる吸着剤を提供することを目的としている。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明の吸着剤は、アンモニア、三フッ化窒素、二酸化炭素、水素及び酸素の少なくとも1種を微量不純物として含む精製対象ガス中の前記微量不純物を吸着除去するための吸着剤であって、銅イオン交換したZSM−5型ゼオライトからなることを特徴とし、また、前記微量不純物に加えて、一酸化炭素、窒素、メタンの少なくとも1種を吸着除去することを特徴としている。
【0010】
まず、本発明の微量不純物除去対象となるガス(精製対象ガス)は、例えば、前述のようなエレクトロニクス分野で使用される不活性ガスをはじめとする各種のガスであって、代表的なものとして、各種の希ガス、水素、酸素、二酸化炭素、炭化水素、水素の一部又は全部をハロゲン置換した炭化水素、六フッ化硫黄等を挙げることができる。また、本発明では、精製後のこれらガスの純度を99.9999容量%以上、すなわち、精製後に不純物として含まれる成分の合計を1ppm以下にすることを目標としている。
【0011】
前記吸着剤は、ZSM−5型ゼオライト(以下、ZSM−5と記載するときがある)のナトリウムイオン等を銅イオン交換したゼオライトである。なお、以下の説明において、この銅イオン交換したゼオライトを、「Cu−ZSM−5」と記載することがある。銅イオン交換する前の原料となるZSM−5型ゼオライトは、市販の材料を使用することができるが、シリカ対アルミナ比が5〜50であることが望ましい。ZSM−5におけるシリカ対アルミナ比が50を超えると銅イオン交換量が少なくなり、微量不純物の吸着量が減少してしまう。また、シリカ対アルミナ比が5未満のZSM−5は、入手困難である。
【0012】
Cu−ZSM−5における銅イオン交換率は、それぞれのゼオライトのイオン交換可能な量の少なくとも40%以上であるあることが好ましい。これは、イオン交換された銅イオンが窒素及び一酸化炭素の特異的吸着の要因となるからであり、銅イオン交換率が少なすぎると特異的吸着性能が発現しなくなってしまう。
【0013】
ZSM−5中に含まれるナトリウムを銅にイオン交換する方法は、特に限定されるものではなく、従来から行われている周知の方法を採用することができる。例えば、銅の可溶性塩(硝酸塩、酢酸塩、シュウ酸塩、塩酸塩等)の水溶液にZSM−5を浸漬することによってナトリウムを銅にイオン交換することができる。この場合、銅塩の濃度、浸漬時間、浸漬温度、浸漬回数等を選択することによって銅イオン交換量を所望の量に調節することができる。
【0014】
イオン交換した後は、水を用いて洗浄し、乾燥後に適当な温度で焼成することによって使用可能な状態となる。このときの乾燥温度は100℃程度が適当であり、焼成温度は、窒素ガス雰囲気下で350℃以上、特に、500〜800℃が適当である。この吸着剤の特異的吸着性能は、1価の銅イオンの存在によって発現すると考えられるので、500℃未満の焼成温度では2価から1価への変化が不十分で、十分な吸着性能を発現させることが困難であり、逆に800℃以上の温度では、ゼオライトの構造自体が破壊される可能性がある。
【0015】
銅イオン交換したゼオライト中に含まれる銅イオンの量は、任意の方法で測定できるが、例えば、ICP発光分析法(誘導電荷発光分析法)により測定することができる。なお、本発明におけるイオン交換率は、1個の銅イオンが2個のナトリウムイオンと交換するという仮定から求めている。すなわち、イオン交換時点では、銅イオンは2価として存在すると仮定している。実際には、1価の銅イオンも存在するため、計算値として100%以上の交換率が得られることがあり、全ての銅イオンが1価として存在する場合が上限であり、そのときの計算上のイオン交換率は200%となる。
【0016】
このようなCu−ZSM−5を微量不純物の吸着剤として使用することにより、例えば、希ガス、酸素、水素、二酸化炭素、炭化水素、六フッ化硫黄といったガス中に微量に存在する不純物、例えば、一酸化炭素、窒素、アンモニア、三フッ化窒素、二酸化炭素、メタン、水素、酸素を効率よく吸着除去して前記ガスを精製することができ、精製後のガス中に含まれる不純物量を1ppm以下、すなわち、純度を99.9999容量%以上にすることができる。
【0017】
ガスの精製処理は、前記吸着剤を充填した吸着筒に精製対象ガスを流通させて該ガスと吸着剤とを接触させればよい。両者を接触させるときの温度は、常温、例えば10〜40℃の範囲でよく、特に冷却したりする必要はほとんどない。また、前記微量不純物を吸着した吸着剤は、適当な温度に加熱することにより、微量不純物を脱着させて吸着剤を再生することができる。したがって、相対的に低い温度で行う微量不純物の吸着工程と、相対的に高い温度で行う脱着工程(再生工程)とを交互に繰り返すことにより、吸着剤を繰り返して使用することができる。
【0018】
さらに、図1の概略系統図に示すように、前記吸着剤(Cu−ZSM−5)を充填した吸着筒10a,10bを複数基設置するとともに、精製対象ガス用配管11,12と吸着剤再生ガス用配管13,14とをそれぞれ接続し、これらの配管にそれぞれ設けた遮断弁を所定の順序で開閉し、精製対象となるガスを相対的に低い温度に保たれた吸着筒に導入する吸着工程と、再生ガス加熱器15で加熱した再生ガスを吸着筒に流通させながら相対的に高い温度で行う脱着工程とを複数の吸着筒10a,10bで交互に繰り返すことにより、精製対象ガス中の微量不純物を連続的に吸着除去することができる。
【0019】
【実施例】
実施例1
シリカ対アルミナ比(Si/Al比)が11.9のナトリウム型ZSM−5ゼオライト(Na−ZSM−5)を、0.01モル濃度の酢酸銅溶液中に浸漬して90℃で1時間のイオン交換を行った。異なったイオン交換レベルのサンプルを得るため、この操作を数回繰り返すことにより、イオン交換率が0%,36%,83%,121%,147%の5種類を調製した。ZSM−5にイオン交換された銅の量は、ICP発光分析により測定した。
【0020】
吸着剤の評価として、定容法により吸着等温線の測定を行った。測定条件は、使用吸着剤量約0.5g、吸着温度25℃とし、吸着測定前に吸着剤の前処理として600℃での真空加熱処理を行った。表1に、Cu−ZSM−5の銅イオン交換率と、吸着温度25℃、平衡圧力10Paにおける一酸化炭素及び窒素の平衡吸着量との関係を示す。
【0021】
【表1】

Figure 0003693626
【0022】
実施例2
シリカ対アルミナ比の異なる4種類のZSM−5ゼオライトに、実施例1と同じ銅イオン交換操作を施し、銅イオン交換率が概ね120%のCu−ZSM−5を得た。吸着剤の評価として、実施例1と同様の方法で一酸化炭素及び窒素の吸着量をそれぞれ測定した。表2に、Cu−ZSM−5のシリカ対アルミナ比と、吸着温度25℃、平衡圧力10Paにおける一酸化炭素及び窒素の平衡吸着量との関係を示す。
【0023】
【表2】
Figure 0003693626
【0024】
実施例3
吸着剤としてCuイオン交換率120%、シリカ対アルミナ比19.5のCu−ZSM−5を選択し、真空下での焼成温度が窒素吸着に与える影響を調べた。
吸着剤の評価は、実施例1と同様の方法で窒素の吸着量を測定した。表3にCu−ZSM−5の初期焼成温度と、吸着温度25℃、平衡圧力10Paにおける窒素平衡吸着量との関係を示す。
【0025】
【表3】
Figure 0003693626
【0026】
実施例4
本発明による吸着剤と、従来の吸着剤(比較例)とにおける一酸化炭素及び窒素の吸着量を比較した。本発明の吸着剤には、シリカ対アルミナ比が19.5で、銅イオン交換率が120%のCu−ZSM−5を選び、比較例としては、一酸化炭素及び窒素の吸着量が多いとされるCa−X型を選定した。各吸着剤の評価は、実施例1と同様の方法で一酸化炭素及び窒素の吸着量をそれぞれ測定した。
吸着測定前の吸着剤の前処理として、Cu−ZSM−5は700℃で真空加熱処理を、Ca−Xは、剤の安定上の理由から350℃で真空加熱処理をそれぞれ行った。図2にCu−ZSM−5及びCa−Xへの一酸化炭素と窒素との吸着等温線を示すとともに、表4に各剤の吸着温度25℃、平衡圧力10Paにおける一酸化炭素及び窒素の平衡吸着量の関係を示す。
【0027】
【表4】
Figure 0003693626
【0028】
実施例5
吸着剤としてシリカ対アルミナ比19.5、Cuイオン交換率120%のCu−ZSM−5を選択し、実施例1と同様の方法で一酸化炭素、窒素、一酸化二窒素、二酸化炭素、メタン、水素、酸素、クリプトン、CF及びアルゴンの吸着等温線の測定を行った。吸着測定前に吸着剤の前処理として700℃で真空加熱処理を行った。図3及び図4に、Cu−ZSM−5への各ガスの吸着等温線を示すとともに、表5に吸着温度25℃、平衡圧力10Paにおける各ガス種の平衡吸着量の関係を示す。
【0029】
【表5】
Figure 0003693626
【0030】
図3及び図4から明らかなように、Cu−ZSM−5で吸着除去しようとする一酸化炭素、窒素、一酸化二窒素及び酸素は、化学吸着的なラングミュア型吸着等温線を示している。一方、高純度に精製しようとするアルゴン、クリプトン等の希ガス類やCF は、物理吸着を示す典型的なヘンリー型吸着等温線を示しており、これらのガスは、吸着剤表面とは特異的相互作用を持たないことがわかる。これらのことから、Cu−ZSM−5に対して物理吸着性を有するガス中に存在する化学吸着性を有するガスを容易に除去できることがわかる。
【0031】
さらに、吸着等温線から、各ガスのCu−ZSM−5への吸着力の強さ、即ち除去されやすさは、一酸化炭素>酸素>>一酸化二窒素、窒素>二酸化炭素、メタン、水素>>クリプトン、CF4、アルゴンと推測され、同じ性質を示す二酸化炭素、炭化水素(メタン)、水素は、Cu−ZSM−5を吸着剤として用いることにより、これらのガス中から一酸化炭素、窒素、一酸化二窒素及び酸素を除去することが可能であり、逆に希ガス中からCu−ZSM−5を用いてこれらのガスを吸着除去することも可能であることがわかる。
【0032】
実施例6
100gの剤を焼成するため、直径40mm、高さ500mmのステンレス容器中にCu−ZSM−5を投入し、焼成雰囲気(窒素又は空気)による吸着剤の初期活性化方法を検討した。本発明による吸着剤として、シリカ対アルミナ比19.5、Cuイオン交換率120%のCu−ZSM−5を選び、800℃で加熱処理を行った。吸着剤の焼成後に、実施例1と同様の方法で窒素の吸着量を測定した。表6にCu−ZSM−5の焼成雰囲気と平衡圧力10Paにおける窒素吸着量との関係を示す。
【0033】
【表6】
Figure 0003693626
【0034】
実施例7
破過したCu−ZSM−5の再生後の吸着能力を確認するための実験を行った。まず、アルゴン中に微量窒素を含んだガスを使用してCu−ZSM−5を一旦破過させた。すなわち、吸着筒として、内径20mm、長さ500mmのカラムを使用し、シリカ対アルミナ比19.5、Cuイオン交換率120%のCu−ZSM−5を69.0g充填した。測定ガスとして、アルゴン中に窒素512ppmを含むガスを使用し、これを25℃、0.19MPa、3.0L/minで吸着筒に流し、吸着筒出口における窒素の濃度変化を測定した。窒素濃度の測定は放電発光分光法で行い、破過時間は、出口濃度が入口濃度に対して5%に到達した時点とした。このときの経過時間と吸着筒出口窒素濃度との関係を図5に示す。
【0035】
次に、上記操作で破過した剤を用いて再生実験を2度行った。すなわち、破過した剤を吸着筒外部から350℃で加熱再生し、その後、上記操作の場合と同じ条件で破過実験を2回繰り返した。実験の結果、350℃で再生した吸着剤の窒素破過時間は、再生1回目が88分、再生2回目が90分であり、上記操作での結果と略同じ時間となった。
【0036】
実施例
実験温度を40℃とした以外は実施例7と同じ条件で破過実験を行った。実験の結果、窒素の破過時間は82分であり、この剤の破過時間が実験温度には大きく影響されないことがわかった。
【0037】
実施例
測定ガス中の窒素濃度を99ppm、流速を0.51L/minとし、その他は実施例7と同じ条件で破過実験を行った。実験の結果、窒素の破過時間は35.8時間となった。
【0038】
実施例10
クリプトン中に微量窒素を含んだガスを使用してCu−ZSM−5の破過実験を行った。吸着筒には、内径20mm、長さ500mmのカラムを使用し、シリカ対アルミナ比19.5、Cuイオン交換率120%のCu−ZSM−5を87.4g充填した。 測定ガスとして、クリプトン中に窒素約79.8ppmを含むガスを使用し、これを25℃、0.35MPa、1.1L/minで吸着筒に流し、吸着筒出口における窒素の濃度変化を測定した。窒素濃度の測定は放電発光分光法で行い、破過時間は、出口濃度が入口濃度に対して2.5%に到達した時点とした。実験の結果、窒素の破過時間は35.1時間となった。
【0039】
実施例11
アルゴン中に微量窒素を含んだガスを使用してCu−ZSM−5の破過実験を行った。吸着筒には、内径20mm、長さ500mmのカラムを使用し、シリカ対アルミナ比19.5、Cuイオン交換率120%のCu−ZSM−5を87.4g充填した。測定ガスとして、アルゴン中に窒素512ppmを含むガスを使用し、これを25℃、0.15MPa、0.76L/minで吸着筒に流し、吸着筒出口における窒素の濃度変化を測定した。窒素濃度の測定はガスクロマトグラフ−質量分析計(GC−MS)で行い、破過時間は、出口濃度が1ppmを超えた時点とした。実験の結果、窒素の破過時間は7.9時間となった。また、7.8時間経過時の出口窒素濃度は、検出限界の5ppb以下であり、長時間極めて低い濃度まで窒素を吸着除去していることがわかった。
【0040】
実施例12
破過したCu−ZSM−5の再生後の吸着能力を確認するための実験を、クリプトン中に微量の窒素及び酸素を含んだガスを使用して行った。すなわち、クリプトン中に微量の窒素及び酸素を含んだガスを使用してCu−ZSM−5を一旦過させた。吸着筒として、内径20mm、長さ500mmのカラムを使用し、シリカ対アルミナ比19.5、Cuイオン交換率120%のCu−ZSM−5を87.4g充填した。測定ガスとして、クリプトン中に窒素1442ppm及び酸素11ppmを含むガスを使用し、これを25℃、0.15MPa、0.35L/minで吸着筒に流し、吸着筒出口における窒素の濃度変化を測定した。窒素濃度の測定はガスクロマトグラフ−質量分析計(GC−MS)で行い、破過時間は、窒素の出口濃度が1ppmを超えた時点とした。
【0041】
この操作の結果、窒素の破過時間は6.2時間となった。また、6.0時間経過時の吸着筒出口における窒素及び酸素の濃度は、ともに検出限界の5ppb以下であり、極めて低い濃度まで不純物ガスを除去していることがわかった。また、2種類の不純物ガスが混在していても、その両方を選択的に吸着除去できることがわかった。
【0042】
次に、上記操作により破過した剤を用いて再生破過実験を1度行った。すなわち、破過した剤を、吸着筒外部から350℃で加熱再生した後、上記操作の場合と同じ条件で破過実験を行った。実験の結果、350℃で再生した後の吸着剤の窒素破過時間は、6.2時間であり、上述の操作結果と同じとなった。
【0043】
【発明の効果】
以上説明したように、本発明によれば、ガス中の微量不純物成分を選択的に吸着除去することができるので、不純物として除去されるべき微量の不純物成分、例えばアンモニア、三フッ化窒素、二酸化炭素、水素及び酸素の単成分又はこれらの複数成分及び一酸化炭素、窒素、メタンを同時に吸着除去することができ、これらの不純物成分を含む高純度のガス、例えば、ヘリウム、ネオン、アルゴン、クリプトン、キセノン等の希ガスをはじめとして、酸素、水素、二酸化炭素、炭化水素ガス、炭化水素ガスの一部又は全部をハロゲンで置換したガス、六フッ化硫黄等を極めて高い純度で得ることができる。
【図面の簡単な説明】
【図1】 本発明のガス精製装置の一例を示す概略系統図である。
【図2】 実施例4での実験結果を示すCu−ZSM−5及びCa−Xへの一酸化炭素と窒素との吸着等温線図である。
【図3】 実施例5での実験結果を示すCu−ZSM−5への各ガスの吸着等温線図である。
【図4】 実施例5での実験結果を示すCu−ZSM−5への各ガスの吸着等温線図である。
【図5】 実施例7での実験結果を示す経過時間と吸着筒出口窒素濃度との関係を示す図である。
【符号の説明】
10a,10b…吸着筒、11,12…精製対象ガス用配管、13,14…吸着剤再生ガス用配管、15…再生ガス加熱器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sorbent, particularly, high purity contained in the gas luer ammonia which is a refined gas, nitrogen trifluoride adsorbed, carbon dioxide, hydrogen, by selective adsorbent trace impurities such as oxygen The present invention relates to an adsorbent for removing gas to obtain ultra-high purity gas.
[0002]
[Prior art]
Inert gases such as helium, argon, krypton, xenon or nitrogen and various other gases are widely used in the electronics industry. Such inert gases used in the electronics field include those used in the semiconductor manufacturing process itself and those for general use that are used as purge or dilution gas in every process. The level of purity achieved varies greatly, but at least 99.999% or more is required.
[0003]
In particular, the gas used in the semiconductor manufacturing process has a strict requirement for purity, and each impurity amount is required to be at the ppb level. The gas to be removed as impurities in the gas used in the semiconductor manufacturing process is oxygen, carbon dioxide, water, carbon monoxide, hydrogen, hydrocarbons, or the like. Further, in the case of rare gases, nitrogen is also an object to be removed in addition to the impurities mentioned above.
[0004]
On the other hand, in the field of gas adsorption separation, zeolites such as Ca-A type, Na-X, and Ca-X type are generally known to adsorb nitrogen and carbon monoxide relatively well and are put to practical use. ing. However, the adsorption isotherms of these zeolites are almost linear in the low-pressure region, and the amount of adsorption to extremely low concentrations of nitrogen and carbon monoxide is small, so it is virtually impossible to use for purification at the ppm level. It was.
[0005]
JP-A-60-156548 uses a ZSM-5 type zeolite having a silica to alumina ratio of 19 or less and containing copper ions, and a gas from a gas containing a relatively high concentration of carbon monoxide. A method for recovering carbon oxide is disclosed. This method relates to an adsorbent that exhibits selectivity only to carbon monoxide and has a large adsorption capacity when separating and recovering carbon monoxide from a gas containing carbon monoxide at a relatively high concentration, There is no detailed explanation about the trapping method, and basically it does not suggest the possibility of removing carbon monoxide present as a trace impurity in the gas.
[0006]
Further, JP-A-61-18431 discloses that an adsorbent in which monovalent copper and / or silver is supported on a Y-type, A-type or X-type zeolite having a silica to alumina ratio of 10 or less, A technique for adsorbing and separating carbon monoxide from a mixed gas containing a relatively high concentration of carbon monoxide is disclosed. Carbon monoxide in the raw material gas shown in the examples described in the above publication is in a relatively high concentration range, and it is not mentioned about removal at the ppm level, and ZSM-5 is used as a basic adsorbent. There is no suggestion about.
[0007]
Japanese Patent Laid-Open No. 3-65242 discloses a method for producing a copper-zeolite catalyst in which a zeolite having a silica to alumina ratio of 5 to 1000 is supported by ion exchange and dried, and then the zeolite is reduced to a volume ratio of 0. It is disclosed that heat treatment is performed in an inert gas stream to which 0.05 to 0.5% of hydrogen is added. The zeolite used here is most preferably ZSM-5 zeolite, but the purification results show that the carbon monoxide concentration in the model gas is 0.11% by volume, and the purification rate is It is 50-75%, is not refined at the ppm level, and does not mention removal of nitrogen or the like.
[0008]
[Problems to be solved by the invention]
Thus, in the conventional adsorption technology, carbon monoxide, nitrogen, dinitrogen monoxide, nitrogen monoxide, nitrogen dioxide, ammonia, nitrogen trifluoride, carbon dioxide, methane, hydrogen, oxygen contained in trace amounts in the gas It is difficult to remove impurities such as these simultaneously, and in particular, there has been a problem that the level of impurity removal cannot be made extremely small in the ppm level. The present invention may luer ammonia contained in various gas, nitrogen trifluoride, carbon dioxide, hydrogen, and trace impurities such as oxygen are selectively adsorbed and removed to a ppm level or less ultrapure gas It is aimed to provide an adsorbent that can be used.
[0009]
[Means for Solving the Problems]
To achieve the above object, the adsorbent of the present invention, ammonia, nitrogen trifluoride, adsorbing and removing the trace impurities in the refined gas containing-carbon dioxide, at least one of hydrogen and oxygen as a trace impurity An adsorbent for the production of ZSM-5 type zeolite exchanged with copper ions, and adsorbing and removing at least one of carbon monoxide, nitrogen and methane in addition to the trace amount of impurities It is characterized by.
[0010]
First, the gas (purification target gas) that is a target for removing trace impurities according to the present invention is, for example, various gases including inert gas used in the electronics field as described above, and is representative. And various rare gases, hydrogen, oxygen, carbon dioxide, hydrocarbons, hydrocarbons in which part or all of hydrogen is substituted with halogen, sulfur hexafluoride, and the like. In the present invention, the purity of these gases after purification is 99.9999% by volume or more, that is, the total of components contained as impurities after purification is 1 ppm or less.
[0011]
The adsorbent is a zeolite obtained by copper ion exchange of sodium ions or the like of ZSM-5 type zeolite (hereinafter sometimes referred to as ZSM-5). In the following description, the zeolite subjected to the copper ion exchange may be referred to as “Cu-ZSM-5”. A commercially available material can be used as the ZSM-5 type zeolite to be a raw material before the copper ion exchange, but the silica to alumina ratio is desirably 5-50. When the silica-to-alumina ratio in ZSM-5 exceeds 50, the amount of copper ion exchange decreases and the amount of adsorption of trace impurities decreases. Also, ZSM-5 with a silica to alumina ratio of less than 5 is difficult to obtain.
[0012]
The copper ion exchange rate in Cu-ZSM-5 is preferably at least 40% or more of the ion exchangeable amount of each zeolite. This is because the ion-exchanged copper ions cause specific adsorption of nitrogen, carbon monoxide and the like. If the copper ion exchange rate is too small, specific adsorption performance will not be exhibited.
[0013]
The method for ion-exchanging sodium contained in ZSM-5 to copper is not particularly limited, and a conventionally known method can be employed. For example, sodium can be ion exchanged for copper by immersing ZSM-5 in an aqueous solution of a soluble salt of copper (nitrate, acetate, oxalate, hydrochloride, etc.). In this case, the copper ion exchange amount can be adjusted to a desired amount by selecting the concentration of the copper salt, the immersion time, the immersion temperature, the number of immersions, and the like.
[0014]
After ion exchange, it is ready for use by washing with water and baking at an appropriate temperature after drying. The drying temperature at this time is suitably about 100 ° C., and the firing temperature is suitably 350 ° C. or higher, particularly 500 to 800 ° C. in a nitrogen gas atmosphere. Since the specific adsorption performance of this adsorbent is considered to be manifested by the presence of monovalent copper ions, the change from divalent to monovalent is insufficient at a firing temperature of less than 500 ° C., and sufficient adsorption performance is exhibited. Conversely, at a temperature of 800 ° C. or higher, the zeolite structure itself may be destroyed.
[0015]
The amount of copper ions contained in the zeolite subjected to copper ion exchange can be measured by any method, and can be measured, for example, by ICP emission analysis (inductive charge emission analysis). In addition, the ion exchange rate in this invention is calculated | required from the assumption that one copper ion exchanges with two sodium ions. That is, at the time of ion exchange, it is assumed that copper ions exist as divalent. Actually, since monovalent copper ions are also present, an exchange rate of 100% or more may be obtained as a calculated value, and the upper limit is when all copper ions are present as monovalent. The upper ion exchange rate is 200%.
[0016]
By using such Cu-ZSM-5 as an adsorbent for trace impurities, for example, impurities present in trace amounts in gases such as rare gases, oxygen, hydrogen, carbon dioxide, hydrocarbons, sulfur hexafluoride, , carbon monoxide, nitrogen, ammonia, nitrogen trifluoride, carbon dioxide, methane, hydrogen, oxygen can be efficiently adsorbed removed to purify the gas, the amount of impurities contained in the gas after purification 1 ppm or less, that is, the purity can be 99.9999% by volume or more.
[0017]
The gas purification process may be performed by circulating the gas to be purified through an adsorption cylinder filled with the adsorbent and bringing the gas into contact with the adsorbent. The temperature at which both are brought into contact may be room temperature, for example, in the range of 10 to 40 ° C., and there is almost no need for cooling. Further, the adsorbent adsorbing the trace impurities can be regenerated by desorbing the trace impurities by heating to an appropriate temperature. Therefore, the adsorbent can be used repeatedly by alternately repeating the adsorption process of the trace impurities performed at a relatively low temperature and the desorption process (regeneration process) performed at a relatively high temperature.
[0018]
Further, as shown in the schematic system diagram of FIG. 1, a plurality of adsorption cylinders 10a and 10b filled with the adsorbent (Cu-ZSM-5) are installed, and the purification target gas pipes 11 and 12 and the adsorbent regeneration are provided. Gas pipes 13 and 14 are connected to each other, the shut-off valves provided in these pipes are opened and closed in a predetermined order, and the gas to be purified is introduced into an adsorption cylinder maintained at a relatively low temperature. a step, a regeneration gas heater 15 in a heated desorbing step and a plurality of adsorption cylinder 10 a for performing regeneration gas at a relatively high temperature while flowing into the adsorption column, by repeating alternately at 10b, refined gas Trace amounts of impurities can be continuously adsorbed and removed.
[0019]
【Example】
Example 1
A sodium-type ZSM-5 zeolite (Na-ZSM-5) having a silica-to-alumina ratio (Si / Al ratio) of 11.9 was immersed in a 0.01 molar copper acetate solution at 90 ° C. for 1 hour. Ion exchange was performed. In order to obtain samples with different ion exchange levels, this operation was repeated several times to prepare five types with ion exchange rates of 0%, 36%, 83%, 121%, and 147%. The amount of copper ion exchanged with ZSM-5 was measured by ICP emission analysis.
[0020]
As an evaluation of the adsorbent, an adsorption isotherm was measured by a constant volume method. The measurement conditions were an adsorbent amount of about 0.5 g, an adsorption temperature of 25 ° C., and a vacuum heat treatment at 600 ° C. was performed as a pretreatment of the adsorbent before the adsorption measurement. Table 1 shows the relationship between the copper ion exchange rate of Cu-ZSM-5 and the equilibrium adsorption amounts of carbon monoxide and nitrogen at an adsorption temperature of 25 ° C. and an equilibrium pressure of 10 Pa.
[0021]
[Table 1]
Figure 0003693626
[0022]
Example 2
Four types of ZSM-5 zeolite having different silica to alumina ratios were subjected to the same copper ion exchange operation as in Example 1 to obtain Cu-ZSM-5 having a copper ion exchange rate of approximately 120%. As the evaluation of the adsorbent, the amounts of carbon monoxide and nitrogen adsorbed were measured in the same manner as in Example 1. Table 2 shows the relationship between the silica-to-alumina ratio of Cu-ZSM-5 and the equilibrium adsorption amounts of carbon monoxide and nitrogen at an adsorption temperature of 25 ° C. and an equilibrium pressure of 10 Pa.
[0023]
[Table 2]
Figure 0003693626
[0024]
Example 3
Cu-ZSM-5 having a Cu ion exchange rate of 120% and a silica-to-alumina ratio of 19.5 was selected as the adsorbent, and the influence of the firing temperature under vacuum on nitrogen adsorption was investigated.
The adsorbent was evaluated by measuring the amount of nitrogen adsorbed in the same manner as in Example 1. Table 3 shows the relationship between the initial firing temperature of Cu-ZSM-5 and the nitrogen equilibrium adsorption amount at an adsorption temperature of 25 ° C. and an equilibrium pressure of 10 Pa.
[0025]
[Table 3]
Figure 0003693626
[0026]
Example 4
The adsorption amounts of carbon monoxide and nitrogen in the adsorbent according to the present invention and the conventional adsorbent (comparative example) were compared. For the adsorbent of the present invention, Cu-ZSM-5 having a silica-to-alumina ratio of 19.5 and a copper ion exchange rate of 120% is selected. As a comparative example, the adsorbed amount of carbon monoxide and nitrogen is large. Ca-X type was selected. For the evaluation of each adsorbent, the amounts of carbon monoxide and nitrogen adsorbed were measured in the same manner as in Example 1.
As pretreatment of the adsorbent before the adsorption measurement, Cu-ZSM-5 was vacuum heat treated at 700 ° C., and Ca-X was vacuum heat treated at 350 ° C. for reasons of agent stability. FIG. 2 shows adsorption isotherms of carbon monoxide and nitrogen on Cu-ZSM-5 and Ca-X, and Table 4 shows the equilibrium of carbon monoxide and nitrogen at an adsorption temperature of 25 ° C. and an equilibrium pressure of 10 Pa for each agent. The relationship of adsorption amount is shown.
[0027]
[Table 4]
Figure 0003693626
[0028]
Example 5
Cu-ZSM-5 having a silica-to-alumina ratio of 19.5 and a Cu ion exchange rate of 120% was selected as an adsorbent, and carbon monoxide, nitrogen, dinitrogen monoxide, carbon dioxide, methane were produced in the same manner as in Example 1. , Hydrogen, oxygen, krypton, CF 4 and argon adsorption isotherms were measured. Before the adsorption measurement, vacuum heat treatment was performed at 700 ° C. as a pretreatment of the adsorbent. 3 and 4 show the adsorption isotherm of each gas on Cu-ZSM-5, and Table 5 shows the relationship between the equilibrium adsorption amount of each gas species at an adsorption temperature of 25 ° C and an equilibrium pressure of 10 Pa.
[0029]
[Table 5]
Figure 0003693626
[0030]
As apparent from FIGS. 3 and 4, carbon monoxide, nitrogen, dinitrogen monoxide and oxygen to be adsorbed and removed by Cu-ZSM-5 show chemisorbed Langmuir type adsorption isotherms. On the other hand, noble gases such as argon and krypton and CF 4 to be purified to high purity show typical Henry type adsorption isotherms showing physical adsorption, and these gases have a specific mutual relationship with the adsorbent surface. It can be seen that it has no effect. From these facts, it can be seen that the gas having the chemical adsorption property present in the gas having the physical adsorption property to Cu-ZSM-5 can be easily removed.
[0031]
Furthermore, the adsorption isotherm or al, the strength of the attractive force of the Cu-ZSM-5 of the gas, i.e., removed the easiness carbon monoxide> oxygen >> nitrous oxide, nitrogen> carbon dioxide, methane, Carbon dioxide, hydrocarbon (methane), and hydrogen, which are assumed to be hydrogen >> krypton, CF4, and argon and exhibit the same properties, can be obtained by using carbon monoxide from these gases by using Cu-ZSM-5 as an adsorbent, It can be seen that nitrogen, dinitrogen monoxide, and oxygen can be removed, and conversely, these gases can be removed by adsorption from a rare gas using Cu-ZSM-5.
[0032]
Example 6
In order to fire 100 g of the agent, Cu-ZSM-5 was put into a stainless steel container having a diameter of 40 mm and a height of 500 mm, and an initial activation method of the adsorbent by a firing atmosphere (nitrogen or air) was examined. As the adsorbent according to the present invention, Cu-ZSM-5 having a silica to alumina ratio of 19.5 and a Cu ion exchange rate of 120% was selected and heat-treated at 800 ° C. After the adsorbent was baked, the amount of nitrogen adsorbed was measured in the same manner as in Example 1. Table 6 shows the relationship between the firing atmosphere of Cu-ZSM-5 and the nitrogen adsorption amount at an equilibrium pressure of 10 Pa.
[0033]
[Table 6]
Figure 0003693626
[0034]
Example 7
An experiment was conducted to confirm the adsorption ability after regeneration of Cu-ZSM-5 that had passed through. First, Cu-ZSM-5 was once broken through using a gas containing a small amount of nitrogen in argon . That is, a column having an inner diameter of 20 mm and a length of 500 mm was used as an adsorption cylinder, and 69.0 g of Cu-ZSM-5 having a silica to alumina ratio of 19.5 and a Cu ion exchange rate of 120% was packed. A gas containing 512 ppm of nitrogen in argon was used as a measurement gas, and this was passed through the adsorption cylinder at 25 ° C., 0.19 MPa, 3.0 L / min, and the change in nitrogen concentration at the adsorption cylinder outlet was measured. The nitrogen concentration was measured by discharge emission spectroscopy, and the breakthrough time was the time when the outlet concentration reached 5% of the inlet concentration. The relationship between the elapsed time at this time and the nitrogen concentration at the outlet of the adsorption cylinder is shown in FIG .
[0035]
Next, a regeneration experiment was performed twice using the agent broken through in the above operation. That is, the breakthrough agent was heated and regenerated from outside the adsorption cylinder at 350 ° C., and then the breakthrough experiment was repeated twice under the same conditions as in the above operation . As a result of the experiment, the nitrogen breakthrough time of the adsorbent regenerated at 350 ° C. was 88 minutes for the first regeneration and 90 minutes for the second regeneration, which was substantially the same as the result in the above operation .
[0036]
Example 8
A breakthrough experiment was conducted under the same conditions as in Example 7 except that the experimental temperature was 40 ° C. As a result of the experiment, it was found that the breakthrough time of nitrogen was 82 minutes, and the breakthrough time of this agent was not greatly affected by the experimental temperature.
[0037]
Example 9
A breakthrough experiment was performed under the same conditions as in Example 7 except that the nitrogen concentration in the measurement gas was 99 ppm and the flow rate was 0.51 L / min. As a result of the experiment, the breakthrough time of nitrogen was 35.8 hours.
[0038]
Example 10
A breakthrough experiment of Cu-ZSM-5 was conducted using a gas containing a small amount of nitrogen in krypton. The adsorption cylinder was a column having an inner diameter of 20 mm and a length of 500 mm, and was filled with 87.4 g of Cu-ZSM-5 having a silica to alumina ratio of 19.5 and a Cu ion exchange rate of 120%. As the measurement gas, a gas containing about 79.8 ppm of nitrogen in krypton was used, and this was passed through the adsorption cylinder at 25 ° C., 0.35 MPa, 1.1 L / min, and the change in the nitrogen concentration at the adsorption cylinder outlet was measured. . The nitrogen concentration was measured by discharge emission spectroscopy, and the breakthrough time was the time when the outlet concentration reached 2.5% of the inlet concentration. As a result of the experiment, the breakthrough time of nitrogen was 35.1 hours.
[0039]
Example 11
A breakthrough experiment of Cu-ZSM-5 was performed using a gas containing a trace amount of nitrogen in argon. The adsorption cylinder was a column having an inner diameter of 20 mm and a length of 500 mm, and was filled with 87.4 g of Cu-ZSM-5 having a silica to alumina ratio of 19.5 and a Cu ion exchange rate of 120%. As a measurement gas, a gas containing 512 ppm of nitrogen in argon was used, and this was passed through the adsorption cylinder at 25 ° C., 0.15 MPa, 0.76 L / min, and the change in nitrogen concentration at the adsorption cylinder outlet was measured. The nitrogen concentration was measured with a gas chromatograph-mass spectrometer (GC-MS), and the breakthrough time was the time when the outlet concentration exceeded 1 ppm. As a result of the experiment, the breakthrough time of nitrogen was 7.9 hours. The outlet nitrogen concentration after 7.8 hours was 5 ppb, which is the detection limit, and it was found that nitrogen was adsorbed and removed to a very low concentration for a long time.
[0040]
Example 12
An experiment for confirming the adsorption ability after regeneration of the breakthrough Cu-ZSM-5 was conducted using a gas containing a small amount of nitrogen and oxygen in krypton . That is, by using the gas containing nitrogen and oxygen traces were once broken umbrella the Cu-ZSM-5 in krypton. A column having an inner diameter of 20 mm and a length of 500 mm was used as an adsorption cylinder, and 87.4 g of Cu-ZSM-5 having a silica to alumina ratio of 19.5 and a Cu ion exchange rate of 120% was packed. As a measurement gas, a gas containing 1442 ppm nitrogen and 11 ppm oxygen in krypton was used, and this was passed through the adsorption cylinder at 25 ° C., 0.15 MPa, 0.35 L / min, and the change in the concentration of nitrogen at the outlet of the adsorption cylinder was measured. . The nitrogen concentration was measured with a gas chromatograph-mass spectrometer (GC-MS), and the breakthrough time was the time when the nitrogen outlet concentration exceeded 1 ppm.
[0041]
As a result of this operation , the breakthrough time of nitrogen was 6.2 hours. Further, the nitrogen and oxygen concentrations at the adsorption cylinder outlet after 6.0 hours were both 5 ppb or less of the detection limit, and it was found that the impurity gas was removed to a very low concentration. Further, it was found that even when two kinds of impurity gases are mixed, both of them can be selectively adsorbed and removed.
[0042]
Next, a regeneration breakthrough experiment was performed once using the agent broken through by the above operation. In other words, the breakthrough was agent, after heating reproduced at 350 ° C. from the adsorption column outside, breakthrough experiments Tsu lines under the same conditions as in the above operation. As a result of the experiment, the nitrogen breakthrough time of the adsorbent after regeneration at 350 ° C. was 6.2 hours, which was the same as the above operation result.
[0043]
【The invention's effect】
As described above, according to the present invention, trace impurity components in the gas can be selectively adsorbed and removed. Therefore, trace impurity components to be removed as impurities, such as ammonia, nitrogen trifluoride, A single component of carbon, hydrogen and oxygen or a plurality of these components and carbon monoxide, nitrogen, and methane can be adsorbed and removed simultaneously, and a high-purity gas containing these impurity components, for example, helium, neon, argon, krypton In addition to rare gases such as xenon, oxygen, hydrogen, carbon dioxide, hydrocarbon gas, gas in which part or all of hydrocarbon gas is substituted with halogen, sulfur hexafluoride, etc. can be obtained with extremely high purity. .
[Brief description of the drawings]
FIG. 1 is a schematic system diagram showing an example of a gas purification apparatus of the present invention.
2 is an adsorption isotherm of carbon monoxide and nitrogen on Cu-ZSM-5 and Ca-X showing experimental results in Example 4. FIG.
3 is an adsorption isotherm of each gas on Cu-ZSM-5 showing the experimental results in Example 5. FIG.
4 is an adsorption isotherm of each gas on Cu-ZSM-5 showing the experimental results in Example 5. FIG.
FIG. 5 is a graph showing the relationship between the elapsed time and the adsorption tube outlet nitrogen concentration showing the experimental results in Example 7.
[Explanation of symbols]
10a, 10b ... Adsorption cylinders, 11, 12 ... Pipes for gas to be purified, 13, 14 ... Pipes for adsorbent regeneration gas, 15 ... Regeneration gas heater

Claims (5)

アンモニア、三フッ化窒素、二酸化炭素、水素及び酸素の少なくとも1種を微量不純物として含む精製対象ガス中の前記微量不純物を吸着除去するための吸着剤であって、銅イオン交換したZSM−5型ゼオライトからなることを特徴とする吸着剤。 Ammonia, nitrogen trifluoride, carbon-containing dioxide, at least one of hydrogen and oxygen to a adsorbent for adsorbing and removing the trace impurities in the refined gas containing as a trace impurity, a copper ion-exchanged ZSM An adsorbent characterized by comprising −5 type zeolite. 前記吸着剤は、前記微量不純物に加えて、一酸化炭素、窒素、メタンの少なくとも1種を吸着除去することを特徴とする請求項1記載の吸着剤。 The adsorbent according to claim 1, wherein the adsorbent adsorbs and removes at least one of carbon monoxide, nitrogen, and methane in addition to the trace impurities . 前記ZSM−5型ゼオライトにおける銅イオン交換率が銅イオン交換可能量の40%以上であることを特徴とする請求項1又は2記載の吸着剤。 The adsorbent according to claim 1 or 2, wherein a copper ion exchange rate in the ZSM-5 type zeolite is 40% or more of a copper ion exchangeable amount . 前記銅イオン交換したZSM−5型ゼオライトの焼成温度が350℃以上であることを特徴とする請求項1乃至3のいずれか1項記載の吸着剤。 The adsorbent according to any one of claims 1 to 3, wherein a calcination temperature of the copper ion exchanged ZSM-5 type zeolite is 350 ° C or higher . 前記精製対象ガスは、希ガス、酸素、水素、二酸化炭素、炭化水素及び六フッ化硫黄の少なくともいずれか1種を主成分とするガスであることを特徴とする請求項1乃至4のいずれか1項記載の吸着剤 5. The gas according to claim 1, wherein the gas to be purified is a gas mainly composed of at least one of rare gas, oxygen, hydrogen, carbon dioxide, hydrocarbon, and sulfur hexafluoride. The adsorbent according to item 1 .
JP2002117726A 2002-04-19 2002-04-19 Adsorbent Expired - Lifetime JP3693626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002117726A JP3693626B2 (en) 2002-04-19 2002-04-19 Adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002117726A JP3693626B2 (en) 2002-04-19 2002-04-19 Adsorbent

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004246133A Division JP2005021891A (en) 2004-08-26 2004-08-26 Method and apparatus for gas refining

Publications (2)

Publication Number Publication Date
JP2003311148A JP2003311148A (en) 2003-11-05
JP3693626B2 true JP3693626B2 (en) 2005-09-07

Family

ID=29534836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002117726A Expired - Lifetime JP3693626B2 (en) 2002-04-19 2002-04-19 Adsorbent

Country Status (1)

Country Link
JP (1) JP3693626B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9901900B2 (en) 2014-11-13 2018-02-27 Samsung Electronics Co., Ltd. Gas-adsorbing material and vacuum insulation material including the same

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6678343B1 (en) * 2000-02-14 2004-01-13 The United States Of America As Represented By The Secretary Of The Army Neutron spectrometer with titanium proton absorber
JP4734865B2 (en) * 2004-08-05 2011-07-27 パナソニック株式会社 Gas adsorbent and insulation
KR100788301B1 (en) 2004-12-23 2007-12-27 주식회사 효성 Process for refining nitrogen trifluoride gas using zeolite 3A
JP4807552B2 (en) 2005-04-27 2011-11-02 パナソニック株式会社 Adsorbent
JP4887658B2 (en) * 2005-04-28 2012-02-29 パナソニック株式会社 Insulation
TWI389738B (en) 2005-09-09 2013-03-21 Taiyo Nippon Sanso Corp Cu-ZSM5 zeolite forming adsorbent, activation method thereof, temperature change type adsorption device and gas purification method
JP2008023493A (en) * 2006-07-25 2008-02-07 Matsushita Electric Ind Co Ltd Adsorbent material
JP5230919B2 (en) * 2006-09-05 2013-07-10 パナソニック株式会社 Insulation
JP4953236B2 (en) * 2006-10-16 2012-06-13 パナソニック株式会社 Adsorbent quality check method and adsorbent processing method
JP2008212845A (en) * 2007-03-05 2008-09-18 Taiyo Nippon Sanso Corp Carbon monoxide adsorbent, gas purification method, and gas purifier
JP2008218359A (en) * 2007-03-08 2008-09-18 Matsushita Electric Ind Co Ltd Gas discharge display panel
JP2009019697A (en) * 2007-07-12 2009-01-29 Panasonic Corp Vacuum heat insulating material and construction member applying vacuum heat insulating material
JP5117797B2 (en) * 2007-09-05 2013-01-16 エア・ウォーター株式会社 Perfluorocarbon gas purification method and apparatus
JP5074132B2 (en) * 2007-09-05 2012-11-14 エア・ウォーター株式会社 Perfluoro compound gas purification method and apparatus
JP2009090207A (en) * 2007-10-09 2009-04-30 Panasonic Corp Adsorbent material
JP5125383B2 (en) * 2007-10-09 2013-01-23 パナソニック株式会社 Display device
JP5165398B2 (en) * 2008-01-18 2013-03-21 高砂熱学工業株式会社 Filter material and filter for low dew point high pressure gas cleaning
JP5200770B2 (en) * 2008-08-29 2013-06-05 パナソニック株式会社 Gas adsorbent and gas adsorption device
US8591634B2 (en) * 2010-01-28 2013-11-26 Air Products And Chemicals, Inc. Method and equipment for selectively collecting process effluent
JP5711017B2 (en) * 2010-03-29 2015-04-30 国立大学法人北海道大学 Method and apparatus for treating nitrous oxide-containing gas
EP2676715B1 (en) 2011-02-14 2015-04-15 Panasonic Corporation Gas adsorption device and vacuum heat insulating panel provided therewith
JP5873963B2 (en) * 2011-04-12 2016-03-01 パナソニックIpマネジメント株式会社 Acoustic speaker device
KR101203490B1 (en) 2011-11-29 2012-11-21 홍인화학 주식회사 A production method and production system for high purity hydrogen chloride
KR20160057287A (en) * 2014-11-13 2016-05-23 삼성전자주식회사 Gas Adsorbing Material, and Vacuum Insulation Material Including Same
US11420869B2 (en) * 2019-02-22 2022-08-23 Uop Llc Process for removing oxygen from a hydrogen stream
WO2020225911A1 (en) * 2019-05-09 2020-11-12 日新電機株式会社 Insulating gas adsorbent and gas-insulated power equipment
CN114272890B (en) * 2021-12-30 2022-06-28 大连科利德光电子材料有限公司 Oxygen adsorbent, preparation method and method for reducing oxygen content in nitrous oxide feed gas
WO2023152052A1 (en) * 2022-02-08 2023-08-17 Johnson Matthey Public Limited Company Exhaust gas treatment system for an ammonia-containing exhaust gas
CN117446804B (en) * 2023-12-26 2024-03-22 大连华邦化学有限公司 Carbon dioxide purification method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9901900B2 (en) 2014-11-13 2018-02-27 Samsung Electronics Co., Ltd. Gas-adsorbing material and vacuum insulation material including the same

Also Published As

Publication number Publication date
JP2003311148A (en) 2003-11-05

Similar Documents

Publication Publication Date Title
JP3693626B2 (en) Adsorbent
KR100300918B1 (en) Gas Purification Method and Apparatus
JP5608184B2 (en) Zeolite adsorbent, process for obtaining it and use for removing carbonate from gas streams
TW555587B (en) Process for the decarbonation of gas flows using zeolite adsorbents
EA005123B1 (en) Syngas purification process
JP2010533063A5 (en)
KR102199235B1 (en) Adsorption process for xenon recovery
JPH11290635A (en) Removal of carbon dioxide from gas flow
US20090266232A1 (en) MOLDED CuZSM-5 ZEOLITE ADSORBENT, METHOD OF ACTIVATING THE SAME, TEMPERATURE SWING TYPE ADSORPTION APPARATUS, AND METHOD OF PURIFYING GAS
WO2003099714A1 (en) Method and apparatus for gas purification
US20100115994A1 (en) Adsorbent for carbon monoxide, gas purification method, and gas purification apparatus
JP2005021891A (en) Method and apparatus for gas refining
KR860001167B1 (en) Air separation process
JP2005262208A (en) Method for separating isotope of gas and isotope selective adsorbent
JP4820596B2 (en) Nitric oxide purification method
JP5684898B2 (en) Gas purification method
JPH0576752A (en) Nitrogen oxide adsorbent for ptsa or tsa
JP6655645B2 (en) Purified gas production apparatus and purified gas production method
US20230382741A1 (en) Method for removing oxygen molecule and method for purifying carbon monoxide
JP4256216B2 (en) Gas processing apparatus and gas processing method
JPH0781916A (en) Silane treated activated carbon
JP5031275B2 (en) Isotope gas separation method using pressure swing adsorption method
JP2005313128A (en) Isotope-selective adsorbent and isotope separation and concentration method as well as isotope separation and concentration device
JPH04363109A (en) Method for concentrating gaseous chlorine
JP4602202B2 (en) Gas processing method and gas processing apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050621

R150 Certificate of patent or registration of utility model

Ref document number: 3693626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term