JPH10125350A - Alkaline secondary battery - Google Patents

Alkaline secondary battery

Info

Publication number
JPH10125350A
JPH10125350A JP8284027A JP28402796A JPH10125350A JP H10125350 A JPH10125350 A JP H10125350A JP 8284027 A JP8284027 A JP 8284027A JP 28402796 A JP28402796 A JP 28402796A JP H10125350 A JPH10125350 A JP H10125350A
Authority
JP
Japan
Prior art keywords
salt
alkaline
electrode
alkaline electrolyte
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8284027A
Other languages
Japanese (ja)
Inventor
Toshiro Okamoto
敏郎 岡元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP8284027A priority Critical patent/JPH10125350A/en
Publication of JPH10125350A publication Critical patent/JPH10125350A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To restrain corrosion of an electrode base material at the time of overcharge, and extend a battery service life by applying the constitution that salt composed of a strong base and a weak acid as well as soluble in an electrolyte is contained in the coat layer of a battery positive electrode, or in an alkaline electrolyte. SOLUTION: A coated layer containing an electrode active material, such as nickel hydroxide, is formed on the surface of an electrode base material such as nickel, and a positive electrode is thereby prepared. In an alkaline secondary battery containing the positive electrode so prepared and an alkaline electrolyte, at least one of the coated layer and the alkaline electrolyte is made to contain salt, composed of strong base and weak acid as well as soluble in the alkaline electrolyte. In this case, at least one type of sodium acetate, potassium phosphate and sodium formate is preferable as the salt. According to this construction, H<+> -ions which increased on the reaction surface of the positive electrode are arrested by the salt in an overcharged state and made into a stable weak acid, thereby preventing the corrosion of the electrode base material due to the H<+> -ions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル・カドミ
ウム蓄電池やNi−MH蓄電池などのアルカリ二次電池
に関し、詳しくは長寿命化されたアルカリ二次電池に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline secondary battery such as a nickel-cadmium storage battery and a Ni-MH storage battery, and more particularly to an alkaline secondary battery having a long life.

【0002】[0002]

【従来の技術】アルカリ二次電池は、信頼性が高いこ
と、小型軽量化及び高容量化が可能であることなどの理
由により、各種ポータブル機器や産業用の電源として広
く用いられている。このアルカリ二次電池の陽極には、
主として水酸化ニッケルからなる活物質をもつ水酸化ニ
ッケル電極が用いられている。
2. Description of the Related Art Alkaline secondary batteries are widely used as power sources for various portable devices and industrial devices because of their high reliability, small size, light weight and high capacity. The anode of this alkaline secondary battery has
A nickel hydroxide electrode having an active material mainly composed of nickel hydroxide is used.

【0003】この水酸化ニッケル電極は、例えば集電体
となる多孔質金属基材を硝酸ニッケルなどの酸性ニッケ
ル塩の水溶液中に浸漬し、次いでアルカリ水溶液中に浸
漬する方法で製造されている。この方法は、一般に浸漬
法と称されている。この製造方法によれば、多孔質金属
基材の空孔中に含浸したニッケル塩がアルカリと接触す
ることで水酸化ニッケルが生成し、活物質を多孔質金属
基材の空孔中に充填することが可能となる。
[0003] The nickel hydroxide electrode is manufactured by, for example, immersing a porous metal base material serving as a current collector in an aqueous solution of an acidic nickel salt such as nickel nitrate and then immersing it in an alkaline aqueous solution. This method is generally called an immersion method. According to this manufacturing method, nickel hydroxide impregnated in the pores of the porous metal substrate comes into contact with the alkali to generate nickel hydroxide, and the active material is filled in the pores of the porous metal substrate. It becomes possible.

【0004】しかし上記浸漬法では、一度の処理で活物
質を充分に充填することが困難であるため、所望の容量
とするには上記処理を何度か繰り返す必要があり、工数
が多大となるという不具合があった。そこで活物質の充
填方法の別の方法として、例えば特開平4−10355
号公報などには、水酸化ニッケルを主とする活物質材料
をカルボキシメチルセルロース(CMC)などのバイン
ダー及び溶媒とともにペーストとし、そのペーストをへ
らやアプリケータなどを用いて多孔質金属からなる電極
基材に物理的に充填する方法が記載されている。この方
法はペースト充填法と称され、上記浸漬法に比べて多く
の活物質を空孔中に簡単に充填でき、高容量の電極を容
易に製造することができる。
However, in the above-mentioned immersion method, it is difficult to sufficiently fill the active material with a single process, so that the above process must be repeated several times to obtain a desired capacity, and the number of steps becomes large. There was a problem. Therefore, as another method of filling the active material, for example,
Japanese Patent Application Publication No. JP-A-2005-17795 discloses that an active material mainly composed of nickel hydroxide is made into a paste together with a binder such as carboxymethyl cellulose (CMC) and a solvent, and the paste is made of a porous metal electrode using a spatula or an applicator. Describes a method of physically filling the material. This method is called a paste filling method, in which a larger amount of active material can be easily filled in the pores than in the above-described immersion method, and a high-capacity electrode can be easily manufactured.

【0005】そして電極基材の材質としては、電解液で
あるアルカリ溶液中で安定であり高い耐食性を有するニ
ッケルが一般に用いられている。例えば特開昭59−1
28766号公報には、スポンジ状のニッケル多孔体に
水酸化ニッケル粉末とコバルト粉末を主体とする活物質
を充填したアルカリ電池用陽極板が開示されている。
[0005] As a material of the electrode substrate, nickel which is stable in an alkaline solution as an electrolytic solution and has high corrosion resistance is generally used. For example, JP-A-59-1
Japanese Patent No. 28766 discloses an anode plate for an alkaline battery in which a sponge-like porous nickel body is filled with an active material mainly composed of nickel hydroxide powder and cobalt powder.

【0006】[0006]

【発明が解決しようとする課題】ところが従来のアルカ
リ二次電池においては、使用中にニッケルからなる電極
基材に腐食が生じ、導電率の低下により寿命が低下する
という不具合が発生する場合があった。このようにニッ
ケルからなる電極基材に腐食が生じる理由は、以下のよ
うに説明される。
However, in the conventional alkaline secondary battery, there is a case where corrosion occurs on the electrode substrate made of nickel during use, and there is a problem that the life is shortened due to a decrease in conductivity. Was. The reason why corrosion occurs in the electrode substrate made of nickel as described above is explained as follows.

【0007】例えばNi−MH電池における電極での電
気化学反応は、次式のように表される。 (1)充電時 陽極: Ni(OH)2 +OH- → NiOOH +
2 O + e- 陰極: M + H+ + e- → MH (2)放電時 陽極: NiOOH + H2 O + e- → Ni
(OH)2 +OH- 陰極: MH → M + H+ + e- つまり充電時には、上式に示すように陽極でOH- が消
費され、反応界面でH + 濃度が増大する。したがって過
充電状態では反応界面でH+ 濃度がきわめて増大し、図
3に模式的に示すように、そのH+ 1がニッケルからな
るNi電極基材2を攻撃し電子を奪ってH2 となること
により、Ni電極基材2が腐食するのである。また、こ
の腐食の電気化学反応は、アルカリ電解液中に不純物と
して存在するNO3 -などの強酸イオンによって促進され
ることもわかっている。
[0007] For example, the voltage at the electrode in a Ni-MH battery is
The gas-chemical reaction is represented by the following equation. (1) During charging Anode: Ni (OH)Two+ OH- → NiOOH +
 HTwoO + e- Cathode: M + H+ + E- → MH (2) During discharge Anode: NiOOH + HTwoO + e- → Ni
(OH)Two+ OH- Cathode: MH → M + H+ + E- In other words, when charging, as shown in the above formula, OH-Disappears
Spent at the reaction interface +The concentration increases. Therefore
In the charged state, H+Concentration increases significantly,
As shown schematically in FIG.+1 is nickel
Attacks the Ni electrode substrate 2 to remove electrons andTwoBecome
As a result, the Ni electrode substrate 2 is corroded. Also,
The electrochemical reaction of corrosion involves impurities in the alkaline electrolyte.
NO that existsThree -Promoted by strong acid ions such as
I know that.

【0008】したがって過充電の状態で電池が長時間使
用されると、電極基材の腐食が進行し、導電率の低下に
より電池の寿命が低下する。本発明はこのような事情に
鑑みてなされたものであり、過充電時の電極基材の腐食
を抑制して電池の寿命を長くすることを目的とする。
Therefore, when the battery is used for a long time in an overcharged state, corrosion of the electrode substrate proceeds, and the life of the battery is shortened due to a decrease in conductivity. The present invention has been made in view of such circumstances, and an object of the present invention is to suppress the corrosion of an electrode substrate during overcharge and prolong the life of a battery.

【0009】[0009]

【課題を解決するための手段】上記課題を解決する請求
項1に記載のアルカリ二次電池の特徴は、電極基材と電
極基材表面に形成され電極活物質を含むコート層とより
なる陽極と、アルカリ電解液とを含むアルカリ二次電池
において、コート層及びアルカリ電解液の少なくとも一
方には強塩基と弱酸からなりアルカリ電解液に溶解可能
な塩が含まれていることにある。
According to a first aspect of the present invention, there is provided an alkaline secondary battery comprising an electrode substrate and an anode comprising a coating layer formed on the surface of the electrode substrate and containing an electrode active material. And at least one of the coat layer and the alkaline electrolyte contains a salt composed of a strong base and a weak acid and soluble in the alkaline electrolyte.

【0010】また請求項2に記載のアルカリ二次電池の
特徴は、請求項1に記載のアルカリ二次電池において、
塩は、酢酸ナトリウム、リン酸カリウム及びギ酸ナトリ
ウムの少なくとも一種であることにある。
[0010] A feature of the alkaline secondary battery according to claim 2 is that the alkaline secondary battery according to claim 1 is characterized in that:
The salt is to be at least one of sodium acetate, potassium phosphate and sodium formate.

【0011】[0011]

【発明の実施の形態】電極基材としては、繊維形状や粉
末形状の金属の焼結体、あるいは発泡金属などからなる
多孔質金属基材を用いることができる。また、電極基材
の材質としては、集電体として機能する導電性のもので
あれば特に制限されないが、アルカリ電池用電極の場合
には活物質として一般に水酸化ニッケルが用いられるの
で、活物質との親和性に優れるニッケルを用いることが
好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION As an electrode substrate, a sintered metal body in the form of fibers or powder, or a porous metal substrate made of foamed metal or the like can be used. The material of the electrode substrate is not particularly limited as long as it is a conductive material that functions as a current collector. In the case of an electrode for an alkaline battery, nickel hydroxide is generally used as an active material. It is preferable to use nickel which has an excellent affinity for the compound.

【0012】陽極活物質粉末としては、水酸化ニッケル
(Ni(OH)2 )が一般に用いられる。また活物質と
ともに金属コバルト、酸化コバルト(CoO)あるいは
フッ化コバルト(CoF)などのコバルト化合物を含ま
せることも好ましい。金属コバルトあるいはコバルト化
合物の存在により、充放電を繰り返した時に水酸化コバ
ルト及びCoOOHが生成し、多孔質金属電極基材と活
物質との電気的接触性が向上するため、いわゆる導電性
ネットワークの形成により活物質の利用効率が向上す
る。
Nickel hydroxide (Ni (OH) 2 ) is generally used as the anode active material powder. It is also preferable to include a cobalt compound such as metal cobalt, cobalt oxide (CoO), or cobalt fluoride (CoF) together with the active material. Due to the presence of metallic cobalt or a cobalt compound, cobalt hydroxide and CoOOH are generated when charge and discharge are repeated, and the electrical contact between the porous metal electrode base material and the active material is improved, so that a so-called conductive network is formed. Thereby, the utilization efficiency of the active material is improved.

【0013】この陽極活物質は、一般にペーストとされ
て電極基材にアプリケータやへらでコートされ、コート
層が形成される。アルカリ電解液としては、水酸化カリ
ウム(KOH)水溶液が一般に用いられる。また陰極と
しては、カドミウム、亜鉛、鉄、マンガンなどが用いら
れる。本発明の最大の特徴は、コート層及びアルカリ電
解液の少なくとも一方に、強塩基と弱酸からなりアルカ
リ電解液に溶解可能な塩が含まれているところにある。
この塩により過充電時に生成したH+ を捕捉することが
でき、H+ の攻撃による電極基材の腐食を防止すること
ができる。
The anode active material is generally made into a paste and coated on an electrode substrate with an applicator or a spatula to form a coat layer. As the alkaline electrolyte, an aqueous solution of potassium hydroxide (KOH) is generally used. Cadmium, zinc, iron, manganese or the like is used as the cathode. The greatest feature of the present invention is that at least one of the coat layer and the alkaline electrolyte contains a salt composed of a strong base and a weak acid and soluble in the alkaline electrolyte.
H + generated during overcharging can be captured by this salt, and corrosion of the electrode substrate due to H + attack can be prevented.

【0014】つまりこの塩は強塩基と弱酸の塩であるの
で、その塩の解離定数はその弱酸の解離定数より大き
く、弱酸イオンはアルカリ電解液中でH+ と結合して弱
酸となって安定化しようとする。これにより電解液中の
+ を捕捉することができる。例えばこのような塩とし
て酢酸ナトリウムを用いた場合には、次式(A)のよう
な反応が生じ、弱酸イオン(CH3 COO- )がH+
吸収して弱酸(CH3COOH)となって、電極基材の
腐食が防止される。
That is, since this salt is a salt of a strong base and a weak acid, the dissociation constant of the salt is larger than the dissociation constant of the weak acid, and the weak acid ions are combined with H + in the alkaline electrolyte to become a weak acid and become stable. Try to make it. Thereby, H + in the electrolytic solution can be captured. For example, when sodium acetate is used as such a salt, a reaction represented by the following formula (A) occurs, and the weak acid ion (CH 3 COO ) absorbs H + to become a weak acid (CH 3 COOH). Thus, corrosion of the electrode substrate is prevented.

【0015】 CH3 COONa + H+ → CH3 COOH + Na+ (A) H+ を吸収して形成された弱酸は、弱酸であるからアル
カリ電解液には大きな影響を及ぼさず、ほとんど無害の
状態でアルカリ電解液中で安定に存在する。このような
塩としては、強塩基と弱酸の塩であり、かつアルカリ電
解液に溶解可能であれば特に制限がないが、酢酸ナトリ
ウム、リン酸カリウム、ギ酸ナトリウムなど、電解液へ
の溶解度が大きいものが望ましく、なかでも酢酸ナトリ
ウムが最も効果的である。なおこの塩は1種類でもよい
し複数種類を併用することもできる。
CH 3 COONa + H + → CH 3 COOH + Na + (A) Since the weak acid formed by absorbing H + is a weak acid, it does not significantly affect the alkaline electrolyte and is almost harmless. And stably exist in the alkaline electrolyte. Such a salt is not particularly limited as long as it is a salt of a strong base and a weak acid and can be dissolved in an alkaline electrolyte, but has a high solubility in an electrolyte such as sodium acetate, potassium phosphate, and sodium formate. Are preferred, with sodium acetate being the most effective. This salt may be used alone or in combination of two or more.

【0016】この塩の添加量としては、少しでも添加す
ればそれなりの効果が得られるが、コート層中に含有す
る場合、活物質100重量部に対して1〜5重量部の範
囲が好ましく、3重量部近傍の添加量が特に望ましい。
塩の添加量が1重量部より少ないとH+ の捕捉量が少な
く電極基材の腐食を防止することが困難な場合がある。
5重量部より多くなると効果が飽和し、飽和濃度以上の
添加量ではH+ の捕捉量が低下するとともに、活物質量
の相対的な減少により電池容量が低下する場合もある。
The addition amount of this salt can provide a certain effect if it is added as little as possible, but when it is contained in the coat layer, it is preferably in the range of 1 to 5 parts by weight with respect to 100 parts by weight of the active material. An addition amount of about 3 parts by weight is particularly desirable.
If the amount of the salt added is less than 1 part by weight, the amount of H + trapped is small and it may be difficult to prevent corrosion of the electrode substrate.
If the amount is more than 5 parts by weight, the effect is saturated, and if the amount is more than the saturation concentration, the amount of H + trapped decreases, and the battery capacity may decrease due to a relative decrease in the amount of active material.

【0017】この塩をコート層に含ませるには、コート
層を形成後に塩の水溶液などを含浸させる方法、活物質
のペーストに塩を混合しておきそれを電極基材に塗布し
てコート層を形成する方法などが例示される。なお後者
の方法の場合には、ペーストをアルコールなどの塩が溶
解しない溶媒で形成して塩を固体状態で含ませてもよい
し、水を用いて塩を溶解状態で含ませることもできる。
In order to include this salt in the coat layer, a method of impregnating a salt solution with an aqueous solution of the salt after forming the coat layer, mixing the salt with the paste of the active material and applying it to the electrode base material, And the like. In the latter method, the paste may be formed with a solvent in which the salt such as alcohol does not dissolve, and the salt may be contained in a solid state, or the salt may be contained in a dissolved state using water.

【0018】またこの塩は、アルカリ電解液中に溶解し
た状態で含ませることもできる。この場合の添加量は、
アルカリ電解液中の濃度が0.1〜5モル/Lの範囲と
することが好ましく、2〜3モル/Lの範囲が特に望ま
しい。
The salt may be contained in a state of being dissolved in an alkaline electrolyte. In this case, the amount of addition
The concentration in the alkaline electrolyte is preferably in the range of 0.1 to 5 mol / L, and particularly preferably in the range of 2 to 3 mol / L.

【0019】[0019]

【実施例】以下、実施例及び比較例により本発明を具体
的に説明する。 (実施例1)水酸化ニッケル粉末93重量部と、酸化コ
バルト粉末4.8重量部と、金属コバルト1.9重量部
と、カルボキシメチルセルロース(CMC)1.5重量
部と、カーボンブラックのエタノール分散品(カーボン
ブラック濃度10重量%)11重量部と、酢酸ナトリウ
ム3重量部とをよく混合し、陽極活物質ペーストを調製
した。
The present invention will be specifically described below with reference to examples and comparative examples. (Example 1) 93 parts by weight of nickel hydroxide powder, 4.8 parts by weight of cobalt oxide powder, 1.9 parts by weight of metal cobalt, 1.5 parts by weight of carboxymethyl cellulose (CMC), and ethanol dispersion of carbon black 11 parts by weight of a product (carbon black concentration 10% by weight) and 3 parts by weight of sodium acetate were mixed well to prepare an anode active material paste.

【0020】次に、発泡ニッケルよりなる電極基材(厚
さ1.6mm、幅50mm、長さ50mm、多孔度96
容積%)を用意し、へらを用いて上記ペーストを充填し
たのち表面の余剰なペーストを除去した。そして60℃
で5時間加熱して乾燥した後、ローラプレス機により
0.6mmの厚さにプレス成形して陽極を形成した。陽
極中に陽極活物質は74重量%充填されている。また酢
酸ナトリウムは、陽極活物質中に3重量%含まれてい
る。
Next, an electrode substrate made of foamed nickel (thickness 1.6 mm, width 50 mm, length 50 mm, porosity 96
% By volume), and after filling the above paste with a spatula, excess paste on the surface was removed. And 60 ° C
And dried by heating for 5 hours, and then press-molded to a thickness of 0.6 mm using a roller press to form an anode. The anode is filled with 74% by weight of the anode active material. Sodium acetate is contained in the anode active material in an amount of 3% by weight.

【0021】得られた陽極を汎用のペースト式カドミウ
ム陰極と組み合わせ、6規定のKOH水溶液をアルカリ
電解液としてアルカリ電池を作製した。そして25℃の
雰囲気において、1Cの電流により1.5時間充電し、
1Cの電流により1.0Vまで放電させる充放電パター
ンを1サイクルとし、それを複数サイクル繰り返した。
この時、10サイクル毎に電池の5時間率容量を測定
し、5時間率容量が80%を下回った時点を電池の寿命
と判断した。このときの充放電サイクル数に対する容量
の変化を図1及び図2に示す。
The obtained anode was combined with a general-purpose paste-type cadmium cathode, and an alkaline battery was prepared using a 6N aqueous KOH solution as an alkaline electrolyte. Then, in an atmosphere of 25 ° C., the battery is charged with a current of 1 C for 1.5 hours,
A charge / discharge pattern for discharging to 1.0 V by a current of 1 C was defined as one cycle, and this was repeated a plurality of cycles.
At this time, the 5-hour rate capacity of the battery was measured every 10 cycles, and the point in time when the 5-hour rate capacity was less than 80% was determined as the battery life. The change in capacity with respect to the number of charge / discharge cycles at this time is shown in FIGS.

【0022】(実施例2)陽極活物質中の酢酸ナトリウ
ムの含有量を1重量%としたこと以外は実施例1と同様
にして陽極を作製し、同様にアルカリ電池を作製した。
そして同様に充放電サイクル数に対する容量変化を測定
し、結果を図1に示す。 (実施例3)陽極活物質中の酢酸ナトリウムの含有量を
5重量%としたこと以外は実施例1と同様にして陽極を
作製し、同様にアルカリ電池を作製した。そして同様に
充放電サイクル数に対する容量変化を測定し、結果を図
1に示す。
(Example 2) An anode was produced in the same manner as in Example 1 except that the content of sodium acetate in the anode active material was 1% by weight, and an alkaline battery was produced in the same manner.
Then, similarly, the change in capacity with respect to the number of charge / discharge cycles was measured, and the results are shown in FIG. Example 3 An anode was produced in the same manner as in Example 1 except that the content of sodium acetate in the anode active material was changed to 5% by weight, and an alkaline battery was produced in the same manner. Then, similarly, the change in capacity with respect to the number of charge / discharge cycles was measured, and the results are shown in FIG.

【0023】(比較例)陽極活物質中に酢酸ナトリウム
を含まないこと以外は実施例1と同様にして陽極を作製
し、同様にアルカリ電池を作製した。そして同様に充放
電サイクル数に対する容量変化を測定し、結果を図1及
び図2に示す。 (評価)図1より、陽極活物質中に酢酸ナトリウムを含
む各実施例は、比較例に比べて容量が80%となるまで
のサイクル数が多く、寿命が長くなっていることが明ら
かである。
Comparative Example An anode was produced in the same manner as in Example 1 except that sodium acetate was not contained in the anode active material, and an alkaline battery was produced in the same manner. Similarly, the change in capacity with respect to the number of charge / discharge cycles was measured, and the results are shown in FIGS. 1 and 2. (Evaluation) From FIG. 1, it is apparent that each of the examples including sodium acetate in the anode active material has a larger number of cycles until the capacity becomes 80% and a longer life than the comparative example. .

【0024】ただし酢酸ナトリウムの含有量によってそ
の程度が異なり、1重量%含有の実施例2は比較例に比
べて寿命が5%向上し、3重量%含有の実施例1は比較
例に比べて寿命が20%向上し、5重量%含有の実施例
3は比較例に比べて寿命が8%向上している。つまり酢
酸ナトリウムの添加量は、3重量%程度で寿命延長の効
果が最大となり、それより少なくても多くても効果が低
下することがわかる。
However, the degree differs depending on the content of sodium acetate, and the life of Example 2 containing 1% by weight is improved by 5% as compared with the comparative example, and Example 1 containing 3% by weight is compared with the comparative example. The life was improved by 20%, and the life of Example 3 containing 5% by weight was improved by 8% as compared with the comparative example. In other words, it can be understood that the effect of extending the life is maximized when the amount of sodium acetate added is about 3% by weight, and that the effect is reduced when the amount is less or more.

【0025】(実施例4)陽極活物質中に酢酸ナトリウ
ムに代えてリン酸カリウムを3重量%含有させたこと以
外は実施例1と同様にして陽極を作製し、同様にアルカ
リ電池を作製した。そして同様に充放電サイクル数に対
する容量変化を測定し、結果を図2に示す。
Example 4 An anode was prepared in the same manner as in Example 1 except that 3% by weight of potassium phosphate was contained in place of sodium acetate in the anode active material, and an alkaline battery was similarly prepared. . Then, similarly, a change in capacity with respect to the number of charge / discharge cycles was measured, and the results are shown in FIG.

【0026】(実施例5)陽極活物質中に酢酸ナトリウ
ムに代えてギ酸ナトリウムを3重量%含有させたこと以
外は実施例1と同様にして陽極を作製し、同様にアルカ
リ電池を作製した。そして同様に充放電サイクル数に対
する容量変化を測定し、結果を図2に示す。
Example 5 An anode was produced in the same manner as in Example 1 except that sodium formate was contained in the anode active material in an amount of 3% by weight instead of sodium acetate, and an alkaline battery was produced in the same manner. Then, similarly, a change in capacity with respect to the number of charge / discharge cycles was measured, and the results are shown in FIG.

【0027】(評価)図2より、酢酸ナトリウム、リン
酸カリウム及びギ酸ナトリウムのいずれも寿命延長に効
果があるが、酢酸ナトリウムが20%と最も寿命延長の
効果が大きく、次いでギ酸ナトリウムが14%、リン酸
カリウムが11%と、この順に効果が低下していること
がわかる。したがって酢酸ナトリウムを用いるのが特に
好ましいことがわかる。
(Evaluation) As shown in FIG. 2, all of sodium acetate, potassium phosphate and sodium formate are effective in extending the life. However, sodium acetate has the greatest effect of extending the life of 20%, followed by sodium formate of 14%. It can be seen that the effect decreases in this order, with potassium phosphate being 11%. Therefore, it is understood that it is particularly preferable to use sodium acetate.

【0028】[0028]

【発明の効果】すなわち本発明のアルカリ二次電池によ
れば、過充電時の電極基材の腐食が防止されるため、長
寿命化が達成される。また陽極のコート層中に強塩基と
弱酸からなる塩を含ませておけば、アルカリ電解液中へ
の塩の溶出によりコート層は多孔状態となり、表面積が
増大するため活物質の利用率が向上し出力が向上する。
According to the alkaline secondary battery of the present invention, the electrode substrate is prevented from being corroded at the time of overcharging, so that a long life is achieved. In addition, if a salt consisting of a strong base and a weak acid is included in the coating layer of the anode, elution of the salt into the alkaline electrolyte causes the coating layer to become porous and increase the surface area, thereby improving the utilization of the active material. Output is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】充放電サイクル数と電池容量の関係を示すグラ
フである。
FIG. 1 is a graph showing the relationship between the number of charge / discharge cycles and the battery capacity.

【図2】充放電サイクル数と電池容量の関係を示すグラ
フである。
FIG. 2 is a graph showing the relationship between the number of charge / discharge cycles and the battery capacity.

【図3】従来の電極基材の腐食機構を示す模式的説明図
である。
FIG. 3 is a schematic explanatory view showing a corrosion mechanism of a conventional electrode substrate.

【符号の説明】[Explanation of symbols]

1:H+ 2:電極基材 1: H + 2: Electrode substrate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電極基材と該電極基材表面に形成され電
極活物質を含むコート層とよりなる陽極と、アルカリ電
解液とを含むアルカリ二次電池において、 前記コート層及び前記アルカリ電解液の少なくとも一方
には強塩基と弱酸からなり該アルカリ電解液に溶解可能
な塩が含まれていることを特徴とするアルカリ二次電
池。
1. An alkaline secondary battery comprising: an anode composed of an electrode substrate and a coating layer formed on the surface of the electrode substrate and containing an electrode active material; and an alkaline electrolyte, wherein the coating layer and the alkaline electrolyte Wherein at least one of the above comprises a salt comprising a strong base and a weak acid and soluble in the alkaline electrolyte.
【請求項2】 前記塩は、酢酸ナトリウム、リン酸カリ
ウム及びギ酸ナトリウムの少なくとも一種であることを
特徴とする請求項1記載のアルカリ二次電池。
2. The alkaline secondary battery according to claim 1, wherein the salt is at least one of sodium acetate, potassium phosphate and sodium formate.
JP8284027A 1996-10-25 1996-10-25 Alkaline secondary battery Pending JPH10125350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8284027A JPH10125350A (en) 1996-10-25 1996-10-25 Alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8284027A JPH10125350A (en) 1996-10-25 1996-10-25 Alkaline secondary battery

Publications (1)

Publication Number Publication Date
JPH10125350A true JPH10125350A (en) 1998-05-15

Family

ID=17673365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8284027A Pending JPH10125350A (en) 1996-10-25 1996-10-25 Alkaline secondary battery

Country Status (1)

Country Link
JP (1) JPH10125350A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008257899A (en) * 2007-03-31 2008-10-23 Sanyo Electric Co Ltd Alkaline storage battery
KR101288642B1 (en) * 2006-10-12 2013-07-22 주식회사 엘지화학 Electrochemical device with high safety at high temperature and impact

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101288642B1 (en) * 2006-10-12 2013-07-22 주식회사 엘지화학 Electrochemical device with high safety at high temperature and impact
JP2008257899A (en) * 2007-03-31 2008-10-23 Sanyo Electric Co Ltd Alkaline storage battery

Similar Documents

Publication Publication Date Title
JPS6157661B2 (en)
CA2321293C (en) Nickel electrode for alkali storage battery, method of producing nickel electrode for alkali storage battery, and alkali storage battery
JPH06215765A (en) Alkaline storage battery and manufacture thereof
JPH10125350A (en) Alkaline secondary battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JPH09199119A (en) Alkaline storage battery
JP2734523B2 (en) Battery separator
JP3097238B2 (en) Anode plate for alkaline storage battery
JP4531874B2 (en) Nickel metal hydride battery
JP2001283902A (en) Alkaline battery
JP3863703B2 (en) Hydrogen storage alloy electrode and alkaline storage battery
JP3494342B2 (en) Method for manufacturing positive electrode of secondary battery
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JP2578633B2 (en) Zinc electrode for alkaline storage batteries
JP2692795B2 (en) Paste type cadmium cathode for alkaline storage battery
JP3196234B2 (en) Cadmium negative electrode plate for alkaline storage battery and method of manufacturing the same
JP3606123B2 (en) Manufacturing method of nickel positive electrode plate for alkaline storage battery
JP3365219B2 (en) Alkaline storage battery
WO2001075993A1 (en) Nickel positive electrode plate and alkaline storage battery
JP2002358956A (en) Negative electrode plate for nickel and hydrogen storage battery and its manufacturing method, and nickel and hydrogen storage battery using the same
JPH0888002A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH0619990B2 (en) Nickel electrode manufacturing method for alkaline batteries
JPH09245827A (en) Manufacture of alkaline storage battery
JPH0765835A (en) Alkali zinc storage battery
JPH0675397B2 (en) Method for producing paste type cadmium negative electrode