JPH10121250A - Substrate temperature controller for cvd system - Google Patents

Substrate temperature controller for cvd system

Info

Publication number
JPH10121250A
JPH10121250A JP27355096A JP27355096A JPH10121250A JP H10121250 A JPH10121250 A JP H10121250A JP 27355096 A JP27355096 A JP 27355096A JP 27355096 A JP27355096 A JP 27355096A JP H10121250 A JPH10121250 A JP H10121250A
Authority
JP
Japan
Prior art keywords
substrate
temp
temperature
gas
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27355096A
Other languages
Japanese (ja)
Other versions
JP3495525B2 (en
Inventor
Akira Yamada
山田  明
Kenichiro Kosaka
健一郎 小阪
Yasuhiro Yamauchi
康弘 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP27355096A priority Critical patent/JP3495525B2/en
Publication of JPH10121250A publication Critical patent/JPH10121250A/en
Application granted granted Critical
Publication of JP3495525B2 publication Critical patent/JP3495525B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the efficiency of substrate temp. control by disposing a nozzle for gaseous flow for the purpose of temp. control in a direction different from the direction of a reactive gas supply nozzle and controlling the temp. and flow rate of the jet from the nozzle at the time of forming thin films by a CVD method. SOLUTION: The nozzle 8 for temp. control which supplies the gas for temp. control of the substrate 5 for film formation is disposed on the opposite side (back side), across the substrate 5, of the nozzle 1 for supplying the reactive gases to the substrate 5. At the time of the temp. control of the substrate 5, the reactive gas temp. is set lower by ΔT than a set substrate temp. and the temp. of the gas for temp. control is set higher by ΔT than the set substrate temp. and the flow rate of the reactive gases and the flow rate of the gas for temp. control are set at nearly the same rates, by which the substrate 5 is subjected to the temp. control to nearly a constant temp. distribution. Similarly, the method of setting the temp. of the reactive gas higher by ΔT than the set substrate temp., setting the temp. of the gas for temp. control lower by ΔT than the set substrate temp. and maintaining the flow rates of both at nearly the same rates may be adopted as well.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、CVD(Chemical
Vaper Deposition )装置(化学蒸着装置)の基板温度
制御装置に関する。
The present invention relates to a CVD (Chemical).
The present invention relates to a substrate temperature control device for a vapor deposition device (chemical vapor deposition device).

【0002】[0002]

【従来の技術】従来の技術を図3〜図4に示す。図3
は、従来の装置のCVDチャンバ内の構成を示す図。図
4は、従来の装置による基板の温度分布図である。
2. Description of the Related Art The prior art is shown in FIGS. FIG.
FIG. 2 is a diagram showing a configuration inside a CVD chamber of a conventional apparatus. FIG. 4 is a temperature distribution diagram of a substrate by a conventional apparatus.

【0003】CVD装置では、蒸着する面の温度制御が
必要であり、図3のように電気ヒータ16で行ってい
る。図4の実験条件は、 基板温度 550°C 反応ガス温度 200°C ノズルと基板の距離 5〜20mm ガラス基板 5cm×5cm ガラス基板は移動しない
In a CVD apparatus, it is necessary to control the temperature of the surface on which the film is to be deposited. The experimental conditions in FIG. 4 are as follows: substrate temperature 550 ° C. reaction gas temperature 200 ° C. distance between nozzle and substrate 5-20 mm glass substrate 5 cm × 5 cm glass substrate does not move

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の技術に
は次のような問題がある。 (1)従来の技術では、基板5の温度制御は電気ヒータ
16を用いて行っているが、電気ヒータの加熱面を基板
に接触させる場合でも、接触させないで輻射で加熱する
場合でも、反応ガスの冷却効果とちょうど打消しあうよ
うに、基板の温度を制御することは、困難である。
However, the prior art has the following problems. (1) In the prior art, the temperature control of the substrate 5 is performed using the electric heater 16. However, even when the heating surface of the electric heater is brought into contact with the substrate or when the heating surface is heated without radiation, the reaction gas It is difficult to control the temperature of the substrate to just cancel the cooling effect of the substrate.

【0005】図4にその例を示す。反応ガス供給ノズル
中心付近のガラス基板の位置では、反応ガス供給ノズル
から基板へ垂直な噴流が衝突するので、ガラス基板の冷
却効果は高い。
FIG. 4 shows an example. At the position of the glass substrate near the center of the reaction gas supply nozzle, a vertical jet collides with the substrate from the reaction gas supply nozzle, so that the cooling effect of the glass substrate is high.

【0006】これに対して、電気ヒータによる加熱効果
は、ガラス基板の位置によらずほぼ一様である。したが
って、噴流の衝突部分の温度は、周囲よりも低くなる。 (2)この温度ムラを防ぐために、電気ヒータの中心
を、周囲と分割して発熱量を制御することも考えられる
が、ガスの冷却効果とマッチングさせる制御は複雑であ
るとともに、基板を移動させながらCVDを行う場合に
は、さらに困難な制御になる。 本発明は、これらの問題を解決することができる装置を
提供することを目的とする。
On the other hand, the heating effect of the electric heater is substantially uniform regardless of the position of the glass substrate. Therefore, the temperature of the collision part of the jet becomes lower than the surroundings. (2) In order to prevent this temperature non-uniformity, it is conceivable to divide the center of the electric heater from the surroundings to control the amount of heat generation. However, the control for matching with the gas cooling effect is complicated and the substrate is moved. In the case of performing CVD while controlling, the control becomes more difficult. An object of the present invention is to provide a device that can solve these problems.

【0007】[0007]

【課題を解決するための手段】[Means for Solving the Problems]

(第1の手段)本発明に係る基板温度制御装置は、反応
性ガスを基板上で蒸着させる、いわゆるCVD(化学蒸
着)装置おいて、(A)反応性ガスを供給するノズル1
と、(B)基板5を挟んで反対側に設けた基板温度を制
御するためのガス供給する温度制御用ノズル8を有する
ことを特徴とする。 (第2の手段)本発明に係る基板温度制御装置は、第1
の手段において、反応性ガス温度は設定基板温度よりΔ
T低く、温度制御用ガス温度は設定基板温度よりΔT高
い温度で、反応性ガス流量と温度制御用ガス流量をほぼ
同一したことを特徴とする。 (第3の手段)本発明に係る基板温度制御装置は、第1
の手段において、反応性ガス温度は設定基板温度よりΔ
T高く、温度制御用ガス温度は設定基板温度よりΔT低
い温度で、反応性ガス流量と温度制御用ガス流量をほぼ
同一したことを特徴とする。
(First Means) A substrate temperature control apparatus according to the present invention is a so-called CVD (chemical vapor deposition) apparatus for depositing a reactive gas on a substrate.
And (B) a temperature control nozzle 8 for supplying gas for controlling the temperature of the substrate provided on the opposite side of the substrate 5. (Second Means) A substrate temperature control apparatus according to the present invention comprises:
Means, the reactive gas temperature is Δ Δ
T is lower, the temperature of the temperature control gas is ΔT higher than the set substrate temperature, and the reactive gas flow rate and the temperature control gas flow rate are substantially the same. (Third Means) A substrate temperature control apparatus according to the present invention comprises:
Means, the reactive gas temperature is Δ Δ
T is high, the temperature of the temperature control gas is lower than the set substrate temperature by ΔT, and the reactive gas flow rate and the temperature control gas flow rate are almost the same.

【0008】したがって、次のように作用する。反応ガ
スの供給ノズル1とは別の方向から、温度調節を目的と
したガスの流ノズルを設置し、このノズルからの噴流の
温度や流量(流速分布)を調節することにより、基板の
温度を制御する。
Therefore, the following operation is performed. A gas flow nozzle for temperature control is installed from a different direction from the reaction gas supply nozzle 1, and the temperature and flow rate (flow velocity distribution) of the jet from this nozzle are adjusted to reduce the temperature of the substrate. Control.

【0009】[0009]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(第1の実施の形態)本発明の第1の実施の形態を図1
〜図2に示す。図1は、本発明の第1の実施の形態に係
る装置のCVDチャンバー内の構成を示す図。
(First Embodiment) FIG. 1 shows a first embodiment of the present invention.
2 to FIG. FIG. 1 is a diagram showing a configuration inside a CVD chamber of the apparatus according to the first embodiment of the present invention.

【0010】図2は、本発明の第1の実施の形態の係る
基板の温度分布図である。図1の温度制御用ノズル8か
らガス流出方向7に沿った流れのガスは、基板5に衝突
した後電気ヒータ16に沿って流れる。
FIG. 2 is a temperature distribution diagram of the substrate according to the first embodiment of the present invention. The gas flowing in the gas outflow direction 7 from the temperature control nozzle 8 in FIG. 1 collides with the substrate 5 and then flows along the electric heater 16.

【0011】その場合、反応性ガスが反応ガス供給ノズ
ル1から、基板温度より△T低い温度で衝突させ、温度
制御用ガスを基板温度より△T高い温度で反応性ガスと
同じ流量流せば、基板5の温度分布図を、ほぼ一定温度
に制御することができる。
In this case, if the reactive gas is caused to collide from the reactive gas supply nozzle 1 at a temperature lower by ΔT than the substrate temperature, and the temperature control gas flows at a temperature higher by ΔT than the substrate temperature and at the same flow rate as the reactive gas, The temperature distribution diagram of the substrate 5 can be controlled to a substantially constant temperature.

【0012】同様に、反応性ガスを反応ガス供給ノズル
1から、基板温度より△T高い温度で衝突させ、温度制
御用ガスを基板温度より△T低い温度で反応性ガスと同
じ流量流せば、基板5の温度分布図を、ほぼ一定温度に
制御することができる。
Similarly, if the reactive gas is caused to collide from the reactive gas supply nozzle 1 at a temperature higher than the substrate temperature by ΔT, and the temperature control gas flows at a temperature lower by ΔT than the substrate temperature and at the same flow rate as the reactive gas, The temperature distribution diagram of the substrate 5 can be controlled to a substantially constant temperature.

【0013】図2の実験条件は、 基板温度 550°C 反応ガス温度 200°C 温度制御用ガス温度 700〜800°C ノズルと基板の距離 5〜20mm ガラス基板 5cm×5cm 厚さ1.1mm ガラス基板は移動しない 使用ガス、透明電極では、 反応ガス SnCl4 とH2 O 温度制御用ガス N2 ガス流量 反応ガス SnCl4 15000cc/min H2 O 1g /min 温度制御用ガス 50000cc/min 蒸着物 SnO2 厚さ数μで均一に拡がるThe experimental conditions in FIG. 2 are as follows: substrate temperature 550 ° C. reaction gas temperature 200 ° C. gas temperature for temperature control 700-800 ° C. distance between nozzle and substrate 5-20 mm glass substrate 5 cm × 5 cm thickness 1.1 mm glass The substrate does not move. For the used gas and the transparent electrode, reaction gas SnCl 4 and H 2 O temperature control gas N 2 gas flow rate reaction gas SnCl 4 15000 cc / min H 2 O 1 g / min temperature control gas 50000 cc / min Deposit SnO 2 Spreads evenly with a thickness of several μ

【0014】[0014]

【発明の効果】本発明は前述のように構成されているの
で、以下に記載するような効果を奏する。 (1)反応ガス供給ノズルからの反応性ガスが基板に衝
突する冷却効果の高いノズル中心付近の基板位置におい
ては、裏面から温度調節用ガスが衝突するため、加熱効
果も同様に高い。
Since the present invention is configured as described above, it has the following effects. (1) At a substrate position near the center of the nozzle where the reactive gas from the reactive gas supply nozzle collides with the substrate has a high cooling effect, the temperature adjusting gas collides from the back surface, and the heating effect is also high.

【0015】他方、反応性ガスの基板5に対する冷却効
果が低下するノズル中心からずれた基板位置において
は、裏面からの温度調節用ガスの加熱効果も低下する。 (2)そのため、基板の温度分布を、図2に示すよう
に、ほぼ一定に制御することができる。
On the other hand, at a substrate position shifted from the center of the nozzle where the cooling effect of the reactive gas on the substrate 5 is reduced, the heating effect of the temperature adjusting gas from the back surface is also reduced. (2) Therefore, the temperature distribution of the substrate can be controlled to be substantially constant as shown in FIG.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係る装置のCVD
チャンバー内の構成を示す図。
FIG. 1 shows a CVD apparatus according to a first embodiment of the present invention.
The figure which shows the structure in a chamber.

【図2】本発明の第1の実施の形態の係る基板の温度分
布図。
FIG. 2 is a temperature distribution diagram of the substrate according to the first embodiment of the present invention.

【図3】従来の装置を示す図。FIG. 3 is a diagram showing a conventional device.

【図4】従来の装置による基板の温度分布図。FIG. 4 is a temperature distribution diagram of a substrate by a conventional apparatus.

【符号の説明】[Explanation of symbols]

1…反応ガス供給ノズル 2…反応ガスの流出方向 3…ガスの基板に沿う流れ 4…蒸着物 5…基板 6…ガスの基板に沿う流れ 7…温度制御用ガスの流出方向 8…温度制御用ガス供給ノズル 16…電気ヒータ DESCRIPTION OF SYMBOLS 1 ... Reaction gas supply nozzle 2 ... Outflow direction of reaction gas 3 ... Flow of gas along a substrate 4 ... Deposit 5 ... Substrate 6 ... Flow of gas along a substrate 7 ... Outflow direction of temperature control gas 8 ... Temperature control Gas supply nozzle 16: Electric heater

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】反応性ガスを基板上で蒸着させる、いわゆ
るCVD(化学蒸着)装置おいて、(A)反応性ガスを
供給するノズル1と、(B)基板5を挟んで反対側に設
けた基板温度を制御するためのガス供給する温度制御用
ノズル8を有することを特徴とする基板温度制御装置
In a so-called CVD (chemical vapor deposition) apparatus for depositing a reactive gas on a substrate, (A) a nozzle 1 for supplying a reactive gas, and (B) a nozzle 1 provided on the opposite side with a substrate 5 interposed therebetween. Temperature control nozzle having a gas supply temperature control nozzle 8 for controlling a substrate temperature
【請求項2】反応性ガス温度は設定基板温度よりΔT低
く、温度制御用ガス温度は設定基板温度よりΔT高い温
度で、反応性ガス流量と温度制御用ガス流量をほぼ同一
したことを特徴とする請求項1記載の基板温度制御装置
2. The method according to claim 1, wherein the reactive gas temperature is .DELTA.T lower than the set substrate temperature, the temperature control gas temperature is .DELTA.T higher than the set substrate temperature, and the reactive gas flow rate and the temperature control gas flow rate are substantially the same. The substrate temperature control device according to claim 1,
【請求項3】反応性ガス温度は設定基板温度よりΔT高
く、温度制御用ガス温度は設定基板温度よりΔT低い温
度で、反応性ガス流量と温度制御用ガス流量をほぼ同一
したことを特徴とする請求項1記載の基板温度制御装置
3. The temperature of the reactive gas is ΔT higher than the set substrate temperature, the temperature of the temperature control gas is ΔT lower than the set substrate temperature, and the reactive gas flow rate and the temperature control gas flow rate are substantially the same. The substrate temperature control device according to claim 1,
JP27355096A 1996-10-16 1996-10-16 Substrate temperature controller for CVD equipment Expired - Fee Related JP3495525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27355096A JP3495525B2 (en) 1996-10-16 1996-10-16 Substrate temperature controller for CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27355096A JP3495525B2 (en) 1996-10-16 1996-10-16 Substrate temperature controller for CVD equipment

Publications (2)

Publication Number Publication Date
JPH10121250A true JPH10121250A (en) 1998-05-12
JP3495525B2 JP3495525B2 (en) 2004-02-09

Family

ID=17529387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27355096A Expired - Fee Related JP3495525B2 (en) 1996-10-16 1996-10-16 Substrate temperature controller for CVD equipment

Country Status (1)

Country Link
JP (1) JP3495525B2 (en)

Also Published As

Publication number Publication date
JP3495525B2 (en) 2004-02-09

Similar Documents

Publication Publication Date Title
US6872428B2 (en) Apparatus and method for large area chemical vapor deposition using multiple expanding thermal plasma generators
US4800105A (en) Method of forming a thin film by chemical vapor deposition
JP2017040004A (en) Device for covering thin film coating, and coating method using such device
CN101601333A (en) The method and apparatus that is used for plasma arc coating
US20100089322A1 (en) Plasma coating system for accommodating substrates of different shapes
JP3077582B2 (en) Plasma CVD apparatus and cleaning method therefor
JPH0492414A (en) Thin film formation device
KR101020374B1 (en) Film forming apparatus
JP3286951B2 (en) Plasma CVD film forming method and apparatus
JPH10121250A (en) Substrate temperature controller for cvd system
JP4933979B2 (en) Cleaning method for film forming apparatus
CN101199039A (en) Film-forming and cleaning method
JPH11172449A (en) Thin film forming device using rotary electrode
JPH11117071A (en) Cvd device
JP4231589B2 (en) Chemical vapor deposition method and chemical vapor deposition apparatus
JP5052206B2 (en) CVD equipment
JPH02190473A (en) Raw gas feeder for plasma cvd
JP2001230211A (en) Film forming equipment
KR200205136Y1 (en) Deposition apparatus
JP3065731B2 (en) Optical CVD equipment
JPH0927459A (en) Processing equipment for semiconductor device
JPH04320031A (en) Wafer heating soaking plate
JPH03287772A (en) Single wafer processing atmospheric cvd device
JPH09162129A (en) Semiconductor wafer processor, method for processing semiconductor wafer and semiconductor device
JP2582012Y2 (en) Wafer heater

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031028

LAPS Cancellation because of no payment of annual fees