JPH10118649A - Treatment of molybdate aqueous solution - Google Patents

Treatment of molybdate aqueous solution

Info

Publication number
JPH10118649A
JPH10118649A JP8299605A JP29960596A JPH10118649A JP H10118649 A JPH10118649 A JP H10118649A JP 8299605 A JP8299605 A JP 8299605A JP 29960596 A JP29960596 A JP 29960596A JP H10118649 A JPH10118649 A JP H10118649A
Authority
JP
Japan
Prior art keywords
molybdate
exchange resin
molybdenum
aqueous solution
anion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8299605A
Other languages
Japanese (ja)
Inventor
Yukio Makiyama
行夫 牧山
Hiroaki Ono
浩昭 小野
Shunji Tada
俊二 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIYO KOUKOU KK
Original Assignee
TAIYO KOUKOU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIYO KOUKOU KK filed Critical TAIYO KOUKOU KK
Priority to JP8299605A priority Critical patent/JPH10118649A/en
Publication of JPH10118649A publication Critical patent/JPH10118649A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a certain and efficient treatment method capable of separating and recovering molybdenum to reutilize an anticorrosive and to adapt waste water to environmental standard in addition as final treatment of cooling water containing a molybdenum component. SOLUTION: An aq. soln. containing molybdate is adjusted to pH1.0-8.0 and brought into contact with an anion exchange resin to adsorb molybdic acid ions to remove them and an alkali aq. soln. with pH9.0 or more is brought into contact with the anionic exchange resin having molybdic acid ions to dissolve molybdic acid ions to recover them and a waste soln. from which molybdenum is removed is treated with a known method.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、例えば使用済みの冷却
廃水などのモリブデン酸塩を含む水溶液からモリブデン
酸塩を分離除去し、該モリブデン酸塩を再利用する方法
に関するものである。 【0002】 【従来の技術】開放あるいは密閉の循環式冷却水には、
環境汚染が少ないとの理由からモリブデン酸塩を有効成
分とする防食剤が多用されている。このモリブデン成分
は、資源の有効利用のため、使用済みの冷却水の最終的
な処理で回収されている。モリブデン回収に適用されて
きた従来の方法では、前記使用済みの冷却水を塩酸や硝
酸等で酸性にしてから、加水分解によりモリブデン酸と
して回収し、モリブデンを回収除去した冷却水は、他の
汚水と共に排水処理されて放流されていた。 【0003】 【発明が解決しようとする課題】しかしながら、最近、
水質汚濁に係る環境基準の一部見直しが実施された結
果、モリブデンは要監視項目となった。その指針値は
0.07mg/l(リットル)以下であるが、上記従来
の廃水処理方法では、排水中のモリブデン含有量を確実
に指針値以下にするのが困難であるという問題点があ
る。 【0004】本発明は、モリブデン成分を含有する冷却
水の最終処理方法として、モリブデンを分離回収して防
食剤として再利用でき、併せて排水が上記環境基準にも
適合する確実かつ効率的な処理方法を提供することを課
題としている。 【0005】 【課題を解決するための手段】上記課題を解決するた
め、本発明は以下のような構成とした。すなわち、本発
明は、モリプデン酸塩を含む水溶液からモリブデン酸塩
を分離回収する方法であって、前記水溶液をpH1.0
〜8.0に調整し、陰イオン交換樹脂に接触させモリブ
デン酸イオンを吸着させて除去した後、モリブデン酸イ
オンを吸着した陰イオン交換樹脂にpH9.0以上のア
ルカリ水溶液を接触させてモリブデン酸イオンを溶離し
て回収し、一方モリブデンを除去した廃液を公知の方法
で廃水処理することを特徴としている。 【0006】本発明の処理方法においては、処理される
モリブデン酸塩水溶液はpHが1.0〜8.0であるこ
とが好ましく、pHが3.0±2.0であることがさら
に好ましい。pHが上限を越えるとモリブデン酸イオン
の吸着除去率が低下し、下限未満ではモリブデン酸塩が
不安定となり吸着除去率が低下するのでいずれも好まし
くない。モリブデン酸塩水溶液のpHが1.0〜8.0
の範囲に入らないときは、陰イオン交換樹脂に接触させ
る前に、例えば硫酸などの酸または水酸化ナトリウムな
どのアルカリにてpHを調整しておくことが好ましい。 【0007】以上のような所定範囲内のpH値を持つモ
リブデン酸塩水溶液を、陰イオン交換樹脂に接触させる
ことにより、液中のモリブデン酸イオンは吸着されて除
去される。モリブデン酸イオンが除去された廃液は公知
の方法で廃水処理される。 【0008】本発明で使用される陰イオン交換樹脂とし
ては、強塩基性陰イオン交換樹脂、弱塩基性陰イオン交
換樹脂、キレート型陰イオン交換樹脂などが使用可能で
ある。これらの陰イオン交換樹脂は、通常その断面図を
図1に示すようにカラム1中に入れた状態で処理作業に
供される。すなわちカラム本体3の両端に耐腐食性の網
5が設けられ、カラム本体3は樹脂製や内面を防食処理
された鋼製でこの中に陰イオン交換樹脂7をいれ、上下
の端部9に設けられたパイプ11を通じて通液できるよ
うになっている。 【0009】カラムは通常竪型に固定しておき、処理液
は下から上へ通液する。この方法は、樹脂粒子を浮動さ
せカラム内で両者をより充分に接触させ得るので好まし
いが、カラムの固定状況や通液方向など特に限定する必
要はない。また、同じく両者を接触させる方法として、
両者を一つの容器に入れて軽く撹拌した後濾別するなど
の方法もあり、これ以外でも効果的に接触させることが
できる方法であればどのような方法でもよい。 【0010】モリブデン酸イオンを吸着した陰イオン交
換樹脂には、モリブデン酸イオン以外の種々の雑イオン
も吸着されている可能性がある。これらの雑イオンの大
部分を除去するために、0.4W/V%水酸化ナトリウ
ム水溶液などのpH9.0未満の希薄アルカリ水溶液を
接触させることにより、後述のモリブデン酸イオンの回
収作業においてより純度の高いモリブデン酸イオンを回
収することができる。 【0011】つづいて、陰イオン交換樹脂からモリブデ
ン酸イオンを回収するには、例えば4W/V%水酸化ナ
トリウム水溶液などのpH9.0以上のアルカリ水溶液
を接触させる。これにより、モリブデン酸イオンは陰イ
オン交換樹脂から離れアルカリ水溶液中へ溶解移行し、
回収される。 【0012】モリブデン酸イオンを回収した後の陰イオ
ン交換樹脂は、例えば3W/V%硫酸などの酸水溶液を
接触させることにより、モリブデン酸イオンを再び吸着
できる状態に再生することができる。 【0013】 【発明の実施の形態】以下、本発明を実施例に準じて具
体的に説明する。 【0014】(実施例1)強塩基性イオン交換樹脂(商
品名:デュオライトA−171S、塩型)1リットルを
樹脂塔に入れ、循環冷却水(Mo11.6mg/l、p
H8.2)を硫酸でpH3.0に調整した後、SV4で
通液した。通液後の液をICP発光分析装置で測定した
ところ、80リットルまでモリブデンが検出できなかっ
た(Mo<0.01mg/l)。その後、少しずつリー
クが見られ、100リットルのところでは、通液前の約
0.5%濃度であった(Mo 0.05mg/l)。溶
離再生は、水酸化ナトリウム(0.4%)4リットルを
通して、モリブデン酸以外のアニオンの大部分を脱着し
た後、水酸化ナトリウム(4%)1リットルを通して、
モリブデン酸を溶離し、モリブデン(Mo)濃度1.2
g/lの溶離液を回収した。樹脂は、水洗後、硫酸(3
%)1リットルを通して洗浄した。再生工程を終了した
樹脂に循環冷却水を通液したところ、再びモリブデンを
吸着した。溶離液に硫酸を加えてpHを8に調整したも
のを再び循環水添加剤として使用できた。上記循環冷却
水のpH調整値を変えて同様な実験を行った結果は、表
1の通りであった。 【0015】(実施例2)弱塩基性陰イオン交換樹脂
(WAー30、塩型)1リットルを樹脂塔に入れは、循
環冷却水(Mo10.1mg/l、pH8.5)を硫酸
でpH2.5に調整した後、SV2で通液した。通液後
の液をICP発光分析装置で測定したところ、50リッ
トルまでモリブデンが検出できなかった(Mo<0.0
1mg/l)。その後、少しずつリークが見られ、60
リットルのところでは、通液前の約0.5%濃度であっ
た(Mo 0.05mg/l)。溶離再生は、水酸化ナ
トリウム(0.4%)2リットルを通して、モリブデン
酸以外のアニオンの大部分を脱着した後、水酸化ナトリ
ウム(4%)1リットルを通して、モリブデン酸を溶離
し、モリブデン(Mo)濃度1.0g/lの溶離液を回
収した。樹脂は、水洗後、硫酸(3%)1リットルを通
して洗浄した。再生工程を終了した樹脂に循環冷却水を
通液したところ、再びモリブデンを吸着した。上記循環
冷却水のpH調整値を変えて同様な実験を行った結果
は、表1の通りであった。 【0016】(実施例3)キレート樹脂(CRー20、
遊離型)1リットルを樹脂塔に入れ、循環冷却水(Mo
11.1mg/l、pH8.1)を硫酸でpH3.5に
調整した後、SV4で通液した。通液後の液をICP発
光分析装置で測定したところ、80リットルまでモリブ
デンが検出できなかった(Mo<0.01mg/l)。
その後、少しずつリークが見られ、90リットルのとこ
ろでは、通液前の約0.5%濃度であった(Mo 0.
05mg/l)。溶離再生は、水酸化ナトリウム(0.
4%)2リットルを通して、モリブデン酸以外のアニオ
ンの大部分を脱着した後、水酸化ナトリウム(4%)1
リットルを通して、モリブデン酸を溶離し、モリブデン
(Mo)濃度0.9g/lの溶離液を回収した。樹脂
は、水洗後、硫酸(3%)1リットルを通して洗浄し
た。再生工程を終了した樹脂に循環冷却水を通液したと
ころ、再びモリブデンを吸着した。溶離液に硫酸を加え
てpHを8に調整したものを再び循環水添加剤として使
用できた。上記循環冷却水のpH調整値を変えて同様な
実験を行った結果は、表1の通りであった。 【0017】 【表1】 【0018】 【発明の効果】以上の結果から明らかなように、本発明
のは、効率的なモリブデンの除去および回収方法とし
て、また廃水処理の環境基準にも適合できる方法とし
て、優れた方法である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention separates and removes molybdate from an aqueous solution containing molybdate, such as used cooling wastewater, and recycles the molybdate. It is about the method used. 2. Description of the Related Art Open or closed circulating cooling water includes:
Anticorrosives containing molybdate as an active ingredient are frequently used because of their low environmental pollution. This molybdenum component is recovered in the final treatment of used cooling water for effective use of resources. In the conventional method applied to molybdenum recovery, the used cooling water is acidified with hydrochloric acid, nitric acid, or the like, and then recovered as molybdenum acid by hydrolysis. Along with that, it was discharged and discharged. [0003] However, recently,
Molybdenum became a monitored item as a result of a partial review of environmental standards related to water pollution. Although the guideline value is 0.07 mg / l (liter) or less, the conventional wastewater treatment method has a problem that it is difficult to reliably reduce the molybdenum content in the wastewater to the guideline value or less. The present invention provides a method for final treatment of a cooling water containing a molybdenum component, in which molybdenum can be separated and recovered and reused as an anticorrosive agent, and at the same time, a reliable and efficient treatment of wastewater that meets the above environmental standards. The task is to provide a method. [0005] In order to solve the above problems, the present invention has the following configuration. That is, the present invention relates to a method for separating and recovering molybdate from an aqueous solution containing molybdate, wherein the aqueous solution has a pH of 1.0.
After adjusting the pH to 8.0 and contacting it with an anion-exchange resin to adsorb and remove molybdate ions, the aqueous solution of molybdate is brought into contact with an anion-exchange resin adsorbed with molybdate ions by contacting an alkaline aqueous solution having a pH of 9.0 or more. It is characterized in that ions are eluted and recovered, while the waste liquid from which molybdenum has been removed is subjected to wastewater treatment by a known method. In the treatment method of the present invention, the aqueous molybdate solution to be treated preferably has a pH of 1.0 to 8.0, more preferably 3.0 ± 2.0. If the pH exceeds the upper limit, the rate of adsorption and removal of molybdate ions decreases, and if the pH is less than the lower limit, the molybdate salt becomes unstable and the rate of adsorption and removal decreases. The pH of the molybdate aqueous solution is 1.0 to 8.0.
When it does not fall within the range, it is preferable to adjust the pH with an acid such as sulfuric acid or an alkali such as sodium hydroxide before contact with the anion exchange resin. [0007] By bringing an aqueous solution of molybdate having a pH value within the above-mentioned predetermined range into contact with an anion exchange resin, molybdate ions in the solution are adsorbed and removed. The waste liquid from which molybdate ions have been removed is subjected to wastewater treatment by a known method. As the anion exchange resin used in the present invention, a strongly basic anion exchange resin, a weakly basic anion exchange resin, a chelate type anion exchange resin and the like can be used. These anion exchange resins are usually subjected to a processing operation in a state where they are placed in a column 1 as shown in a sectional view of FIG. That is, a corrosion-resistant net 5 is provided at both ends of the column main body 3, and the column main body 3 is made of resin or steel whose inner surface has been subjected to anticorrosion treatment. The liquid can be passed through the pipe 11 provided. The column is usually fixed in a vertical shape, and the processing solution is passed from bottom to top. This method is preferable because the resin particles can be floated and both can be brought into more sufficient contact in the column, but there is no particular limitation on the fixed state of the column and the direction of liquid flow. Also, as a method of contacting both,
There is also a method of putting both into a single vessel, stirring lightly, and then filtering off, and any other method may be used as long as it can be brought into effective contact. It is possible that various anions other than molybdate are also adsorbed on the anion exchange resin to which molybdate has been adsorbed. In order to remove most of these miscellaneous ions, by contacting with a dilute alkali aqueous solution having a pH of less than 9.0, such as a 0.4 W / V% aqueous sodium hydroxide solution, the purity of the molybdate ion recovery operation described later is improved. Can be recovered. Subsequently, in order to recover molybdate ions from the anion exchange resin, an alkaline aqueous solution having a pH of 9.0 or more, such as a 4 W / V% aqueous sodium hydroxide solution, is brought into contact. As a result, molybdate ions separate from the anion exchange resin and dissolve and transfer into the alkaline aqueous solution,
Collected. After the molybdate ions have been recovered, the anion exchange resin can be regenerated to a state in which the molybdate ions can be adsorbed again by bringing the anion exchange resin into contact with an aqueous acid solution such as 3 W / V% sulfuric acid. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described specifically based on embodiments. (Example 1) 1 liter of a strongly basic ion exchange resin (trade name: Duolite A-171S, salt type) was put into a resin tower, and circulating cooling water (Mo 11.6 mg / l, p
H8.2) was adjusted to pH 3.0 with sulfuric acid, and then passed through SV4. When the liquid after the passage was measured by an ICP emission spectrometer, molybdenum could not be detected up to 80 liters (Mo <0.01 mg / l). Thereafter, a leak was seen little by little, and at 100 liters, the concentration was about 0.5% before passing through the liquid (Mo 0.05 mg / l). Elution regeneration was carried out by passing through 4 liters of sodium hydroxide (0.4%) to desorb most of the anions other than molybdate, and then passing through 1 liter of sodium hydroxide (4%).
Molybdic acid was eluted and the molybdenum (Mo) concentration was 1.2
g / l of eluate was collected. After washing the resin with water, sulfuric acid (3
%) And washed through 1 liter. When circulating cooling water was passed through the resin after the regeneration step, molybdenum was adsorbed again. The eluate adjusted to pH 8 by adding sulfuric acid could be used again as a circulating water additive. Table 1 shows the results of a similar experiment conducted by changing the pH value of the circulating cooling water. (Example 2) 1 liter of a weakly basic anion exchange resin (WA-30, salt type) was put into a resin tower, and circulating cooling water (Mo 10.1 mg / l, pH 8.5) was added to sulfuric acid at pH 2 using sulfuric acid. After adjusting to 0.5, the solution was passed through SV2. When the liquid after the passage was measured by an ICP emission spectrometer, molybdenum could not be detected up to 50 liters (Mo <0.02).
1 mg / l). After that, a leak was seen little by little,
At the liter, the concentration was about 0.5% before passage (Mo 0.05 mg / l). Elution regeneration is carried out by desorbing most of the anions other than molybdate through 2 liters of sodium hydroxide (0.4%), and then eluting molybdic acid through 1 liter of sodium hydroxide (4%) to obtain molybdenum (Mo). E) An eluate having a concentration of 1.0 g / l was recovered. After washing with water, the resin was washed with 1 liter of sulfuric acid (3%). When circulating cooling water was passed through the resin after the regeneration step, molybdenum was adsorbed again. Table 1 shows the results of a similar experiment conducted by changing the pH value of the circulating cooling water. Example 3 A chelate resin (CR-20,
1 liter of free type is put into a resin tower, and circulating cooling water (Mo)
(11.1 mg / l, pH 8.1) was adjusted to pH 3.5 with sulfuric acid, and the solution was passed through SV4. When the liquid after the passage was measured by an ICP emission spectrometer, molybdenum could not be detected up to 80 liters (Mo <0.01 mg / l).
Thereafter, a leak was seen little by little, and at 90 liters, the concentration was about 0.5% before passing through the liquid (Mo 0. 1).
05 mg / l). Elution regeneration was performed using sodium hydroxide (0.
4%) After desorbing most of the anions other than molybdate through 2 liters, sodium hydroxide (4%) 1
Molybdic acid was eluted through the liter, and an eluate having a molybdenum (Mo) concentration of 0.9 g / l was recovered. After washing with water, the resin was washed with 1 liter of sulfuric acid (3%). When circulating cooling water was passed through the resin after the regeneration step, molybdenum was adsorbed again. The eluate adjusted to pH 8 by adding sulfuric acid could be used again as a circulating water additive. Table 1 shows the results of a similar experiment conducted by changing the pH value of the circulating cooling water. [Table 1] As is apparent from the above results, the present invention is an excellent method as an efficient method for removing and recovering molybdenum and a method that can meet environmental standards for wastewater treatment. is there.

【図面の簡単な説明】 【図1】本発明で使用する陰イオン交換樹脂カラムの断
面図である。 【図2】本発明の処理工程図である。 (1)水溶液からモリブデン酸イオンを吸着除去する工
程 (2)陰イオン交換樹脂から雑イオンを除去する工程 (3)陰イオン交換樹脂からモリブデン酸イオンを回収
する工程 (4)陰イオン交換樹脂を再生する工程 【符号の説明】 1 陰イオン交換樹脂のカラム 3 カラム本体 5 網 7 陰イオン交換樹脂 9 端部 11 パイプ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of an anion exchange resin column used in the present invention. FIG. 2 is a process diagram of the present invention. (1) Step of adsorbing and removing molybdate ions from an aqueous solution (2) Step of removing miscellaneous ions from an anion exchange resin (3) Step of recovering molybdate ions from an anion exchange resin (4) Using an anion exchange resin Regeneration process [Explanation of symbols] 1 Anion exchange resin column 3 Column body 5 Net 7 Anion exchange resin 9 End 11 Pipe

Claims (1)

【特許請求の範囲】 【請求項1 】 モリプデン酸塩を含む水溶液をpH1.
0〜8.0に調整し、陰イオン交換樹脂に接触させてモ
リブデン酸イオンを吸着させて除去した後、モリブデン
酸イオンを吸着した陰イオン交換樹脂にpH9.0以上
のアルカリ水溶液を接触させてモリブデン酸イオンを溶
離して回収すると共に、モリブデンを除去した廃液を公
知の方法で廃水処理することを特徴とするモリブデン酸
塩水溶液の処理方法。
Claims 1. An aqueous solution containing a molybdate salt having a pH of 1.
After adjusting to 0 to 8.0 and adsorbing and removing molybdate ions by contacting with an anion exchange resin, an alkali aqueous solution having a pH of 9.0 or more is brought into contact with the anion exchange resin having adsorbed molybdate ions. A method for treating an aqueous solution of molybdate, wherein a molybdate ion is eluted and recovered, and a waste liquid from which molybdenum has been removed is subjected to wastewater treatment by a known method.
JP8299605A 1996-10-23 1996-10-23 Treatment of molybdate aqueous solution Pending JPH10118649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8299605A JPH10118649A (en) 1996-10-23 1996-10-23 Treatment of molybdate aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8299605A JPH10118649A (en) 1996-10-23 1996-10-23 Treatment of molybdate aqueous solution

Publications (1)

Publication Number Publication Date
JPH10118649A true JPH10118649A (en) 1998-05-12

Family

ID=17874806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8299605A Pending JPH10118649A (en) 1996-10-23 1996-10-23 Treatment of molybdate aqueous solution

Country Status (1)

Country Link
JP (1) JPH10118649A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114735846A (en) * 2022-03-29 2022-07-12 信丰华锐钨钼新材料有限公司 Method for deeply removing molybdenum in molybdenum-containing wastewater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114735846A (en) * 2022-03-29 2022-07-12 信丰华锐钨钼新材料有限公司 Method for deeply removing molybdenum in molybdenum-containing wastewater

Similar Documents

Publication Publication Date Title
US4666683A (en) Process for removal of copper from solutions of chelating agent and copper
US4269716A (en) Ion exchange separation method
US4115260A (en) Selective removal of iron cyanide anions from fluids containing thiocyanates
JPH09225298A (en) Resin for adsorbing arsenic and method for recovering arsenic from solution containing arsenic
US4744825A (en) Removal and recovery of silver from waste stream
JPH10118649A (en) Treatment of molybdate aqueous solution
JP3942235B2 (en) Method for treating boron-containing water
JP4497617B2 (en) Method for removing metal from cleaning liquid
JP4069291B2 (en) Method for separating metal ions from metal complex solution
JP2001276814A (en) Treatment method of drain containing fluorine and/or boron
CN111573893A (en) Method for separating chromium from stainless steel pickling waste liquid
JPH0657347A (en) Method for recovering pd ion from waste liquid of pickling of stainless steel with palladium salt and nitric acid
JP3586165B2 (en) Treatment of wastewater containing selenium
JPS6357799A (en) Treatment of plating solution
JP2005103439A (en) Fluorine-containing waste water treatment method
JP4294253B2 (en) Method for removing anionic metal complex
JPH0353030A (en) Recovery of gold from acidic solution
JP2784213B2 (en) Treatment of wastewater containing high concentration iron
JP4172994B2 (en) Method for removing anionic iron-chlorine complex and method for producing high-purity iron
JP2691016B2 (en) How to regenerate iron liquid
JP4393616B2 (en) Boron fixing agent and treatment method of boron-containing waste water
JP4665279B2 (en) Method for treating boron-containing water
JPS6238284B2 (en)
JPH03284391A (en) Treatment of waste liquid containing citric acid
SU1173607A1 (en) Method of regenerating metal-saturated anionites from salt mediums