JP4172994B2 - Method for removing anionic iron-chlorine complex and method for producing high-purity iron - Google Patents

Method for removing anionic iron-chlorine complex and method for producing high-purity iron Download PDF

Info

Publication number
JP4172994B2
JP4172994B2 JP2002345342A JP2002345342A JP4172994B2 JP 4172994 B2 JP4172994 B2 JP 4172994B2 JP 2002345342 A JP2002345342 A JP 2002345342A JP 2002345342 A JP2002345342 A JP 2002345342A JP 4172994 B2 JP4172994 B2 JP 4172994B2
Authority
JP
Japan
Prior art keywords
iron
hydrochloric acid
acid solution
anionic
chlorine complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002345342A
Other languages
Japanese (ja)
Other versions
JP2004174415A (en
Inventor
友二 浅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2002345342A priority Critical patent/JP4172994B2/en
Publication of JP2004174415A publication Critical patent/JP2004174415A/en
Application granted granted Critical
Publication of JP4172994B2 publication Critical patent/JP4172994B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、陰イオン性鉄塩素錯体(鉄−塩化物イオン錯体)を含む溶液からイオン交換樹脂を用いて陰イオン性鉄塩素錯体を捕捉する方法、および上記イオン交換樹脂から陰イオン性鉄塩素錯体を脱着する方法に関する。
【0002】
【従来の技術】
イオン交換においては、溶液中の陽イオンはカチオン交換樹脂に吸着され、陰イオンはアニオン交換樹脂に吸着される。したがって、溶液中の金属陽イオンはカチオン交換樹脂に吸着される。ただし、金属陽イオンは溶液中で陰イオン性金属錯体を形成することがあり、したがってこの場合は、アニオン交換樹脂で陰イオン性金属錯体を吸着することにより溶液中の金属を除去することが可能である(例えば、特許文献1参照)。
【0003】
上述のような溶液中の陰イオン性金属錯体を除去する技術の具体例として、従来、強酸中に含まれる陰イオン性金属錯体を強塩基性アニオン交換樹脂を用いて除去する技術がある。この技術は、例えば塩酸中に含まれる鉄分を除去する場合に使用される(例えば、特許文献2参照)。
【0004】
また、金属陽イオンには溶液中で陰イオン性金属錯体を形成するものとしないものがある。そのため、上述した溶液中の陰イオン性金属錯体を強塩基性アニオン交換樹脂を用いて除去する技術は、各種金属を含む溶液から、陰イオン性金属錯体を形成する金属と、形成しない金属とを分離する方法として用いられる。この方法は、特定金属の定量分析や、鉄などの金属類の高純度化にも使用される。
【0005】
【特許文献1】
特公昭54−12245号公報(第1〜3頁)
【特許文献1】
特開昭58−70879号公報(第1〜4頁)
【0006】
【発明が解決しようとする課題】
前述したように、溶液中の陰イオン性金属錯体を除去する方法として、従来、陰イオン性金属錯体を強塩基性アニオン交換樹脂に吸着させる方法があった。例えば、塩酸溶液中に含まれる鉄分を強塩基性アニオン交換樹脂を用いて除去し、水あるいは低濃度塩酸溶液を用いて強塩基性アニオン交換樹脂から鉄分を脱着する方法があった。
【0007】
しかしながら、強塩基性アニオン交換樹脂は、鉄分の脱着のために水で洗浄した場合には、樹脂の体積が急激に膨張して破砕することがあった。また、樹脂の破砕を防ぐために、低濃度の塩酸溶液で鉄分を脱着させようとした場合には、効率的に脱着を行うことが難しいものであった。このことは、鉄の高純度化において、高濃度塩酸溶液中の陰イオン性鉄塩素錯体を強塩基性アニオン交換樹脂を用いて捕捉した後、低濃度塩酸溶液を用いて上記強塩基性アニオン交換樹脂から陰イオン性鉄塩素錯体を脱着する際には、高濃度かつ高純度の塩化鉄溶液を高い回収率で得ることが困難であることを示している。
【0008】
本発明は、前述した事情に鑑みてなされたもので、高濃度塩酸溶液中の陰イオン性鉄塩素錯体をアニオン交換樹脂を用いて効率よく吸着する方法、および上記アニオン交換樹脂から陰イオン性鉄塩素錯体を脱着する方法であって、アニオン交換樹脂からの陰イオン性鉄塩素錯体の脱着性が良い陰イオン性鉄塩素錯体の除去方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者は、前記課題を解決すべく鋭意研究を重ねた結果、高濃度塩酸溶液中に含まれる陰イオン性鉄塩素錯体の除去にスチレン系樹脂を母体とする弱塩基性アニオン交換樹脂を用いた場合、強塩基性アニオン交換樹脂を用いる従来技術と同等以上に陰イオン性鉄塩素錯体を除去できること、しかも上記スチレン系樹脂を母体とする弱塩基性アニオン交換樹脂から低濃度塩酸溶液を用いて陰イオン性鉄塩素錯体を効率的に脱着できることを見出した。
【0010】
本発明は、上記知見に基づいてなされたもので、陰イオン性鉄塩素錯体を含有する塩酸溶液を、スチレン系樹脂を母体とする弱塩基性アニオン交換樹脂に接触させて、前記弱塩基性アニオン交換樹脂に陰イオン性鉄塩素錯体を吸着させることを特徴とする陰イオン性鉄塩素錯体の除去方法を提供する。また、本発明は、陰イオン性鉄塩素錯体を含有する塩酸溶液を、スチレン系樹脂を母体とする弱塩基性アニオン交換樹脂に接触させて、前記弱塩基性アニオン交換樹脂に陰イオン性鉄塩素錯体を吸着した後、前記陰イオン性鉄塩素錯体を吸着した弱塩基性アニオン交換樹脂に低濃度塩酸溶液を接触させて、前記弱塩基性アニオン交換樹脂から陰イオン性鉄塩素錯体を脱着することを特徴とする陰イオン性鉄塩素錯体の除去方法を提供する。
【0011】
【発明の実施の形態】
以下、本発明につきさらに詳しく説明する。本発明では、弱塩基性アニオン交換樹脂として、スチレン−ジビニルベンゼン共重合体などのスチレン系樹脂を樹脂母体とするもの(スチレン系弱塩基性アニオン交換樹脂)を用いる。上記スチレン系弱塩基性アニオン交換樹脂として、具体的にはロームアンドハース社製アンバーライト(登録商標、以下同じ)IRA96SB、アンバーライトXE583、三菱化学社製ダイヤイオン(登録商標、以下同じ)WA30、バイエル社製レバチット(登録商標、以下同じ)S3428、レバチットS5428等が挙げられる。
【0012】
また、本発明により除去する陰イオン性鉄塩素錯体(鉄−塩化物イオン錯体)の具体例としては、例えば[FeCl4-等を挙げることができる。
【0013】
本発明において、陰イオン性鉄塩素錯体の吸着を行う塩酸溶液は、6〜12規定濃度、より好ましくは9〜12規定濃度の塩素イオン(塩化物イオン)量を含む高濃度塩酸溶液であることが適当であり、これにより高濃度塩酸溶液中で陰イオン性鉄塩素錯体を良好に形成させることができる。すなわち、塩酸溶液中で陰イオン性鉄塩素錯体が形成される条件は、塩酸溶液が6規定濃度以上の塩素イオン量を含むことである。なお、本発明における上記高濃度塩酸溶液とは、塩素イオン(塩化物イオン)を高濃度に含有する塩酸酸性水溶液の意味であり、高濃度塩酸溶液のpH条件は、鉄が溶解するpH条件(pH3以下)であればよい。
【0014】
また、本発明において、陰イオン性鉄塩素錯体の脱着を行う低濃度塩酸溶液とは、上記の陰イオン性鉄塩素錯体の吸着を行う高濃度塩酸溶液よりも塩素イオン(塩化物イオン)濃度が低い塩酸水溶液の意味であり、該溶液の濃度としては、0.3〜3規定濃度、より好ましくは1〜2規定濃度の塩素イオン量を含む低濃度塩酸溶液であることが適当であり、これにより弱塩基性アニオン交換樹脂から陰イオン性鉄塩素錯体を効率的に脱着することができる。
【0015】
陰イオン性鉄塩素錯体の脱着を行う塩酸溶液の濃度が0.3規定未満であると、脱着を行うべき弱塩基性アニオン交換樹脂に鉄塩素錯体と同時に例えば亜鉛等の金属の錯体が吸着されていた場合に、鉄塩素錯体と同時に亜鉛塩素錯体等も脱着されてしまうので鉄塩素錯体のみを選択的に脱着することができず、したがって後述のごとく、脱着によって得られた溶液から高純度の鉄を製造する場合に亜鉛等の不純物金属の含有率が高くなるので好ましくない。また、陰イオン性鉄塩素錯体の脱着を行う塩酸溶液の濃度が3規定を超えると、鉄塩素錯体の脱着性が悪くなるので好ましくない。
【0016】
本発明に係る陰イオン性鉄塩素錯体の除去方法は、種々の塩酸溶液からの鉄分の分離に使用することができ、例えば化学プロセスからの副生塩酸溶液、鋼材の塩酸による洗浄工程からの回収塩酸溶液、塩酸を用いた加熱処理工程からの加熱回収塩酸溶液等からの鉄分の分離に使用することができる。
【0017】
また、本発明によって塩酸溶液から分離した鉄分は、高純度鉄の原料として好適に使用することができる。したがって、本発明は、本発明に係る陰イオン性鉄塩素錯体の除去方法により弱塩基性アニオン交換樹脂から脱着した陰イオン性鉄塩素錯体を原料として高純度鉄を製造することを特徴とする高純度鉄の製造方法を提供する。
【0018】
【実施例】
以下、実施例により本発明を具体的に示すが、本発明は下記実施例に限定されるものではない。
【0019】
(実施例1:高濃度塩酸溶液中の鉄捕捉)
スチレン系弱塩基性アニオン交換樹脂(アンバーライトIRA96SB)1.0Lを充填したカラムを用いて陰イオン性鉄塩素錯体除去装置を作製した。上記弱塩基性アニオン交換樹脂としては、予め塩酸を通薬してCl形にしたものを用いた。本実施例では、6規定濃度の塩素イオン量を含む高濃度塩酸溶液中の鉄の捕捉を行った。この高濃度塩酸溶液中の鉄濃度は1000mg−Fe/Lであった。上記カラムに、上記高濃度塩酸溶液を4L/hrの通液速度で10L通液した。処理液中の鉄濃度を測定し、鉄の捕捉率を求めた。結果を表1に示す。
【0020】
(比較例1:高濃度塩酸溶液中の鉄捕捉)
スチレン系強塩基性アニオン交換樹脂(アンバーライトIRA400)、スチレン系強塩基性アニオン交換樹脂(アンバーライトIRA900)およびアクリル系弱塩基性アニオン交換樹脂(アンバーライトIRA67)をそれぞれ1.0L充填したカラムを用いて3種の陰イオン性鉄塩素錯体除去装置を作製した。上記各塩基性アニオン交換樹脂としては、予め塩酸を通薬してCl形にしたものを用いた。その他の条件は実施例1と同様にして実験を行った。処理液中の鉄濃度を測定し、鉄の捕捉率を求めた。結果を表1に示す。
【0021】
【表1】

Figure 0004172994
【0022】
表1に示した結果より、スチレン系弱塩基性アニオン交換樹脂を用いる本発明(実施例1)によれば、スチレン系強塩基性アニオン交換樹脂を用いる従来技術(比較例1の内の2種)と同等以上に、陰イオン性鉄塩素錯体を効果的に除去できることが明らかになった。また、同じ弱塩基性アニオン交換樹脂であっても、樹脂母体がアクリル系のものであるアンバーライトIRA67の場合は、本発明(実施例1)に比べて著しく捕捉率が低いことが分かった。
【0023】
(実施例2:鉄の脱着除去)
スチレン系弱塩基性アニオン交換樹脂(アンバーライトIRA96SB)1.0Lを充填したカラムを用いて陰イオン性鉄塩素錯体除去装置を作製した。上記弱塩基性アニオン交換樹脂としては、予め塩酸を通薬してCl形にしたものを用いた。本実施例では、9.6規定濃度の塩素イオン量を含む高濃度塩酸溶液中の鉄の捕捉を行った。この高濃度塩酸溶液中の鉄濃度は560mg−Fe/Lであった。上記カラムに、上記高濃度塩酸溶液を2L/hrの通液速度で42L通液した。処理液中の鉄濃度を測定し、鉄の捕捉率を求めたところ、捕捉率は99.9%以上であった。
【0024】
次に、カラムの弱塩基性アニオン交換樹脂からの鉄の脱着を行った。脱着には1規定濃度の塩素イオン量を含む低濃度塩酸溶液を用いた。すなわち、上記カラムに1規定濃度塩酸溶液を通液することにより、弱塩基性アニオン交換樹脂に吸着されている鉄の脱着を行った。脱着の廃液を分析した結果として、低濃度塩酸溶液の通液量と廃液中の流出Fe濃度との関係、および低濃度塩酸溶液の通液量と廃液中の積算流出Fe量との関係を表2および図1に示す。
【0025】
(比較例2:鉄の脱着除去)
スチレン系強塩基性アニオン交換樹脂(アンバーライトIRA400)1.0Lを充填したカラムを用いて陰イオン性鉄塩素錯体除去装置を作製した。上記強塩基性アニオン交換樹脂としては、予め塩酸を通薬してCl形にしたものを用いた。その他の条件は実施例2と同様にして実験を行った。処理液中の鉄濃度を測定し、鉄の捕捉率を求めたところ、捕捉率は99.9%以上であった。
【0026】
次に、カラムの強塩基性アニオン交換樹脂からの鉄の脱着を行った。脱着には1規定濃度の塩素イオン量を含む低濃度塩酸溶液を用いた。脱着の廃液を分析した結果として、低濃度塩酸溶液の通液量と廃液中の流出Fe濃度との関係、および低濃度塩酸溶液の通液量と廃液中の積算流出Fe量との関係を表2および図1に示す。
【0027】
【表2】
Figure 0004172994
【0028】
表2および図1に示した結果より、スチレン系弱塩基性アニオン交換樹脂を用いる本発明(実施例2)では、スチレン系強塩基性アニオン交換樹脂を用いる従来技術(比較例2)に比べ、アニオン交換樹脂からの陰イオン性鉄塩素錯体の脱着性が良くなることが明らかになった。この場合、スチレン系強塩基性アニオン交換樹脂を用いたときのように鉄の脱着が不十分であると、塩酸溶液中の鉄分除去では次の通液工程で鉄のリークが起こることになり、また高純度鉄の精製では鉄の回収率の低下および塩酸の使用量の増加につながるといった問題が生じる。
【0029】
【発明の効果】
本発明に係る陰イオン性鉄塩素錯体の除去方法は、強塩基性アニオン交換樹脂を用いる従来技術と同等以上に高濃度塩酸溶液から陰イオン性鉄塩素錯体を効果的に除去することができる上、通液後における弱塩基性アニオン交換樹脂からの低濃度塩酸溶液による陰イオン性鉄塩素錯体の脱着性が向上する。
【図面の簡単な説明】
【図1】実施例2および比較例2における低濃度塩酸溶液の通液量と廃液中の流出Fe濃度との関係、および低濃度塩酸溶液の通液量と廃液中の積算流出Fe量との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for capturing an anionic iron-chlorine complex from a solution containing an anionic iron-chlorine complex (iron-chloride ion complex) using an ion-exchange resin, and the anionic iron-chlorine from the ion-exchange resin. The present invention relates to a method for desorbing a complex.
[0002]
[Prior art]
In ion exchange, a cation in a solution is adsorbed on a cation exchange resin, and an anion is adsorbed on an anion exchange resin. Therefore, the metal cation in the solution is adsorbed on the cation exchange resin. However, the metal cation may form an anionic metal complex in the solution. Therefore, in this case, it is possible to remove the metal in the solution by adsorbing the anionic metal complex with an anion exchange resin. (For example, see Patent Document 1).
[0003]
As a specific example of the technique for removing an anionic metal complex in a solution as described above, there is a technique for removing an anionic metal complex contained in a strong acid by using a strongly basic anion exchange resin. This technique is used, for example, when removing iron contained in hydrochloric acid (see, for example, Patent Document 2).
[0004]
Some metal cations may or may not form an anionic metal complex in solution. Therefore, the technology for removing the anionic metal complex in the solution using a strongly basic anion exchange resin, the metal that forms the anionic metal complex and the metal that does not form from the solution containing various metals. Used as a method of separation. This method is also used for quantitative analysis of specific metals and high purity of metals such as iron.
[0005]
[Patent Document 1]
Japanese Patent Publication No.54-12245 (pages 1 to 3)
[Patent Document 1]
JP 58-70879 (pages 1 to 4)
[0006]
[Problems to be solved by the invention]
As described above, as a method for removing an anionic metal complex in a solution, there has heretofore been a method of adsorbing an anionic metal complex on a strongly basic anion exchange resin. For example, there has been a method in which iron contained in a hydrochloric acid solution is removed using a strongly basic anion exchange resin, and iron is desorbed from the strongly basic anion exchange resin using water or a low concentration hydrochloric acid solution.
[0007]
However, when the strongly basic anion exchange resin is washed with water for desorption of iron, the volume of the resin may rapidly expand and be crushed. In addition, in order to prevent the resin from being crushed, it is difficult to efficiently desorb iron when it is attempted to desorb iron with a low-concentration hydrochloric acid solution. This means that in the purification of iron, the anionic iron-chlorine complex in a high concentration hydrochloric acid solution is captured using a strongly basic anion exchange resin, and then the above strongly basic anion exchange is performed using a low concentration hydrochloric acid solution. This indicates that it is difficult to obtain a high concentration and high purity iron chloride solution at a high recovery rate when desorbing an anionic iron-chlorine complex from a resin.
[0008]
The present invention has been made in view of the above-described circumstances , and a method for efficiently adsorbing an anionic iron-chlorine complex in a high-concentration hydrochloric acid solution using an anion exchange resin , and anionic iron from the anion exchange resin. An object of the present invention is to provide a method for desorbing an anionic iron-chlorine complex, which is a method for desorbing a chlorine complex, and has good desorbability of the anionic iron-chlorine complex from an anion exchange resin.
[0009]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventor has used a weakly basic anion exchange resin based on a styrene resin for the removal of an anionic iron-chlorine complex contained in a high-concentration hydrochloric acid solution. In that case, the anionic iron-chlorine complex can be removed at least as much as the conventional technology using a strongly basic anion exchange resin, and a low-concentration hydrochloric acid solution can be used from a weakly basic anion exchange resin based on the above styrenic resin. It was found that an anionic iron-chlorine complex can be efficiently desorbed.
[0010]
The present invention has been made on the basis of the above-mentioned knowledge. A hydrochloric acid solution containing an anionic iron-chlorine complex is brought into contact with a weakly basic anion exchange resin based on a styrene-based resin, whereby the weakly basic anion is obtained. Provided is a method for removing an anionic iron-chlorine complex, which comprises adsorbing an anionic iron-chlorine complex on an exchange resin. The present invention also provides a hydrochloric acid solution containing an anionic iron-chlorine complex in contact with a weakly basic anion exchange resin based on a styrene-based resin, and the weakly basic anion exchange resin is contacted with an anionic iron chlorine. After adsorbing the complex, contacting the weakly basic anion exchange resin adsorbing the anionic iron-chlorine complex with a low-concentration hydrochloric acid solution to desorb the anionic iron-chlorine complex from the weakly basic anion exchange resin. A method for removing an anionic iron-chlorine complex is provided.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail. In the present invention, as the weakly basic anion exchange resin, one having a styrenic resin such as a styrene-divinylbenzene copolymer as a resin matrix (styrene weakly basic anion exchange resin) is used. Specific examples of the styrenic weakly basic anion exchange resin include Rohm and Haas Amberlite (registered trademark, hereinafter the same) IRA96SB, Amberlite XE583, Mitsubishi Chemical Corporation Diaion (registered trademark, the same below) WA30, Examples include Lebatit (registered trademark, the same shall apply hereinafter) S3428, Lebatit S5428, and the like manufactured by Bayer.
[0012]
Further, anionic iron chloride complex is removed by the present invention - Examples of (iron chloride ion complex), for example [FeCl 4] -, and the like.
[0013]
In the present invention, the hydrochloric acid solution that adsorbs the anionic iron-chlorine complex is a high-concentration hydrochloric acid solution containing a chlorine ion (chloride ion) amount of 6 to 12 normal concentration, more preferably 9 to 12 normal concentration. Thus, an anionic iron-chlorine complex can be favorably formed in a high-concentration hydrochloric acid solution. That is, the condition for forming an anionic iron-chlorine complex in a hydrochloric acid solution is that the hydrochloric acid solution contains a chlorine ion amount of 6 N or more. In the present invention, the high-concentration hydrochloric acid solution means an aqueous hydrochloric acid solution containing chlorine ions (chloride ions) at a high concentration, and the pH condition of the high-concentration hydrochloric acid solution is the pH condition under which iron dissolves ( pH 3 or less).
[0014]
In the present invention, the low concentration hydrochloric acid solution that desorbs the anionic iron-chlorine complex has a chloride ion (chloride ion) concentration higher than that of the high-concentration hydrochloric acid solution that adsorbs the anionic iron-chlorine complex. It means a low hydrochloric acid aqueous solution, and the concentration of the solution is suitably a low concentration hydrochloric acid solution containing a chlorine ion amount of 0.3 to 3 N concentration, more preferably 1 to 2 N concentration. Thus, the anionic iron-chlorine complex can be efficiently desorbed from the weakly basic anion exchange resin.
[0015]
If the concentration of the hydrochloric acid solution for desorption of the anionic iron-chlorine complex is less than 0.3 N, a complex of a metal such as zinc is adsorbed simultaneously with the iron-chlorine complex on the weakly basic anion exchange resin to be desorbed. In this case, since the zinc-chlorine complex and the like are also desorbed at the same time as the iron-chlorine complex, it is not possible to selectively desorb only the iron-chlorine complex. When iron is produced, the content of impurity metals such as zinc is increased, which is not preferable. Moreover, it is not preferable that the concentration of the hydrochloric acid solution for desorbing the anionic iron-chlorine complex exceeds 3N, because the desorption property of the iron-chlorine complex is deteriorated.
[0016]
The method for removing an anionic iron-chlorine complex according to the present invention can be used for separation of iron from various hydrochloric acid solutions. For example, by-product hydrochloric acid solution from a chemical process, recovery of steel material from hydrochloric acid washing step It can be used for separation of iron from a hydrochloric acid solution, a heat-recovered hydrochloric acid solution from a heat treatment step using hydrochloric acid, or the like.
[0017]
Moreover, the iron component separated from the hydrochloric acid solution according to the present invention can be suitably used as a raw material for high-purity iron. Therefore, the present invention is characterized by producing high-purity iron using an anionic iron-chlorine complex desorbed from a weakly basic anion exchange resin by the method for removing an anionic iron-chlorine complex according to the present invention. A method for producing pure iron is provided.
[0018]
【Example】
EXAMPLES Hereinafter, although an Example shows this invention concretely, this invention is not limited to the following Example.
[0019]
(Example 1: Iron capture in highly concentrated hydrochloric acid solution)
An anionic iron-chlorine complex removal apparatus was produced using a column packed with 1.0 L of a styrene-based weakly basic anion exchange resin (Amberlite IRA96SB). As the weakly basic anion exchange resin, a resin which was previously made into a Cl form by passing hydrochloric acid was used. In this example, iron was captured in a high-concentration hydrochloric acid solution containing a 6N concentration of chlorine ions. The iron concentration in this highly concentrated hydrochloric acid solution was 1000 mg-Fe / L. 10 L of the high-concentration hydrochloric acid solution was passed through the column at a flow rate of 4 L / hr. The iron concentration in the treatment solution was measured to determine the iron capture rate. The results are shown in Table 1.
[0020]
(Comparative example 1: Iron capture in high concentration hydrochloric acid solution)
A column packed with 1.0 L each of a styrene strong basic anion exchange resin (Amberlite IRA400), a styrene strong basic anion exchange resin (Amberlite IRA900) and an acrylic weak basic anion exchange resin (Amberlite IRA67). Three types of anionic iron-chlorine complex removing devices were prepared. As each of the basic anion exchange resins, those made into a Cl form by passing hydrochloric acid in advance were used. The other conditions were the same as in Example 1. The iron concentration in the treatment solution was measured to determine the iron capture rate. The results are shown in Table 1.
[0021]
[Table 1]
Figure 0004172994
[0022]
From the results shown in Table 1, according to the present invention using the styrenic weakly basic anion exchange resin (Example 1), the prior art using the styrenic strong basic anion exchange resin (two of the comparative examples 1) It was revealed that the anionic iron-chlorine complex can be effectively removed at the same level or higher. Moreover, even if it was the same weak base anion exchange resin, it turned out that the capture rate is remarkably low compared with this invention (Example 1) in the case of Amberlite IRA67 whose resin matrix is acrylic.
[0023]
(Example 2: Desorption removal of iron)
An anionic iron-chlorine complex removal apparatus was produced using a column packed with 1.0 L of a styrene-based weakly basic anion exchange resin (Amberlite IRA96SB). As the weakly basic anion exchange resin, a resin which was previously made into a Cl form by passing hydrochloric acid was used. In this example, iron was captured in a high-concentration hydrochloric acid solution containing a 9.6 N concentration of chloride ions. The iron concentration in this highly concentrated hydrochloric acid solution was 560 mg-Fe / L. 42 L of the high-concentration hydrochloric acid solution was passed through the column at a flow rate of 2 L / hr. When the iron concentration in the treatment liquid was measured and the iron capture rate was determined, the capture rate was 99.9% or more.
[0024]
Next, iron was desorbed from the weakly basic anion exchange resin of the column. For desorption, a low concentration hydrochloric acid solution containing a 1N concentration of chloride ions was used. That is, the iron adsorbed on the weakly basic anion exchange resin was desorbed by passing a 1N hydrochloric acid solution through the column. As a result of analyzing the desorption waste liquid, the relationship between the flow rate of the low concentration hydrochloric acid solution and the outflow Fe concentration in the waste solution and the relationship between the flow rate of the low concentration hydrochloric acid solution and the accumulated outflow Fe amount in the waste solution are shown. 2 and FIG.
[0025]
(Comparative Example 2: Desorption removal of iron)
An anionic iron-chlorine complex removing apparatus was prepared using a column packed with 1.0 L of a styrene strong basic anion exchange resin (Amberlite IRA400). As the strongly basic anion exchange resin, a resin which was previously made into a Cl form by passing hydrochloric acid was used. The other conditions were the same as in Example 2. When the iron concentration in the treatment liquid was measured and the iron capture rate was determined, the capture rate was 99.9% or more.
[0026]
Next, iron was desorbed from the strongly basic anion exchange resin of the column. For desorption, a low concentration hydrochloric acid solution containing a 1N concentration of chloride ions was used. As a result of analyzing the desorption waste liquid, the relationship between the flow rate of the low concentration hydrochloric acid solution and the outflow Fe concentration in the waste solution and the relationship between the flow rate of the low concentration hydrochloric acid solution and the accumulated outflow Fe amount in the waste solution are shown. 2 and FIG.
[0027]
[Table 2]
Figure 0004172994
[0028]
From the results shown in Table 2 and FIG. 1, in the present invention using the styrenic weakly basic anion exchange resin (Example 2), compared to the conventional technique using the styrenic strong basic anion exchange resin (Comparative Example 2), It became clear that the desorption property of the anionic iron-chlorine complex from the anion exchange resin was improved. In this case, if the desorption of iron is insufficient as in the case of using a styrenic strong basic anion exchange resin, iron leakage will occur in the next liquid passing step in the removal of iron in the hydrochloric acid solution, Further, the purification of high purity iron causes problems such as a decrease in iron recovery rate and an increase in the amount of hydrochloric acid used.
[0029]
【The invention's effect】
The method for removing an anionic iron-chlorine complex according to the present invention can effectively remove an anionic iron-chlorine complex from a high-concentration hydrochloric acid solution equivalent to or higher than the conventional technique using a strongly basic anion exchange resin. The desorption property of the anionic iron-chlorine complex by the low-concentration hydrochloric acid solution from the weakly basic anion exchange resin after the passage is improved.
[Brief description of the drawings]
FIG. 1 shows the relationship between the flow rate of a low-concentration hydrochloric acid solution and the outflow Fe concentration in a waste solution in Example 2 and Comparative Example 2, and the flow rate of a low-concentration hydrochloric acid solution and the accumulated outflow Fe amount in a waste solution. It is a graph which shows a relationship.

Claims (6)

陰イオン性鉄塩素錯体を含有する塩酸溶液を、スチレン系樹脂を母体とする弱塩基性アニオン交換樹脂に接触させて、前記弱塩基性アニオン交換樹脂に陰イオン性鉄塩素錯体を吸着させることを特徴とする陰イオン性鉄塩素錯体の除去方法。Contacting a hydrochloric acid solution containing an anionic iron-chlorine complex with a weakly basic anion exchange resin based on a styrene resin to adsorb the anionic iron-chlorine complex to the weakly basic anion exchange resin. A method for removing a characteristic anionic iron-chlorine complex. 陰イオン性鉄塩素錯体を含有する塩酸溶液を、スチレン系樹脂を母体とする弱塩基性アニオン交換樹脂に接触させて、前記弱塩基性アニオン交換樹脂に陰イオン性鉄塩素錯体を吸着した後、前記陰イオン性鉄塩素錯体を吸着した弱塩基性アニオン交換樹脂に低濃度塩酸溶液を接触させて、前記弱塩基性アニオン交換樹脂から陰イオン性鉄塩素錯体を脱着することを特徴とする陰イオン性鉄塩素錯体の除去方法。After the hydrochloric acid solution containing the anionic iron-chlorine complex is brought into contact with a weakly basic anion exchange resin based on a styrene resin, the anionic iron-chlorine complex is adsorbed on the weakly basic anion exchange resin, An anion characterized by desorbing an anionic iron-chlorine complex from the weakly basic anion exchange resin by bringing a low-concentration hydrochloric acid solution into contact with the weakly basic anion exchange resin adsorbing the anionic iron-chlorine complex To remove ferrous iron-chlorine complex. 前記陰イオン性鉄塩素錯体を含有する塩酸溶液は、6〜12規定濃度の塩素イオン量を含む溶液であることを特徴とする請求項1または2に記載の陰イオン性鉄塩素錯体の除去方法。The method for removing an anionic iron-chlorine complex according to claim 1 or 2 , wherein the hydrochloric acid solution containing the anionic iron-chlorine complex is a solution containing a chlorine ion amount of 6 to 12 N concentration. . 前記低濃度塩酸溶液は、0.3〜3規定濃度の塩素イオン量を含む溶液であることを特徴とする請求項またはに記載の陰イオン性鉄塩素錯体の除去方法。The method for removing an anionic iron-chlorine complex according to claim 2 or 3 , wherein the low-concentration hydrochloric acid solution is a solution containing a chlorine ion amount of 0.3 to 3 N concentration. 前記陰イオン性鉄塩素錯体を含有する塩酸溶液は、化学プロセスからの副生塩酸溶液、鋼材の塩酸による洗浄工程からの回収塩酸溶液、または塩酸を用いた加熱処理工程からの加熱回収塩酸溶液であることを特徴とする請求項1〜のいずれか1項に記載の陰イオン性鉄塩素錯体の除去方法。The hydrochloric acid solution containing the anionic iron-chlorine complex is a by-product hydrochloric acid solution from a chemical process, a recovered hydrochloric acid solution from a washing step of steel with hydrochloric acid, or a heated and recovered hydrochloric acid solution from a heat treatment step using hydrochloric acid. It exists, The removal method of the anionic iron-chlorine complex of any one of Claims 1-4 characterized by the above-mentioned. 請求項のいずれか1項に記載の陰イオン性鉄塩素錯体の除去方法により弱塩基性アニオン交換樹脂から脱着した陰イオン性鉄塩素錯体を原料として高純度鉄を製造することを特徴とする高純度鉄の製造方法。A high-purity iron is produced from an anionic iron-chlorine complex desorbed from a weakly basic anion exchange resin by the method for removing an anionic iron-chlorine complex according to any one of claims 2 to 5. A method for producing high-purity iron.
JP2002345342A 2002-11-28 2002-11-28 Method for removing anionic iron-chlorine complex and method for producing high-purity iron Expired - Fee Related JP4172994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002345342A JP4172994B2 (en) 2002-11-28 2002-11-28 Method for removing anionic iron-chlorine complex and method for producing high-purity iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002345342A JP4172994B2 (en) 2002-11-28 2002-11-28 Method for removing anionic iron-chlorine complex and method for producing high-purity iron

Publications (2)

Publication Number Publication Date
JP2004174415A JP2004174415A (en) 2004-06-24
JP4172994B2 true JP4172994B2 (en) 2008-10-29

Family

ID=32706539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002345342A Expired - Fee Related JP4172994B2 (en) 2002-11-28 2002-11-28 Method for removing anionic iron-chlorine complex and method for producing high-purity iron

Country Status (1)

Country Link
JP (1) JP4172994B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104192802B (en) * 2014-08-29 2016-01-13 浙江大洋生物科技集团股份有限公司 The by-product hydrochloric acid purifying method of the chloro-6-fluorobenzaldehyde of 2-or analogue

Also Published As

Publication number Publication date
JP2004174415A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
JPH04134054A (en) Purification of amino acid using ion exchange resin
CN1898000A (en) Selective fluoride and ammonia removal by chromatographic separation of wastewater
WO2015111714A1 (en) Sucrose solution refinement method and refinement device
JP4172994B2 (en) Method for removing anionic iron-chlorine complex and method for producing high-purity iron
JP5167253B2 (en) Processing method of developing waste liquid containing tetraalkylammonium ions
JP3303066B2 (en) How to purify scandium
JP4523321B2 (en) Method for removing anionic metal complex
JP3896423B2 (en) Method for recovering palladium from palladium-containing liquid
JPH10314798A (en) Method for treatment of boron containing water
JPH07232915A (en) Method for recovering fluorine in waste water
JP4294253B2 (en) Method for removing anionic metal complex
JP3851491B2 (en) Apparatus and method for purifying boron eluent
JP4069291B2 (en) Method for separating metal ions from metal complex solution
JP3907937B2 (en) Method for treating boron-containing eluent containing alkali
JPH08281256A (en) Recovering method of semiconductor washing waste water
JP3279403B2 (en) Nickel plating wastewater treatment method
JP4733807B2 (en) Method for purifying boron eluent and method for producing boron raw material
JP2005298949A (en) Method for recovering zinc
JP2785833B2 (en) Sucrose solution desalination purification equipment
RU2096333C1 (en) Method of separation of rhenium and molybdenum by low-base anionite of porous structure
JP2784213B2 (en) Treatment of wastewater containing high concentration iron
JP3883781B2 (en) Apparatus and method for purifying boron eluent
JP3364308B2 (en) Wastewater treatment method and apparatus
JPH0299189A (en) Process for treating waste water containing fluorine
Hiraide et al. Cation exchange followed by ultrasonic desorption for the determination of traces of cadmium in titanium dioxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050610

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050610

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080812

R150 Certificate of patent or registration of utility model

Ref document number: 4172994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees