JPH09225298A - Resin for adsorbing arsenic and method for recovering arsenic from solution containing arsenic - Google Patents

Resin for adsorbing arsenic and method for recovering arsenic from solution containing arsenic

Info

Publication number
JPH09225298A
JPH09225298A JP8061878A JP6187896A JPH09225298A JP H09225298 A JPH09225298 A JP H09225298A JP 8061878 A JP8061878 A JP 8061878A JP 6187896 A JP6187896 A JP 6187896A JP H09225298 A JPH09225298 A JP H09225298A
Authority
JP
Japan
Prior art keywords
arsenic
resin
adsorbing
chelate
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8061878A
Other languages
Japanese (ja)
Inventor
Kazuo Hosoda
和夫 細田
Takeshi Shimizu
剛 清水
Masafumi Moriya
雅文 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyoshi Yushi KK
Miyoshi Oil and Fat Co Ltd
Original Assignee
Miyoshi Yushi KK
Miyoshi Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyoshi Yushi KK, Miyoshi Oil and Fat Co Ltd filed Critical Miyoshi Yushi KK
Priority to JP8061878A priority Critical patent/JPH09225298A/en
Publication of JPH09225298A publication Critical patent/JPH09225298A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To effectively recover arsenic eliminating the need of using large amount of a flocculating agent like conventional flocculating and settling method in order to reduce an arsenic concn. in a soln. to less than a regulated value. SOLUTION: In the resin for adsorbing arsenic, iron and hydroxyl ion are supported with a cation exchange resin and/or chelate resin. Besides, in this method for removing arsenic from the soln. containing arsenic, the soln. containing arsenic is brought into contact whit the resin for adsorbing arsenic in which iron and hydroxyl ion are supported with the cation exchange resin and/or the chelate resin and arsenic in the soln. is adsorbed on the resin for adsorbing arsenic and recover.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、砒素吸着用樹脂及
び砒素を含む溶液からの砒素の回収方法に関する。
TECHNICAL FIELD The present invention relates to a resin for adsorbing arsenic and a method for recovering arsenic from a solution containing arsenic.

【0002】[0002]

【従来の技術】砒素やその化合物は、黄鉄石、リン鉱石
等に含まれ、これらを原料として使用するリンやリン化
合物の製造工場、硫酸製造工場等の廃水中には砒素が多
量に含まれる可能性がある。また砒素は半導体原料とし
て利用されるため、半導体の製造・加工工場の廃水にも
多量の砒素が含まれる可能性がある。更に、鉱山廃水や
温泉水等にも砒素が含有される可能性がある。
2. Description of the Related Art Arsenic and its compounds are contained in pyrite, phosphate rock, etc., and a large amount of arsenic is contained in wastewater of manufacturing plants of phosphorus and phosphorus compounds and sulfuric acid manufacturing plants using these as raw materials. there is a possibility. Further, since arsenic is used as a semiconductor raw material, a large amount of arsenic may be contained in wastewater of a semiconductor manufacturing / processing factory. Furthermore, arsenic may be contained in mine wastewater, hot spring water, and the like.

【0003】しかしながら砒素は強い毒性を有する環境
汚染物質であるため、廃水中の砒素に対する厳しい規制
が設けられており、その許容量は0.1mg/リットル
以下に規制されている。
However, since arsenic is an environmental pollutant having a strong toxicity, strict regulation for arsenic in waste water is set, and the allowable amount thereof is regulated to 0.1 mg / liter or less.

【0004】廃水等に含まれる砒素の回収方法として、
砒素を鉄、アルミニウム、カルシウム、マグネシウム等
の金属の水酸化物と共に沈殿させる共沈捕集法、砒素吸
着剤を添加して砒素を吸着回収する方法、アニオン交換
樹脂を用いて吸着する方法等が知られている。上記、砒
素を吸着剤によって吸着回収する方法で用いる吸着剤と
して、稀土類元素の含水酸化物又はこれを有機高分子多
孔質担体に担持させた吸着剤(特開昭61−18793
1号公報)、フェノール樹脂と金属水酸化物からなる吸
着剤(特開昭59−69151号公報)、鉄やジルコニ
ウム等の金属を担持したカチオン交換樹脂、活性アルミ
ナ、活性炭等が知られている。
As a method of recovering arsenic contained in wastewater,
The coprecipitation collection method of precipitating arsenic together with hydroxides of metals such as iron, aluminum, calcium, and magnesium, the method of adsorbing and collecting arsenic by adding an arsenic adsorbent, the method of adsorbing using an anion exchange resin, etc. Are known. As the adsorbent used in the above method of adsorbing and recovering arsenic by an adsorbent, a hydrous oxide of a rare earth element or an adsorbent in which this is supported on an organic polymer porous carrier (Japanese Patent Laid-Open No. 61-18793).
No. 1), an adsorbent composed of a phenolic resin and a metal hydroxide (Japanese Patent Laid-Open No. 59-69151), a cation exchange resin carrying a metal such as iron or zirconium, activated alumina, activated carbon and the like. .

【0005】[0005]

【発明が解決しようとする課題】しかしながら、共沈捕
集法や砒素吸着剤を添加する方法では、砒素を廃水基準
値である0.1mg/リットル以下まで減少させるため
に、大量の金属水酸化物や吸着剤を添加しなければなら
ず、更に生成する大量のスラッジの後処理が容易でない
という問題があった。
However, in the coprecipitation trapping method and the method of adding an arsenic adsorbent, in order to reduce arsenic to a wastewater standard value of 0.1 mg / liter or less, a large amount of metal hydroxide is added. However, there is a problem in that post-treatment of a large amount of sludge produced is not easy.

【0006】また稀土類元素の含水酸化物を吸着剤とし
て用いる方法は、吸着剤の原料となる稀土類元素が高価
であり、また吸着剤の粒径が小さいため、吸着剤をカラ
ムに充填して用いると圧力損失が大きくなり、実用性に
乏しいという問題がある。更にアニオン交換樹脂を用い
て吸着するイオン交換法では、共存塩が存在すると砒素
の吸着効果が著しく低下するという問題があった。
Further, in the method using a hydrous oxide of a rare earth element as an adsorbent, the adsorbent is packed in a column because the rare earth element as a raw material of the adsorbent is expensive and the particle size of the adsorbent is small. If used for a long time, the pressure loss becomes large, and there is a problem that it is not practical. Further, the ion exchange method in which an anion exchange resin is used for adsorption has a problem that the presence of a coexisting salt significantly reduces the arsenic adsorption effect.

【0007】本発明者等は上記課題を解決するために鋭
意研究した結果、カチオン交換樹脂やキレート樹脂に、
鉄とヒドロキシルイオンとを担持した構造の樹脂が、砒
素含有溶液からの砒素の回収能に優れているとともに、
このような樹脂は安価かつ容易に製造することができ、
しかもこの樹脂を用いることにより、砒素吸着剤やアニ
オン交換樹脂を用いた従来法の上記した欠点を解決で
き、砒素を効果的に吸着して回収できることを見出し、
本発明を完成するに至った。
As a result of earnest studies to solve the above problems, the present inventors have found that cation exchange resins and chelate resins have
Resin having a structure supporting iron and hydroxyl ions is excellent in the ability to recover arsenic from an arsenic-containing solution,
Such resins can be manufactured inexpensively and easily,
Moreover, by using this resin, it was found that the above-mentioned drawbacks of the conventional method using an arsenic adsorbent or anion exchange resin can be solved, and arsenic can be effectively adsorbed and recovered,
The present invention has been completed.

【0008】[0008]

【課題を解決するための手段】即ち、本発明の砒素吸着
用樹脂は、カチオン交換樹脂及び/又はキレート樹脂
に、鉄とヒドロキシルイオンとが担持されていることを
特徴とする。また本発明の砒素を含む溶液からの砒素の
回収方法は、カチオン交換樹脂及び/又はキレート樹脂
に鉄とヒドロキシルイオンとを担持させた砒素吸着用樹
脂に、砒素を含む溶液を接触させ、溶液中の砒素を砒素
吸着用樹脂に吸着させて回収することを特徴とする。
That is, the resin for adsorbing arsenic of the present invention is characterized in that a cation exchange resin and / or a chelate resin carry iron and hydroxyl ions. The method for recovering arsenic from a solution containing arsenic of the present invention is a method of contacting a solution containing arsenic with a resin for adsorbing arsenic in which iron and hydroxyl ions are supported on a cation exchange resin and / or a chelate resin, The arsenic is recovered by being adsorbed on an arsenic adsorption resin.

【0009】[0009]

【発明の実施の形態】本発明の砒素吸着用樹脂は、カチ
オン交換樹脂やキレート樹脂に鉄化合物を担持させた
後、アルカリで処理することによって得ることができ
る。上記鉄化合物としては、例えば酸化第一鉄、水酸化
第一鉄、硫化第一鉄、フッ化第一鉄、塩化第一鉄、臭化
第一鉄、ヨウ化第一鉄、硝酸第一鉄、硫酸第一鉄、炭酸
第一鉄、酸化第二鉄、フッ化第二鉄、塩化第二鉄、臭化
第二鉄、硝酸第二鉄、硫酸第二鉄等を用いることができ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The resin for adsorbing arsenic of the present invention can be obtained by supporting an iron compound on a cation exchange resin or a chelate resin and then treating with an alkali. Examples of the iron compound include ferrous oxide, ferrous hydroxide, ferrous sulfide, ferrous fluoride, ferrous chloride, ferrous bromide, ferrous iodide, ferrous nitrate. , Ferrous sulfate, ferrous carbonate, ferric oxide, ferric fluoride, ferric chloride, ferric bromide, ferric nitrate, ferric sulfate and the like can be used.

【0010】上記鉄化合物は不溶性や難溶性のものであ
っても使用できる。上記鉄化合物の中でも、塩化第二
鉄、硫酸第二鉄、硝酸第二鉄、塩化第一鉄、硫酸第一
鉄、硝酸第一鉄が好ましい。
The above iron compounds can be used even if they are insoluble or sparingly soluble. Among the above iron compounds, ferric chloride, ferric sulfate, ferric nitrate, ferrous chloride, ferrous sulfate and ferrous nitrate are preferable.

【0011】上記鉄化合物が担持させるカチオン交換樹
脂としては、樹脂母体にスルホン酸基、カルボン酸基等
のカチオン交換基を有する樹脂が用いられる。カチオン
交換樹脂の樹脂母体としては一般には、例えばスチレン
樹脂、スチレン−ジビニルベンゼン共重合体等のスチレ
ン系共重合体、フェノール樹脂、アクリル酸系樹脂、メ
タクリル酸系樹脂、エポキシ樹脂、レゾルシン樹脂、塩
化ビニル樹脂、尿素樹脂等が用いられる。
As the cation exchange resin supported by the iron compound, a resin having a cation exchange group such as a sulfonic acid group or a carboxylic acid group in the resin matrix is used. As the resin matrix of the cation exchange resin, generally, for example, styrene resin, styrene copolymer such as styrene-divinylbenzene copolymer, phenol resin, acrylic acid resin, methacrylic acid resin, epoxy resin, resorcin resin, chloride. Vinyl resin, urea resin, etc. are used.

【0012】一方、キレート樹脂は、一般に樹脂母体に
酸素、窒素、硫黄、リン等の金属配位性の原子を含む2
以上の官能基を有する樹脂である。官能基として一般的
なものはカルボン酸基やその塩、アミド基、スルホン酸
基、次亜リン酸基、亜リン酸基、第一アミン基、第二ア
ミン基、第3アミン基、アゾ基、オキシム基、アミドキ
シム基、イミン基、エナミン基、チオアルコール基、チ
オエーテル基、チオアルデヒド基、チオケトン基、チオ
カルボン酸基やその塩、ジチオカルボン酸基やその塩
基、チオアミド基、チオシアナート基、イソチオシアナ
ート基等であるが、金属に対する配位性を有するもので
あれば、これらに限られない。
On the other hand, the chelate resin generally contains a metal-coordinating atom such as oxygen, nitrogen, sulfur or phosphorus in the resin matrix.
It is a resin having the above functional groups. Typical functional groups are carboxylic acid groups and salts thereof, amide groups, sulfonic acid groups, hypophosphorous acid groups, phosphorous acid groups, primary amine groups, secondary amine groups, tertiary amine groups, azo groups. , Oxime group, amidoxime group, imine group, enamine group, thioalcohol group, thioether group, thioaldehyde group, thioketone group, thiocarboxylic acid group and its salts, dithiocarboxylic acid group and its base, thioamide group, thiocyanate group, isothiocyanate group Although it is a nato group or the like, it is not limited to these as long as it has a coordinating property with respect to a metal.

【0013】キレート樹脂の官能基として一般的なもの
は、イミノジ酢酸、イミノジプロピオン酸等の如きイミ
ノジカルボン酸基やその塩、アミノリン酸基やその塩、
アミノアルキレンリン酸基やその塩、イミノ酢酸、イミ
ノプロピオン酸の如きイミノアルキレンカルボン酸基や
その塩、チオール基、ジチオカルボン酸基やその塩等が
挙げられる。またキレート樹脂の樹脂母体としては、ス
チレン−ジビニルベンゼン共重合体、エポキシ樹脂、フ
ェノール樹脂、レゾルシン樹脂、塩化ビニル樹脂、アク
リル酸系樹脂、メタクリル酸系樹脂、尿素樹脂等が挙げ
られる。
Common chelating resin functional groups include iminodicarboxylic acid groups such as iminodiacetic acid and iminodipropionic acid and salts thereof, aminophosphoric acid groups and salts thereof,
Examples thereof include aminoalkylene phosphoric acid groups and salts thereof, iminoalkylenecarboxylic acid groups such as iminoacetic acid and iminopropionic acid and salts thereof, thiol groups, dithiocarboxylic acid groups and salts thereof, and the like. Examples of the resin matrix of the chelate resin include styrene-divinylbenzene copolymer, epoxy resin, phenol resin, resorcin resin, vinyl chloride resin, acrylic acid resin, methacrylic acid resin, urea resin and the like.

【0014】本発明の砒素吸着用樹脂に用いる上記カチ
オン交換樹脂やキレート樹脂は、市販されているものを
そのまま用いることができるが、なかでもキレート樹脂
が好ましい。
As the above-mentioned cation exchange resin and chelate resin used for the resin for adsorbing arsenic of the present invention, commercially available products can be used as they are, but among them, chelate resins are preferable.

【0015】上記カチオン交換樹脂やキレート樹脂に鉄
化合物を担持させる方法としては、カチオン交換樹脂や
キレート樹脂と鉄化合物を含む水溶液とを接触させる方
法が挙げられるが、難溶性や不溶性の鉄化合物は練り混
む方法が採用される。鉄化合物を担持した後、アルカリ
処理することにより、カチオン交換樹脂やキレート樹脂
に鉄とともに、ヒドロキシルイオンが担持された本発明
の砒素吸着用樹脂が得られる。カチオン交換樹脂やキレ
ート樹脂に最初に担持させる鉄化合物として水酸化鉄を
用いた場合には、アルカリ処理を行う前段階で、既に鉄
とヒドロキシルイオンとが担持されていることとなる
が、更にアルカリ処理することにより砒素に対する活性
が高められ、砒素吸着量が向上する。
As a method of supporting the iron compound on the cation exchange resin or the chelate resin, there is a method of bringing the cation exchange resin or the chelate resin into contact with an aqueous solution containing the iron compound. A kneading method is adopted. By carrying an alkali treatment after supporting an iron compound, the arsenic-adsorbing resin of the present invention in which a cation exchange resin or a chelating resin is supported with iron and hydroxyl ions is obtained. When iron hydroxide is used as the iron compound to be initially supported on the cation exchange resin or the chelate resin, it means that iron and hydroxyl ions are already supported before the alkali treatment. By the treatment, the activity against arsenic is increased and the amount of arsenic adsorption is improved.

【0016】鉄化合物を担持したカチオン交換樹脂やキ
レート樹脂をアルカリ処理するためのアルカリとして
は、例えば水酸化リチウム、水酸化ナトリウム、水酸化
カリウム、水酸化カルシウム、水酸化マグネシウム、水
酸化アンモニウム等が挙げられるが、水酸化ナトリウ
ム、水酸化カリウムが好ましい。
Examples of the alkali for treating the cation exchange resin or chelate resin carrying the iron compound with alkali include lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide and ammonium hydroxide. Examples thereof include sodium hydroxide and potassium hydroxide.

【0017】本発明の砒素の回収方法は、上記砒素吸着
用樹脂を砒素を含む溶液と接触させ、溶液中の砒素を樹
脂に吸着させて回収する方法であるが、使用する砒素吸
着用樹脂は、鉄とヒドロキシルイオンとを担持したカチ
オン交換樹脂からなるもののみを用いても、鉄とヒドロ
キシルイオンとを担持したキレート樹脂からなるものの
みを用いても、或いは両者を適宜混合して用いても良
い。
The method for recovering arsenic of the present invention is a method of contacting the arsenic-adsorbing resin with a solution containing arsenic, and adsorbing arsenic in the solution to the resin to recover the arsenic. , Using only a cation exchange resin supporting iron and hydroxyl ions, using only a chelating resin supporting iron and hydroxyl ions, or using a mixture of both as appropriate. good.

【0018】砒素を含む溶液を上記樹脂によって処理す
る方法としては、上記の樹脂を充填したカラム内を、砒
素を含む溶液を通過さて溶液を樹脂と接触させる方法
や、砒素を含む溶液に上記樹脂を添加して樹脂に溶液を
接触させる方法が一般に採用される。砒素を効率良く樹
脂に吸着させるために、砒素を含む溶液を上記吸着用樹
脂と接触させる際に、溶液のpHを4〜10に調整して
おくことが好ましい。溶液のpH調整に用いるアルカリ
としては、例えば水酸化リチウム、水酸化ナトリウム、
水酸化カリウム、水酸化マグネシウム、水酸化カルシウ
ム、水酸化アンモニウム等が用いられるが、特に水酸化
ナトリウム、水酸化カリウムが好ましい。また酸として
は、例えば塩酸、硫酸、硝酸、リン酸、酢酸、シュウ酸
等が挙げられるが、特に塩酸、硫酸が好ましい。
As a method of treating the solution containing arsenic with the resin, a method of passing the solution containing arsenic through the column filled with the resin to bring the solution into contact with the resin, or a method containing the solution containing arsenic with the resin The method of adding a solution and bringing the solution into contact with the resin is generally adopted. In order to efficiently adsorb arsenic to the resin, it is preferable to adjust the pH of the solution to 4 to 10 when the solution containing arsenic is brought into contact with the adsorption resin. Examples of the alkali used for adjusting the pH of the solution include lithium hydroxide, sodium hydroxide,
Potassium hydroxide, magnesium hydroxide, calcium hydroxide, ammonium hydroxide and the like are used, but sodium hydroxide and potassium hydroxide are particularly preferable. Examples of the acid include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid, oxalic acid and the like, with hydrochloric acid and sulfuric acid being particularly preferable.

【0019】砒素を含む溶液は、カラム内をカラム上方
から下方に通過させても、カラム下方から上方に通過さ
せても良い。また樹脂1リットル当たり対する溶液の通
過速度(通水速度)は、毎時、1〜50リットル/リッ
トル−Rが好ましい。
The solution containing arsenic may be passed through the column from the upper side to the lower side of the column or from the lower side to the upper side of the column. Further, the passage rate (water passage rate) of the solution per 1 liter of resin is preferably 1 to 50 liters / liter-R per hour.

【0020】砒素を吸着した砒素吸着用樹脂はpH=1
0以上、より好ましくはpH=13以上のアルカリで処
理することにより、樹脂に吸着された砒素を回収するこ
とができる。本発明の砒素吸着用樹脂は、砒素を吸着し
た樹脂から砒素を回収するためにアルカリで処理して
も、樹脂に担持されている鉄が樹脂から溶出することが
なく、砒素を回収した後に、イオン交換水で洗浄する程
度の処理を行うだけで直ちに再使用することができる。
The arsenic-adsorbing resin that has adsorbed arsenic has a pH of 1
Arsenic adsorbed on the resin can be recovered by treating with an alkali having a pH of 0 or more, more preferably a pH of 13 or more. The arsenic-adsorbing resin of the present invention, even if treated with an alkali to recover arsenic from the resin that has adsorbed arsenic, iron carried on the resin does not elute from the resin, and after recovering arsenic, It can be reused immediately by performing a treatment such as washing with ion-exchanged water.

【0021】[0021]

【実施例】以下、実施例を挙げて本発明を更に詳細に説
明する。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples.

【0022】実施例1〜3 塩化第二鉄水溶液(15%水溶液)300ミリリットル
に、スチレン−ジビニルベンゼン共重合体樹脂を樹脂母
体としに、官能基としてアミノリン酸基を有するキレー
ト樹脂(粒度20〜48メッシュ)300ミリリットル
を添加して1.5時間攪拌した後、キレート樹脂を濾別
し、イオン交換水で充分に水洗した後、1モル/リット
ルの水酸化ナトリウム水溶液300ミリリットルを加え
て1時間攪拌した。この後、キレート樹脂を濾別し、水
洗水のpHが9以下になるまでイオン交換水にて洗浄し
た。
Examples 1 to 3 In 300 ml of an aqueous ferric chloride solution (15% aqueous solution), a styrene-divinylbenzene copolymer resin was used as a resin matrix, and a chelate resin having an aminophosphoric acid group as a functional group (particle size 20 to 20). (48 mesh) 300 ml and after stirring for 1.5 hours, the chelate resin is filtered off, washed thoroughly with ion-exchanged water, and 300 ml of a 1 mol / liter sodium hydroxide aqueous solution is added for 1 hour. It was stirred. Then, the chelate resin was filtered off and washed with ion-exchanged water until the pH of the wash water became 9 or less.

【0023】上記のようにして得た樹脂5ミリリットル
を、亜砒酸と表1に示す濃度の塩化ナトリウムとを含む
溶液(砒素濃度48mg/リットル)500ミリリット
ルに添加し、3時間攪拌した後に5分間静置し、上澄水
中の砒素濃度を原子吸光法により測定し、その測定値か
ら樹脂1ミリリットルあたりの砒素吸着量を算出した。
結果を表1に示す。
5 ml of the resin obtained as described above was added to 500 ml of a solution containing arsenous acid and sodium chloride having the concentrations shown in Table 1 (arsenic concentration 48 mg / liter), and the mixture was stirred for 3 hours and then allowed to stand for 5 minutes. Then, the arsenic concentration in the supernatant water was measured by the atomic absorption method, and the arsenic adsorption amount per 1 ml of the resin was calculated from the measured value.
The results are shown in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】比較例1〜3 水酸化ナトリウム水溶液による処理を行わなかった他
は、実施例1〜3と同様にして得たキレート樹脂を用
い、実施例1〜3と同様の試験を行った。結果を表1に
あわせて示す。
Comparative Examples 1 to 3 The same tests as in Examples 1 to 3 were conducted using the chelate resins obtained in the same manner as in Examples 1 to 3 except that the treatment with the aqueous sodium hydroxide solution was not carried out. The results are shown in Table 1.

【0026】実施例4〜6 硫酸第二鉄水溶液(10%水溶液)500ミリリットル
に、フェノール樹脂を母体とし、官能基としてイミノジ
酢酸基を有するキレート樹脂(粒度20〜48メッシ
ュ)500ミリリットルを添加して1.5時間攪拌した
後、キレート樹脂を濾別し、イオン交換水で充分に水洗
した後、1モル/リットルの水酸化ナトリウム水溶液3
00ミリリットルを加えて2時間攪拌した。この後、キ
レート樹脂を濾別し、水洗水のpHが9以下になるまで
イオン交換水にて洗浄した。
Examples 4 to 6 To 500 ml of an aqueous ferric sulfate solution (10% aqueous solution), 500 ml of a chelate resin having a phenolic resin as a base and having an iminodiacetate group as a functional group (particle size 20 to 48 mesh) was added. After stirring for 1.5 hours, the chelate resin is filtered off, washed thoroughly with ion-exchanged water, and then a 1 mol / liter sodium hydroxide aqueous solution 3
00 ml was added and stirred for 2 hours. Then, the chelate resin was filtered off and washed with ion-exchanged water until the pH of the wash water became 9 or less.

【0027】上記のようにして得た樹脂3ミリリットル
を、亜砒酸と表1に示す濃度の硫酸ナトリウムとを含む
溶液(砒素濃度52mg/リットル)500ミリリット
ルに添加し、1.5時間攪拌した後に5分間静置し、上
澄水中の砒素濃度を原子吸光法により測定し、その測定
値から樹脂1ミリリットルあたりの砒素吸着量を算出し
た。結果を表2に示す。
3 ml of the resin obtained as described above was added to 500 ml of a solution containing arsenous acid and sodium sulfate having a concentration shown in Table 1 (arsenic concentration: 52 mg / liter), and the mixture was stirred for 1.5 hours and then added to 5 ml. The mixture was allowed to stand for a minute, the arsenic concentration in the supernatant water was measured by an atomic absorption method, and the arsenic adsorption amount per 1 ml of the resin was calculated from the measured value. Table 2 shows the results.

【0028】[0028]

【表2】 [Table 2]

【0029】比較例4〜5 アクリル酸系弱アニオン交換樹脂(20〜35メッシ
ュ)を用いた他は実施例4〜5と同様にして試験を行っ
た。結果を表2にあわせて示す。
Comparative Examples 4 to 5 Tests were conducted in the same manner as in Examples 4 to 5 except that an acrylic acid weak anion exchange resin (20 to 35 mesh) was used. The results are also shown in Table 2.

【0030】実施例7 硝酸第二鉄水溶液(10%水溶液)1000ミリリット
ル中に、スチレン−ジビニルベンゼン共重合体樹脂を樹
脂母体とし、官能基としてイミノジ酢酸基を有するキレ
ート樹脂(粒度20〜35メッシュ)1000ミリリッ
トルを添加し、1.5時間攪拌した後、キレート樹脂を
濾別し、イオン交換水で充分に水洗した後、1モル/リ
ットルの水酸化ナトリウム水溶液300ミリリットルを
加えて1時間攪拌した。この後、キレート樹脂を濾別
し、水洗水のpHが9以下になるまでイオン交換水にて
洗浄した。
Example 7 A chelate resin having a styrene-divinylbenzene copolymer resin as a resin matrix and an iminodiacetic acid group as a functional group (particle size 20 to 35 mesh) in 1000 ml of an aqueous ferric nitrate solution (10% aqueous solution). ) 1000 ml was added, and the mixture was stirred for 1.5 hours, then the chelate resin was filtered off, thoroughly washed with ion-exchanged water, 300 ml of a 1 mol / liter sodium hydroxide aqueous solution was added, and the mixture was stirred for 1 hour. . Then, the chelate resin was filtered off and washed with ion-exchanged water until the pH of the wash water became 9 or less.

【0031】この樹脂100ミリリットルを内径25m
mのガラスカラムに充填し、このカラムに砒素含有廃水
(砒素2.6mg/リットル、pH=8.3の半導体工
場廃水。濾過して使用。)を下向流で毎時2リットル/
リットル−Rの速度で通水した。カラムへの廃水通水倍
率とカラムより流出する廃水中の砒素濃度との関係を図
1に示す(曲線a−1)。また砒素含有廃水を通水した
後のカラムに、2ミリリットル/リットルの水酸化ナト
リウム水溶液を、流速毎時1リットル/リットル−Rで
樹脂の5倍量通液し、樹脂の再生を行ったところ、樹脂
に吸着された33mgの砒素のうち、32.8mgの砒
素を回収することができた。再生後の樹脂に再び流速毎
時2リットル/リットル−Rで樹脂の10倍量のイオン
交換水を通水して樹脂を洗浄した後、再び上記と同様の
条件で砒素含有廃水を通水した。この時のカラムへの廃
水通水倍率とカラムより流出する廃水中の砒素濃度との
関係を図1にあわせて示した(曲線a−2)。
100 ml of this resin is used for an inner diameter of 25 m
m glass column, and arsenic-containing wastewater (arsenic 2.6 mg / liter, semiconductor factory wastewater with pH = 8.3. Filtered and used) was applied to this column in a downward flow of 2 liter / hour.
Water was passed at a rate of liter-R. FIG. 1 shows the relationship between the flow rate of waste water to the column and the concentration of arsenic in the waste water flowing out from the column (curve a-1). Further, when 2 ml / liter of an aqueous sodium hydroxide solution was passed through the column after passing the arsenic-containing wastewater at a flow rate of 1 liter / liter-R in an amount of 5 times the amount of the resin to regenerate the resin, Of the 33 mg of arsenic adsorbed on the resin, 32.8 mg of arsenic could be recovered. After the regenerated resin was washed again by passing 10 times as much ion exchange water as the resin at a flow rate of 2 liter / liter-R per hour, the arsenic-containing waste water was again passed under the same conditions as above. The relationship between the flow rate of waste water to the column and the concentration of arsenic in the waste water flowing out from the column at this time is also shown in FIG. 1 (curve a-2).

【0032】比較例7 含水酸化ジルコニウムを含有するフェノール樹脂(粒度
14〜48メッシュ)を用いた他は、実施例7と同様に
して砒素含有廃水の処理を行った。カラムへの廃水の通
水倍率とカラムから流出する廃水中の砒素濃度との関係
を図1にあわせて示した(曲線b)。
Comparative Example 7 Arsenic-containing wastewater was treated in the same manner as in Example 7 except that a phenol resin containing hydrous zirconium oxide (particle size: 14 to 48 mesh) was used. The relationship between the water flow rate of the waste water to the column and the arsenic concentration in the waste water flowing out from the column is also shown in FIG. 1 (curve b).

【0033】実施例8 水酸化第二鉄30重量%を含有(練り込み法によって添
加)する、樹脂母体がフェノール樹脂で官能基としてイ
ミノジ酢酸基を有するキレート樹脂(20〜48メッシ
ュ)100ミリリットルを、水酸化カルシウムの5%水
溶液500ミリリットル中に入れて1.5時間攪拌した
後、樹脂をろ別し、イオン交換水にて十分洗浄した。こ
の樹脂5ミリリットルを亜砒酸55mg/リットルと硫
酸ナトリウム30000mg/リットルを含有する溶液
500ミリリットルに添加し、3時間攪拌した後、5分
間静置し、上澄水中の砒素濃度を原子吸光分析法にて測
定し、その測定値より樹脂1ミリリットル当たりの砒素
吸着量を算出した。その結果、樹脂1ミリリットル当た
りの砒素吸着量は1.58mg/ミリリットル−Rであ
った。
Example 8 100 ml of a chelate resin (20 to 48 mesh) containing 30% by weight of ferric hydroxide (added by a kneading method), a resin matrix of which was a phenol resin and an iminodiacetic acid group was a functional group, was added. After being placed in 500 ml of a 5% aqueous solution of calcium hydroxide and stirred for 1.5 hours, the resin was filtered off and sufficiently washed with ion-exchanged water. 5 ml of this resin was added to 500 ml of a solution containing 55 mg / liter of arsenous acid and 30,000 mg / liter of sodium sulfate, stirred for 3 hours and then allowed to stand for 5 minutes, and the arsenic concentration in the supernatant water was measured by atomic absorption spectrometry. The amount of arsenic adsorbed per milliliter of the resin was calculated from the measured values. As a result, the arsenic adsorption amount per 1 ml of the resin was 1.58 mg / ml-R.

【0034】実施例9 実施例8と同様の水酸化第二鉄を含有するキレート樹脂
を、アルカリ処理せずに用い、実施例8と同様の試験を
行った。樹脂1ミリリットル当たりの砒素吸着量は1.
26mg/ミリリットル−Rであった。
Example 9 A chelate resin containing ferric hydroxide similar to that in Example 8 was used without alkali treatment, and the same test as in Example 8 was conducted. The amount of arsenic adsorbed per milliliter of resin is 1.
It was 26 mg / mL-R.

【0035】[0035]

【発明の効果】以上説明したように、本発明方法によれ
ば溶液中の砒素濃度を規制値である0.1mg/リット
ル以下に低減させるために、従来の凝集沈殿法のように
多量の凝集剤を使用する必要がなく、効果的に砒素を回
収することができる。また煩雑な処理作業や設置に多大
な費用を要する特別な処理設備も必要としないため、低
コストで効率の良い処理を行うことができる。更に本発
明の砒素吸着用樹脂は、樹脂に吸着された砒素を回収す
るために樹脂をアルカリで洗浄しても、樹脂に担持され
ている鉄が溶出することがないから、砒素を吸着した樹
脂から砒素を回収する処理を行った後、洗浄程度の工程
を経るだけで直ちに再使用することが可能であり、樹脂
の再生処理作業が大幅に簡素化されるとともに、樹脂の
再生を繰り返し行っても砒素の吸着能が大きく低下する
虞れがない等の効果を有する。
As described above, according to the method of the present invention, in order to reduce the concentration of arsenic in a solution to a regulated value of 0.1 mg / liter or less, a large amount of agglomeration like the conventional agglomeration-precipitation method is performed. Arsenic can be effectively recovered without the need to use an agent. Further, since complicated processing work and special processing equipment which requires a large amount of cost for installation are not required, efficient processing can be performed at low cost. Further, since the resin for adsorbing arsenic of the present invention does not elute the iron supported on the resin even if the resin is washed with an alkali to recover the arsenic adsorbed on the resin, the resin adsorbing arsenic After performing the process of recovering arsenic from the product, it can be reused immediately by passing through the steps of cleaning, which greatly simplifies the resin recycling process and also allows the resin to be recycled repeatedly. Also, there is an effect that the arsenic adsorption ability is not significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例7、比較例7の、廃水の通水倍率とカラ
ムから流出する廃水中の砒素濃度とを示すグラフであ
る。
FIG. 1 is a graph showing a water passage ratio of waste water and an arsenic concentration in waste water flowing out of a column in Example 7 and Comparative Example 7.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 カチオン交換樹脂及び/又はキレート樹
脂に、鉄とヒドロキシルイオンとが担持されていること
を特徴とする砒素吸着用樹脂。
1. A resin for adsorbing arsenic, characterized in that a cation exchange resin and / or a chelate resin carry iron and hydroxyl ions.
【請求項2】 カチオン交換樹脂及び/又はキレート樹
脂に鉄とヒドロキシルイオンとを担持させた砒素吸着用
樹脂に、砒素を含む溶液を接触させ、溶液中の砒素を砒
素吸着用樹脂に吸着させて回収することを特徴とする砒
素を含む溶液からのセレンの回収方法。
2. A solution containing arsenic is brought into contact with a resin for adsorbing arsenic in which a cation exchange resin and / or a chelate resin carry iron and hydroxyl ions, and the arsenic in the solution is adsorbed by the resin for adsorbing arsenic. A method for recovering selenium from a solution containing arsenic, characterized by recovering.
JP8061878A 1996-02-23 1996-02-23 Resin for adsorbing arsenic and method for recovering arsenic from solution containing arsenic Pending JPH09225298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8061878A JPH09225298A (en) 1996-02-23 1996-02-23 Resin for adsorbing arsenic and method for recovering arsenic from solution containing arsenic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8061878A JPH09225298A (en) 1996-02-23 1996-02-23 Resin for adsorbing arsenic and method for recovering arsenic from solution containing arsenic

Publications (1)

Publication Number Publication Date
JPH09225298A true JPH09225298A (en) 1997-09-02

Family

ID=13183844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8061878A Pending JPH09225298A (en) 1996-02-23 1996-02-23 Resin for adsorbing arsenic and method for recovering arsenic from solution containing arsenic

Country Status (1)

Country Link
JP (1) JPH09225298A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11128830A (en) * 1997-10-30 1999-05-18 Nkk Corp Surface treated steel sheet excellent in corrosion resistance
JP2004068182A (en) * 2002-08-02 2004-03-04 Chubu Kiresuto Kk Arsenic-catching fiber and method for treating arsenic-containing water with the same
WO2004110623A1 (en) * 2003-06-13 2004-12-23 Lanxess Deutschland Gmbh Arsenic-adsorbing ion exchanger
EP1495800A2 (en) * 2003-06-13 2005-01-12 Bayer Chemicals AG Method for the preparation of ion exchangers containing iron oxide and/or iron oxyhydroxide
EP1568660A1 (en) 2004-02-24 2005-08-31 Rohm and Haas Company Method for removal of arsenic from water
JP2007000752A (en) * 2005-06-23 2007-01-11 Gp One Corp High-speed arsenic adsorbing material and its producing method
JP2007518559A (en) * 2004-01-21 2007-07-12 アラップ・ケー・センガプタ Method of making and using a hybrid anion exchanger for the selective removal of contaminant ligands from a liquid
JP2008006331A (en) * 2006-06-27 2008-01-17 Kobe Steel Ltd Recycling method of iron powder for arsenic removal
JP2008290070A (en) * 2007-05-03 2008-12-04 Lanxess Deutschland Gmbh Conditioning of ion exchanger for adsorption of oxoanion
JP2015193001A (en) * 2014-03-25 2015-11-05 学校法人早稲田大学 Arsenic adsorption device and arsenic adsorption method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11128830A (en) * 1997-10-30 1999-05-18 Nkk Corp Surface treated steel sheet excellent in corrosion resistance
JP2004068182A (en) * 2002-08-02 2004-03-04 Chubu Kiresuto Kk Arsenic-catching fiber and method for treating arsenic-containing water with the same
WO2004110623A1 (en) * 2003-06-13 2004-12-23 Lanxess Deutschland Gmbh Arsenic-adsorbing ion exchanger
EP1495800A2 (en) * 2003-06-13 2005-01-12 Bayer Chemicals AG Method for the preparation of ion exchangers containing iron oxide and/or iron oxyhydroxide
EP1495800A3 (en) * 2003-06-13 2006-04-19 Lanxess Deutschland GmbH Method for the preparation of ion exchangers containing iron oxide and/or iron oxyhydroxide
JP2007518559A (en) * 2004-01-21 2007-07-12 アラップ・ケー・センガプタ Method of making and using a hybrid anion exchanger for the selective removal of contaminant ligands from a liquid
EP1568660A1 (en) 2004-02-24 2005-08-31 Rohm and Haas Company Method for removal of arsenic from water
JP2007000752A (en) * 2005-06-23 2007-01-11 Gp One Corp High-speed arsenic adsorbing material and its producing method
JP2008006331A (en) * 2006-06-27 2008-01-17 Kobe Steel Ltd Recycling method of iron powder for arsenic removal
JP2008290070A (en) * 2007-05-03 2008-12-04 Lanxess Deutschland Gmbh Conditioning of ion exchanger for adsorption of oxoanion
JP2015193001A (en) * 2014-03-25 2015-11-05 学校法人早稲田大学 Arsenic adsorption device and arsenic adsorption method

Similar Documents

Publication Publication Date Title
US5591346A (en) Water treatment process
Benjamin et al. Sorption and filtration of metals using iron-oxide-coated sand
Ritter et al. Removal of mercury from waste water: large-scale performance of an ion exchange process
US3984314A (en) Process for selective removal and recovery of cyanide values by ion exchange
Hubicki et al. Application of ion exchange methods in recovery of Pd (II) ions—a review
US4664810A (en) Method of separating heavy metals from complex-forming substances of aminocarboxylic acid type, or salts thereof in aqueous solutions
JPH09225298A (en) Resin for adsorbing arsenic and method for recovering arsenic from solution containing arsenic
US20120138530A1 (en) Method and apparatus for removing arsenic from a solution
US20120175311A1 (en) Method for the removal of organic chemicals and organometallic complexes from process water or other streams of a mineral processing plant using a zeolite
CN110117043B (en) Method for removing heavy metal ions in wastewater by using ion exchange resin and regeneration method of resin
Chanda et al. Ligand exchange sorption of arsenate and arsenite anions by chelating resins in ferric ion form I. weak-base chelating resin dow XFS-4195
US4115260A (en) Selective removal of iron cyanide anions from fluids containing thiocyanates
AU634853B2 (en) Thallium extraction process
JPH11235595A (en) Treatment of boron-containing waste water
Avery et al. Selective removal of cyanide from industrial waste effluents with ion-exchange resins
NZ203055A (en) Removing copper from cyanide-containing waste water
EP3640216A1 (en) Adsorption method
JP4630237B2 (en) Recycling method of iron powder for arsenic removal
JP4069291B2 (en) Method for separating metal ions from metal complex solution
Chanda et al. Removal and recovery of thiocyanate by ligand sorption on polymer-bound ferric ion
JPH09206592A (en) Resin for adsorption of selenium and recovering method of selenium from solution containing selenium
RU2608968C1 (en) Method of processing liquid radioactive wastes
JP6413772B2 (en) Chromium-containing water treatment method
JPS5944920B2 (en) How to remove heavy metals
JP4393616B2 (en) Boron fixing agent and treatment method of boron-containing waste water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041117