JP2015193001A - Arsenic adsorption device and arsenic adsorption method - Google Patents

Arsenic adsorption device and arsenic adsorption method Download PDF

Info

Publication number
JP2015193001A
JP2015193001A JP2015061062A JP2015061062A JP2015193001A JP 2015193001 A JP2015193001 A JP 2015193001A JP 2015061062 A JP2015061062 A JP 2015061062A JP 2015061062 A JP2015061062 A JP 2015061062A JP 2015193001 A JP2015193001 A JP 2015193001A
Authority
JP
Japan
Prior art keywords
cation exchange
exchange resin
arsenic
liquid
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015061062A
Other languages
Japanese (ja)
Other versions
JP6376536B2 (en
Inventor
千晴 所
Chiharu Tokoro
千晴 所
文也 二見
Fumiya Futami
文也 二見
裕久 久保田
Hirohisa Kubota
裕久 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Mitsubishi Chemical Corp
Original Assignee
Waseda University
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, Mitsubishi Chemical Corp filed Critical Waseda University
Priority to JP2015061062A priority Critical patent/JP6376536B2/en
Publication of JP2015193001A publication Critical patent/JP2015193001A/en
Application granted granted Critical
Publication of JP6376536B2 publication Critical patent/JP6376536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an arsenic adsorption device and an arsenic adsorption method capable of adsorbing away arsenic in the liquid to be treated efficiently and also at a high degree using a cation exchange resin.SOLUTION: When the liquid to be treated is contacted with an arsenic absorbent, and arsenic in the liquid to be treated is removed away into the arsenic adsorbent, as the arsenic adsorbent, a cation exchange resin with an Fe ion as a counter ion is used. Preferably, the liquid to be treated is contacted with the cation exchange resin in which a Ca ion is used as a counter ions, and thereafter, the same is contacted with the cation exchange resin in which an Fe ion is used as a counter ions and is next contacted with a cation exchange resin in which an Na ion is used as a counter ion.

Description

本発明は、被処理液中の砒素を効率的に吸着除去する砒素吸着装置及び砒素吸着方法に関する。   The present invention relates to an arsenic adsorption device and an arsenic adsorption method for efficiently adsorbing and removing arsenic in a liquid to be treated.

砒素や砒素化合物は、黄鉄石、リン鉱石等に含まれ、これらを原料として使用するリンやリン化合物の製造工場、硫酸製造工場等の廃水中には砒素が多量に含まれる可能性がある。また、砒素は半導体原料として利用されるため、半導体の製造・加工工場の廃水にも多量の砒素が含まれる可能性がある。更に、鉱山廃水や温泉水等にも砒素が含有される可能性がある。   Arsenic and arsenic compounds are contained in pyrite, phosphorus ore, etc., and there is a possibility that a large amount of arsenic is contained in wastewater from phosphorus, phosphorus compound manufacturing plants, sulfuric acid manufacturing plants, etc. that use these as raw materials. In addition, since arsenic is used as a semiconductor raw material, there is a possibility that a large amount of arsenic is also contained in wastewater from semiconductor manufacturing / processing plants. Furthermore, arsenic may be contained in mine wastewater and hot spring water.

砒素は強い毒性を有する環境汚染物質である。例えば、地下水に砒素が含まれている場合、農作物に砒素が濃縮されたり、魚類などの水産物に砒素が濃縮され、それを食した人体に悪影響を及ぼす可能性がある。そのため、廃水中の砒素に対する厳しい規制が設けられている。   Arsenic is a highly toxic environmental pollutant. For example, when arsenic is contained in groundwater, arsenic may be concentrated in agricultural products, or arsenic may be concentrated in fishery products such as fish, which may adversely affect human bodies. For this reason, there are strict regulations on arsenic in wastewater.

廃水等に含まれる砒素の回収方法として、砒素を鉄、アルミニウム、カルシウム、マグネシウム等の金属の水酸化物と共に沈殿させる共沈捕集法、或いは、稀土類元素の含水酸化物又はこれを有機高分子多孔質担体に担持させた砒素吸着剤(特許文献1)、又はフェノール樹脂と金属水酸化物からなる砒素吸着剤(特許文献2)を添加して砒素を吸着回収する方法、アニオン交換樹脂を用いて吸着する方法等が知られている。   As a method for recovering arsenic contained in wastewater, etc., a coprecipitation collection method in which arsenic is precipitated together with hydroxides of metals such as iron, aluminum, calcium, magnesium, etc. A method of adsorbing and recovering arsenic by adding an arsenic adsorbent supported on a molecular porous carrier (Patent Document 1) or an arsenic adsorbent consisting of a phenol resin and a metal hydroxide (Patent Document 2), an anion exchange resin A method of using and adsorbing is known.

しかしながら、共沈捕集法や、特許文献1又は特許文献2に記載の砒素吸着剤を用いる方法では、砒素を廃水基準値である0.1mg/L以下まで減少させるためには、大量の金属水酸化物や吸着剤を添加しなければならず、更に生成する大量のスラッジの後処理が容易ではないという問題があった。
また、稀土類元素の含水酸化物を吸着剤として用いる方法は、吸着剤の原料となる稀土類元素が高価である上に、吸着剤の粒径が小さいため、吸着剤をカラムに充填して用いると圧力損失が大きくなり、実用性に乏しいという問題がある。更に、アニオン交換樹脂を用いて吸着するイオン交換法では、共存塩が存在すると砒素の吸着効果が著しく低下するという問題があった。
However, in the coprecipitation collection method and the method using the arsenic adsorbent described in Patent Document 1 or Patent Document 2, in order to reduce arsenic to a wastewater standard value of 0.1 mg / L or less, a large amount of metal Hydroxides and adsorbents must be added, and there is a problem in that post-treatment of the large amount of sludge to be generated is not easy.
In addition, the method of using a rare earth element hydrous oxide as an adsorbent is because the rare earth element used as a raw material for the adsorbent is expensive and the adsorbent is small in particle size. When used, there is a problem that pressure loss becomes large and practicability is poor. Further, the ion exchange method using an anion exchange resin has a problem that the arsenic adsorption effect is remarkably reduced if a coexisting salt is present.

特許文献3には、このような問題を解決するものとして、カチオン交換樹脂及び/又はキレート樹脂に、鉄とヒドロキシルイオンとを担持してなる砒素吸着用樹脂が提案されており、この砒素吸着用樹脂が、砒素含有溶液からの砒素の回収能に優れているとともに、このような樹脂は安価かつ容易に製造することができ、砒素を効果的に吸着して回収できると記載されている。   Patent Document 3 proposes an arsenic adsorption resin in which iron and hydroxyl ions are supported on a cation exchange resin and / or a chelate resin to solve such problems. It is described that the resin is excellent in the ability to recover arsenic from an arsenic-containing solution, and that such a resin can be produced inexpensively and easily and can be adsorbed and recovered effectively.

特開昭61−187931号公報JP-A 61-187931 特開昭59−69151号公報JP 59-69151 特開平9−225298号公報JP-A-9-225298

特許文献3には、砒素吸着用樹脂の母体樹脂としてカチオン交換樹脂を用いる旨の記載はあるが、特許文献3の実施例ではいずれもキレート樹脂を用いている。即ち、特許文献3には、キレート樹脂に鉄を担持した後水酸化ナトリウム等でアルカリ処理して鉄を水酸化鉄として担持した実施例が示されているが、実際にカチオン交換樹脂を用いた実施例はなく、鉄とヒドロキシルイオンとを担持したカチオン交換樹脂の砒素吸着能については明らかにされていない。また、実際に被処理液中の砒素を効果的に吸着除去するための砒素吸着装置及び砒素吸着方法の検討もなされていない。   In Patent Document 3, there is a description that a cation exchange resin is used as a base resin of an arsenic adsorption resin. However, in Examples of Patent Document 3, a chelate resin is used. That is, Patent Document 3 discloses an example in which iron is supported on a chelate resin and then alkali-treated with sodium hydroxide or the like, and iron is supported as iron hydroxide. Actually, a cation exchange resin was used. There is no example, and the arsenic adsorption ability of the cation exchange resin supporting iron and hydroxyl ions is not clarified. In addition, an arsenic adsorption device and an arsenic adsorption method for effectively adsorbing and removing arsenic in the liquid to be treated have not been studied.

本発明は上記従来の実状に鑑みてなされたものであって、キレート樹脂よりも更に安価で汎用性の高いカチオン交換樹脂を用いて、被処理液中の砒素を効率的にかつ高度に吸着除去することができる砒素吸着装置及び砒素吸着方法を提供することを目的とする。   The present invention has been made in view of the above-described conventional situation, and uses cation exchange resin that is cheaper and more versatile than chelate resin to efficiently and highly remove arsenic in the liquid to be treated. An object of the present invention is to provide an arsenic adsorption device and an arsenic adsorption method that can be performed.

本発明者らは上記課題を解決すべく検討を重ねた結果、Feイオンを対イオンとしたカチオン交換樹脂が、被処理液中の砒素を効率的に吸着除去できることを見出した。   As a result of repeated studies to solve the above problems, the present inventors have found that a cation exchange resin using Fe ions as a counter ion can efficiently adsorb and remove arsenic in the liquid to be treated.

即ち、本発明は以下を要旨とする。   That is, the gist of the present invention is as follows.

[1] 被処理液と接触して該被処理液中の砒素を吸着する砒素吸着剤を備える砒素吸着装置であって、該砒素吸着剤としてのFeイオンを対イオンとしたカチオン交換樹脂と、Caイオンを対イオンとしたカチオン交換樹脂とを有し、前記被処理液が前記Feイオンを対イオンとしたカチオン交換樹脂と接触する前に、前記Caイオンを対イオンとしたカチオン交換樹脂と接触する構造であることを特徴とする砒素吸着装置。 [1] An arsenic adsorbing device comprising an arsenic adsorbent that comes into contact with a liquid to be treated and adsorbs arsenic in the liquid to be treated, the cation exchange resin using Fe ions as the arsenic adsorbent as a counter ion; A cation exchange resin with a Ca ion as a counter ion, and before the liquid to be treated comes into contact with a cation exchange resin with a Fe ion as a counter ion, the cation exchange resin with a Ca ion as a counter ion An arsenic adsorption device characterized by having a structure to be used.

[2] 前記Feイオンを対イオンとしたカチオン交換樹脂がゲル型であることを特徴とする[1]に記載の砒素吸着装置。 [2] The arsenic adsorption apparatus according to [1], wherein the cation exchange resin using the Fe ion as a counter ion is a gel type.

[3] 前記Feイオンを対イオンとしたカチオン交換樹脂の平均粒径が800μm以下であることを特徴とする[1]または[2]に記載の砒素吸着装置。 [3] The arsenic adsorption apparatus according to [1] or [2], wherein an average particle size of the cation exchange resin using Fe ions as a counter ion is 800 μm or less.

[4] 前記Feイオンを対イオンとしたカチオン交換樹脂の粒径の均一係数が1.2以下であることを特徴とする[1]〜[3]のいずれかに記載の砒素吸着装置。 [4] The arsenic adsorption apparatus according to any one of [1] to [3], wherein a uniformity coefficient of a particle size of the cation exchange resin using Fe ions as a counter ion is 1.2 or less.

[5] 被処理液を砒素吸着剤に接触させて、該被処理液中の砒素を該砒素吸着剤に吸着させる砒素吸着方法であって、該砒素吸着剤としてのFeイオンを対イオンとしたカチオン交換樹脂と、Caイオンを対イオンとしたカチオン交換樹脂とを使用し、前記被処理液を、前記Feイオンを対イオンとしたカチオン交換樹脂と接触させる前に、前記Caイオンを対イオンとしたカチオン交換樹脂に接触させることを特徴とする砒素吸着方法。 [5] An arsenic adsorption method in which a liquid to be treated is brought into contact with an arsenic adsorbent and arsenic in the liquid to be treated is adsorbed to the arsenic adsorbent, wherein Fe ions as the arsenic adsorbent are used as counter ions. Using a cation exchange resin and a cation exchange resin having a Ca ion as a counter ion, and before contacting the liquid to be treated with a cation exchange resin having a Fe ion as a counter ion, the Ca ion is changed to a counter ion. A method of adsorbing arsenic, comprising contacting with a cation exchange resin prepared.

[6] 前記Feイオンを対イオンとしたカチオン交換樹脂がゲル型であることを特徴とする[5]に記載の砒素吸着方法。 [6] The arsenic adsorption method according to [5], wherein the cation exchange resin using the Fe ion as a counter ion is a gel type.

[7] 前記Feイオンを対イオンとしたカチオン交換樹脂の平均粒径が800μm以下であることを特徴とする[5]または[6]に記載の砒素吸着方法。 [7] The arsenic adsorption method according to [5] or [6], wherein an average particle size of the cation exchange resin using the Fe ion as a counter ion is 800 μm or less.

[8] 前記Feイオンを対イオンとしたカチオン交換樹脂の粒径の均一係数が1.2以下であることを特徴とする[5]〜[7]のいずれかに記載の砒素吸着方法。 [8] The arsenic adsorption method according to any one of [5] to [7], wherein a uniformity coefficient of a particle size of the cation exchange resin using Fe ions as a counter ion is 1.2 or less.

[9] 前記被処理液のpHが2〜4であることを特徴とする[5]〜[8]のいずれかに記載の砒素吸着方法。 [9] The arsenic adsorption method according to any one of [5] to [8], wherein the liquid to be treated has a pH of 2 to 4.

[10] 前記Feイオンを対イオンとしたカチオン交換樹脂の充填層に前記被処理液を通液する方法であって、該被処理液の通液SVを1〜200hr−1とすることを特徴とする[5]〜[9]のいずれかに記載の砒素吸着方法。 [10] A method of passing the liquid to be treated through a packed bed of a cation exchange resin using the Fe ions as counter ions, wherein the liquid SV of the liquid to be treated is 1 to 200 hr −1. The arsenic adsorption method according to any one of [5] to [9].

本発明によれば、Feイオンを対イオンとしたカチオン交換樹脂を用いて、被処理液中の砒素を効率的に吸着除去することができ、砒素を高度に除去した高水質の処理水を得ることができる。   According to the present invention, by using a cation exchange resin with Fe ions as counter ions, arsenic in the liquid to be treated can be efficiently adsorbed and removed, and high-quality treated water from which arsenic is highly removed is obtained. be able to.

参考例9で求めたAs(V)の破過曲線を示すグラフである。10 is a graph showing a breakthrough curve of As (V) obtained in Reference Example 9. 比較例4の処理水の金属濃度を示すグラフである。It is a graph which shows the metal concentration of the treated water of the comparative example 4.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明の砒素吸着装置及び砒素吸着方法は、被処理液中の砒素を吸着する砒素吸着剤としてのFeイオンを対イオンとしたカチオン交換樹脂(以下「Fe担持カチオン交換樹脂」と称す場合がある。)と、Caイオンを対イオンとしたカチオン交換樹脂(以下、「Ca担持カチオン交換樹脂」と称す場合がある。)とを用い、被処理液を、Ca担持カチオン交換樹脂に接触させた後、Fe担持カチオン交換樹脂に接触させることを特徴とする。
Fe担持カチオン交換樹脂は砒素の吸着性能に優れ、被処理液中の砒素を効率的に吸着除去することができる。
The arsenic adsorption apparatus and the arsenic adsorption method of the present invention may be referred to as a cation exchange resin (hereinafter referred to as “Fe-supported cation exchange resin”) using Fe ions as counter ions as an arsenic adsorbent that adsorbs arsenic in a liquid to be treated. And a cation exchange resin using Ca ions as a counter ion (hereinafter sometimes referred to as “Ca-supported cation exchange resin”), and the liquid to be treated is brought into contact with the Ca-supported cation exchange resin. And contacting with an Fe-supporting cation exchange resin.
The Fe-supported cation exchange resin has excellent arsenic adsorption performance and can efficiently adsorb and remove arsenic in the liquid to be treated.

本発明においては、以下の理由から、砒素吸着剤としてのFe担持カチオン交換樹脂と共に、Ca担持カチオン交換樹脂、更には、Naイオンを対イオンとしたカチオン交換樹脂(以下、「Na担持カチオン交換樹脂」と称す場合がある。)を併用することが好ましい。   In the present invention, for the following reasons, together with an Fe-supported cation exchange resin as an arsenic adsorbent, a Ca-supported cation exchange resin, and further, a cation exchange resin using Na ions as a counter ion (hereinafter referred to as “Na-supported cation exchange resin”). Is sometimes used in combination.).

即ち、Fe担持カチオン交換樹脂は砒素イオンを効率的に吸着して捕捉することができるが、砒素の吸着量が多くなると、Fe担持カチオン交換樹脂からFeイオンが漏洩する傾向がある。このため、Fe担持カチオン交換樹脂から漏出したFeイオンを捕捉するために、Feイオンよりも選択性が低いNaイオンを対イオンとしたカチオン交換樹脂(通常のカチオン交換樹脂。即ち、カチオン交換樹脂は、通常Naイオンを担持したNa形として市販されている。)を、Fe担持カチオン交換樹脂と混在させて、或いはFe担持カチオン交換樹脂の下流側に設け、Fe担持カチオン交換樹脂から漏出したFeイオンをNa担持カチオン交換樹脂で吸着して捕捉することが好ましい。
特に被処理液の電解質濃度(イオン強度)が高い場合には、Fe担持カチオン交換樹脂からFeイオンが漏出し易いため、Na担持カチオン交換樹脂を併用し、また、併用するNa担持カチオン交換樹脂量を多くすることが好ましい。
That is, the Fe-supported cation exchange resin can efficiently adsorb and capture arsenic ions, but when the amount of arsenic adsorption increases, Fe ions tend to leak from the Fe-supported cation exchange resin. Therefore, in order to capture Fe ions leaked from the Fe-supported cation exchange resin, a cation exchange resin (ordinary cation exchange resin. That is, a cation exchange resin having a Na ion having a lower selectivity than Fe ions as a counter ion) In general, it is commercially available as Na form carrying Na ions.) Is mixed with the Fe-supported cation exchange resin or provided downstream of the Fe-supported cation exchange resin, and the Fe ions leaked from the Fe-supported cation exchange resin. Is preferably adsorbed and captured by Na-supported cation exchange resin.
In particular, when the electrolyte concentration (ionic strength) of the liquid to be treated is high, Fe ions easily leak out from the Fe-supported cation exchange resin. Therefore, the Na-supported cation exchange resin is used together, and the amount of Na-supported cation exchange resin used together It is preferable to increase the number.

また、砒素吸着剤としてのFe担持カチオン交換樹脂は、リン酸イオンの共存下では、リン酸イオンが妨害イオンとして作用し、砒素イオンの吸着、捕捉能が低下する。このため、被処理液中にリン酸イオンが共存する場合には、Ca担持カチオン交換樹脂を併用し、Fe担持カチオン交換樹脂の上流側にCa担持カチオン交換樹脂を設け、被処理液中のリン酸イオンをCa担持カチオン交換樹脂で捕捉、除去した後Fe担持カチオン交換樹脂で砒素イオンの吸着処理を行うことが好ましい。   Further, in the Fe-supported cation exchange resin as an arsenic adsorbent, phosphate ions act as interfering ions in the presence of phosphate ions, and the ability to adsorb and trap arsenic ions is reduced. Therefore, when phosphate ions coexist in the liquid to be treated, a Ca-supported cation exchange resin is used in combination, and a Ca-supported cation exchange resin is provided on the upstream side of the Fe-supported cation exchange resin. It is preferable to perform adsorption treatment of arsenic ions with Fe-supported cation exchange resin after capturing and removing acid ions with Ca-supported cation exchange resin.

[カチオン交換樹脂]
本発明において用いるFe担持カチオン交換樹脂、及びCa担持カチオン交換樹脂の樹脂母体となるカチオン交換樹脂(以下、「本発明のカチオン交換樹脂」と称す場合がある。)として好適なカチオン交換樹脂の特性ないし物性は以下の通りである。なお、後述の如く、本発明のカチオン交換樹脂は、Na形カチオン交換樹脂であり、Na担持カチオン交換樹脂に該当する。
[Cation exchange resin]
Characteristics of Cation Exchange Resin Suitable as Fe-Supported Cation Exchange Resin Used in the Present Invention, and Cation Exchange Resin that Becomes Resin Base of Ca-Supported Cation Exchange Resin (hereinafter referred to as “Cation Exchange Resin of the Present Invention”) The physical properties are as follows. As will be described later, the cation exchange resin of the present invention is a Na-type cation exchange resin and corresponds to a Na-supported cation exchange resin.

<化学構造・形態>
本発明のカチオン交換樹脂は、耐久性や製造方法の合理性の観点から、モノビニル芳香族モノマーと架橋性芳香族モノマーの共重合で得られる架橋構造骨格を有しているものが好ましい。ここで、モノビニル芳香族モノマーとしては、スチレン、メチルスチレン、エチルスチレン等のアルキル置換スチレン類、ブロモスチレン等のハロゲン置換スチレン類が挙げられる。このうち、スチレンまたはスチレンを主体とするモノマーが好ましい。
<Chemical structure and form>
The cation exchange resin of the present invention preferably has a crosslinked structure skeleton obtained by copolymerization of a monovinyl aromatic monomer and a crosslinkable aromatic monomer from the viewpoint of durability and rationality of the production method. Here, examples of the monovinyl aromatic monomer include alkyl-substituted styrenes such as styrene, methylstyrene, and ethylstyrene, and halogen-substituted styrenes such as bromostyrene. Among these, styrene or a monomer mainly composed of styrene is preferable.

また、架橋性芳香族モノマーとしては、ジビニルベンゼン、トリビニルベンゼン、ジビニルトルエン、ジビニルナフタレン、ジビニルキシレン等が挙げられる。このうち、ジビニルベンゼンが好ましい。
工業的に製造されるジビニルベンゼンは、通常副生物であるエチルビニルベンゼン(エチルスチレン)を多量に含有しているが、本発明においてはこのようなジビニルベンゼンは、予め精製してこうした不純物含有量を減らした上で使用するのが好ましい。
Moreover, as a crosslinkable aromatic monomer, divinylbenzene, trivinylbenzene, divinyltoluene, divinylnaphthalene, divinylxylene, etc. are mentioned. Of these, divinylbenzene is preferred.
Industrially produced divinylbenzene usually contains a large amount of by-product ethyl vinyl benzene (ethyl styrene). In the present invention, such divinyl benzene is purified in advance and contains such impurities. It is preferable to use after reducing the amount.

本発明のカチオン交換樹脂としては、具体的には、例えばスチレン−ジビニルベンゼン系共重合体等を挙げることができる。   Specific examples of the cation exchange resin of the present invention include a styrene-divinylbenzene copolymer.

本発明のカチオン交換樹脂の主な形態としては、ゲル型と多孔質型が挙げられるが、交換容量やコストの観点から、ゲル型が好ましい。なお、物質拡散性や、樹脂の耐久性、強度の確保の観点で、多孔質型(ポーラス型、ハイポーラス型、またはマクロポーラス型)も好ましい。   The main forms of the cation exchange resin of the present invention include a gel type and a porous type, but a gel type is preferable from the viewpoint of exchange capacity and cost. In addition, a porous type (a porous type, a high porous type, or a macroporous type) is also preferable from the viewpoint of ensuring material diffusibility, resin durability, and strength.

また、本発明のカチオン交換樹脂は、通常は粒子形状(粒状)である。具体的な形状としては球状、略球状、多面体状、凝集体状など様々な形状が挙げられるが、特に制限されるものではない。   Further, the cation exchange resin of the present invention is usually in a particle shape (granular). Specific shapes include various shapes such as a spherical shape, a substantially spherical shape, a polyhedral shape, and an aggregate shape, but are not particularly limited.

<平均粒径>
本発明のカチオン交換樹脂は、平均粒径(重量平均粒径)が800μm以下であることが好ましく、特に、カチオン交換樹脂の平均粒径はより好ましくは500μm以下で、3μm以上、特に5μm以上であることが好ましい。
<Average particle size>
The cation exchange resin of the present invention preferably has an average particle size (weight average particle size) of 800 μm or less. In particular, the cation exchange resin preferably has an average particle size of 500 μm or less, 3 μm or more, particularly 5 μm or more. Preferably there is.

カチオン交換樹脂の平均粒径が大きすぎると、反応活性、反応速度が低く、砒素イオン等の吸着性能も低い傾向にあり、小さすぎると、カチオン交換樹脂を充填した反応器への被処理液の通液の際、圧力損失が大きくなる傾向があり、懸濁状態で反応させる場合は、濾過性が悪化する等、操作性が低下することがある。平均粒径が上記範囲のカチオン交換樹脂を用いることにより、高い吸着性能と処理効率の向上を図ることができる。   If the average particle size of the cation exchange resin is too large, the reaction activity and reaction rate are low and the adsorption performance of arsenic ions and the like tends to be low. If it is too small, the liquid to be treated in the reactor filled with the cation exchange resin When the liquid is passed, the pressure loss tends to increase. When the reaction is performed in a suspended state, the operability may be deteriorated, for example, the filterability is deteriorated. By using a cation exchange resin having an average particle size in the above range, it is possible to improve high adsorption performance and processing efficiency.

なお、カチオン交換樹脂の平均粒径は、通常、顕微鏡写真、粒度分布測定装置により測定されるが、市販品についてはカタログ値を採用することができる。   In addition, although the average particle diameter of a cation exchange resin is normally measured with a microscope picture and a particle size distribution measuring apparatus, a catalog value is employable about a commercial item.

<均一係数>
本発明のカチオン交換樹脂は、粒度分布がシャープであることが好ましく、均一係数が通常1.2以下、特に1.1以下、とりわけ1.05以下であることが好ましい。均一係数が1.2以下であると、反応活性、反応速度が向上し、また、カチオン交換樹脂を充填した反応器への被処理液の通液時の圧力損失が緩和される点で好ましい。均一係数は小さい程望ましいが、大きすぎると反応活性、反応速度が低下する傾向がある。なお、均一係数の下限は1.0である。均一係数が上記範囲のカチオン交換樹脂を用いることにより、高い吸着性能と処理効率の向上を図ることができる。
<Uniformity coefficient>
The cation exchange resin of the present invention preferably has a sharp particle size distribution, and the uniformity coefficient is usually 1.2 or less, particularly 1.1 or less, particularly 1.05 or less. A uniformity coefficient of 1.2 or less is preferable in that the reaction activity and reaction rate are improved, and the pressure loss during the flow of the liquid to be treated to the reactor filled with the cation exchange resin is alleviated. A smaller uniformity coefficient is desirable, but if it is too large, the reaction activity and reaction rate tend to decrease. The lower limit of the uniformity coefficient is 1.0. By using a cation exchange resin having a uniformity coefficient in the above range, it is possible to improve high adsorption performance and processing efficiency.

なお、カチオン交換樹脂の均一係数は、通常、粒度分布測定装置により測定、算出されるが、市販品についてはカタログ値を採用することができる。   The uniformity coefficient of the cation exchange resin is usually measured and calculated by a particle size distribution analyzer, but catalog values can be adopted for commercially available products.

<架橋度>
本発明のカチオン交換樹脂の架橋度は、25%以下が好ましく、15%以下がより好ましく、10%以下が更に好ましく、また、1%以上が好ましく、2%以上が更に好ましい。ここで言う架橋度とは、重合に供する重合性モノマー中の架橋性モノマーの濃度をいい、当該分野において使われている定義と同様である。
<Degree of crosslinking>
The degree of crosslinking of the cation exchange resin of the present invention is preferably 25% or less, more preferably 15% or less, further preferably 10% or less, more preferably 1% or more, and further preferably 2% or more. The term “crosslinking degree” as used herein refers to the concentration of the crosslinkable monomer in the polymerizable monomer to be subjected to polymerization, and is the same as the definition used in this field.

この架橋度が大きすぎると、カチオン交換樹脂内の拡散抵抗のため、吸着性能が低下する傾向にあり、小さすぎると、カチオン交換樹脂の強度を保つことが困難となり、更には処理用が小さくなるため、吸着処理時等の取り扱い時の膨潤、収縮により、カチオン交換樹脂の破砕等が生じるため好ましくない。   If the degree of crosslinking is too large, the adsorption performance tends to decrease due to diffusion resistance in the cation exchange resin, and if it is too small, it becomes difficult to maintain the strength of the cation exchange resin, and further, the treatment is reduced. Therefore, the cation exchange resin is crushed and the like due to swelling and shrinkage during handling such as adsorption treatment, which is not preferable.

<スルホン酸基量>
本発明のカチオン交換樹脂は、樹脂1グラムあたり3.0ミリ当量以上のスルホン酸基を含有することが好ましい。
特に、本発明のカチオン交換樹脂は、スルホン酸型強酸性カチオン交換樹脂であることが好ましく、この場合において、Na形を基準として乾燥樹脂1gあたりのスルホン酸基の中性塩分解容量に相当する交換容量が、通常、3meq/g−樹脂以上、好ましくは4.0meq/g−樹脂以上、より好ましくは4.5meq/g−樹脂以上で、通常6.0meq/g−樹脂以下であることが好ましい。
<Amount of sulfonic acid group>
The cation exchange resin of the present invention preferably contains 3.0 milliequivalents or more of sulfonic acid groups per gram of resin.
In particular, the cation exchange resin of the present invention is preferably a sulfonic acid type strongly acidic cation exchange resin. In this case, the cation exchange resin corresponds to the neutral salt decomposition capacity of the sulfonic acid group per 1 g of the dry resin based on the Na form. The exchange capacity is usually 3 meq / g-resin or more, preferably 4.0 meq / g-resin or more, more preferably 4.5 meq / g-resin or more, and usually 6.0 meq / g-resin or less. preferable.

[Fe担持カチオン交換樹脂]
本発明で用いるFe担持カチオン交換樹脂は、上述のような本発明のカチオン交換樹脂にFeイオンを担持させてなるものである。Feイオンの担持に用いるカチオン交換樹脂としては、上述の好適な特性ないし物性を有する市販品を用いることができる。
[Fe-supported cation exchange resin]
The Fe-supported cation exchange resin used in the present invention is obtained by supporting Fe ions on the cation exchange resin of the present invention as described above. As the cation exchange resin used for supporting Fe ions, commercially available products having the above-mentioned suitable characteristics or physical properties can be used.

カチオン交換樹脂へのFeイオンの担持方法としては特に制限はなく、常法に従って行うことができる。   There is no restriction | limiting in particular as the support method of Fe ion to a cation exchange resin, According to a conventional method, it can carry out.

Fe担持に用いる鉄化合物としては、例えば酸化第一鉄、水酸化第一鉄、硫化第一鉄、フッ化第一鉄、塩化第一鉄、臭化第一鉄、ヨウ化第一鉄、硝酸第一鉄、硫酸第一鉄、炭酸第一鉄、酸化第二鉄、フッ化第二鉄、塩化第二鉄、臭化第二鉄、硝酸第二鉄、硫酸第二鉄等の1種又は2種以上を用いることができる。これらのうち、塩化第二鉄、硫酸第二鉄、硝酸第二鉄、塩化第一鉄、硫酸第一鉄、硝酸第一鉄が好ましい。   Examples of iron compounds used for Fe support include ferrous oxide, ferrous hydroxide, ferrous sulfide, ferrous fluoride, ferrous chloride, ferrous bromide, ferrous iodide, nitric acid Ferrous sulfate, ferrous sulfate, ferrous carbonate, ferric oxide, ferric fluoride, ferric chloride, ferric bromide, ferric nitrate, ferric sulfate, etc. Two or more kinds can be used. Of these, ferric chloride, ferric sulfate, ferric nitrate, ferrous chloride, ferrous sulfate, and ferrous nitrate are preferred.

通常、上記の鉄化合物を含む水溶液で処理することにより、即ち、例えば、鉄化合物水溶液中にカチオン交換樹脂を添加して撹拌混合することにより、或いは、カチオン交換樹脂を充填したカラムに鉄化合物水溶液を通液することにより、カチオン交換樹脂にFeイオンを担持させることができる。
カチオン交換樹脂をこのような鉄化合物の水溶液で処理することにより、市販のNa形カチオン交換樹脂のNaイオンに比べて選択性の大きいFeイオンが容易にNaイオンと置換されるため、Fe担持カチオン交換樹脂を得ることができる。
Usually, by treatment with an aqueous solution containing the above iron compound, that is, for example, by adding a cation exchange resin to the iron compound aqueous solution and stirring and mixing, or in a column packed with the cation exchange resin, the aqueous iron compound solution By passing the solution, Fe ions can be supported on the cation exchange resin.
By treating the cation exchange resin with such an aqueous solution of an iron compound, Fe ions having a higher selectivity than Na ions of a commercially available Na-type cation exchange resin are easily replaced with Na ions. An exchange resin can be obtained.

このFe担持処理に当たり、Feの担持後、硝酸、塩酸、硫酸等の鉱酸を添加して強酸性に保持し、また、水酸化カリウム、水酸化ナトリウム等のアルカリを添加して処理液のpHを2以下に調整することによりFeイオンを沈澱させることなく多量に担持することができる。   In this Fe carrying treatment, after carrying Fe, a mineral acid such as nitric acid, hydrochloric acid, sulfuric acid or the like is added to maintain strong acidity, and an alkali such as potassium hydroxide or sodium hydroxide is added to adjust the pH of the treatment liquid. By adjusting the value to 2 or less, a large amount of Fe ions can be supported without precipitation.

このようにして得られるFe担持カチオン交換樹脂のFe担持量は、0.5〜2.5meq/g−樹脂、特に1.0〜2.5eq/g−樹脂程度であることが好ましい。Fe担持量が少な過ぎると、十分な砒素吸着能を得ることができない。
なお、上記Fe担持処理後にカチオン交換樹脂の平均粒径や均一係数を調整するために粉砕、分級等の処理を行ってもよい。
The amount of Fe supported on the Fe-supported cation exchange resin thus obtained is preferably about 0.5 to 2.5 meq / g-resin, particularly about 1.0 to 2.5 eq / g-resin. If the Fe loading is too small, sufficient arsenic adsorption ability cannot be obtained.
In addition, you may perform processes, such as a grinding | pulverization and a classification, in order to adjust the average particle diameter and uniformity coefficient of a cation exchange resin after the said Fe carrying process.

[Na担持カチオン交換樹脂]
前述の通り、市販のカチオン交換樹脂は、通常Na形カチオン交換樹脂であるため、Na担持カチオン交換樹脂としては市販のカチオン交換樹脂をそのまま、或いは必要に応じて、平均粒径や均一係数を調整するために、粉砕、分級等の処理を行って用いることができる。
[Na-supported cation exchange resin]
As described above, since the commercially available cation exchange resin is usually a Na-type cation exchange resin, the average particle size and uniformity coefficient are adjusted as it is or as needed as the Na-supported cation exchange resin. In order to achieve this, it can be used after being subjected to processing such as pulverization and classification.

[Ca担持カチオン交換樹脂]
本発明で用いるCa担持カチオン交換樹脂は、前述のような本発明のカチオン交換樹脂にCaイオンを担持させてなるものである。Caイオンの担持に用いるカチオン交換樹脂としては、上述の好適な特性ないし物性を有する市販品を用いることができる。
カチオン交換樹脂へのCaイオンの担持方法としては特に制限はなく、常法に従って行うことができる。
[Ca-supported cation exchange resin]
The Ca-supported cation exchange resin used in the present invention is obtained by supporting Ca ions on the cation exchange resin of the present invention as described above. As the cation exchange resin used for supporting Ca ions, commercially available products having the above-mentioned suitable characteristics or physical properties can be used.
There is no restriction | limiting in particular as a support method of Ca ion to a cation exchange resin, According to a conventional method, it can carry out.

Ca担持に用いるカルシウム化合物としては、例えば、水酸化カルシウム、塩化カルシウム、硝酸カルシウム等の1種又は2種以上を用いることができる。
これらのうち、塩化カルシウムが好ましい。
As a calcium compound used for Ca carrying | support, 1 type (s) or 2 or more types, such as calcium hydroxide, calcium chloride, calcium nitrate, can be used, for example.
Of these, calcium chloride is preferred.

通常、上記のカルシウム化合物を含む水溶液で処理することにより、即ち、例えば、カルシウム化合物水溶液中にカチオン交換樹脂を添加して撹拌混合することにより、或いは、カチオン交換樹脂を充填したカラムにカルシウム化合物水溶液を通液することにより、カチオン交換樹脂にCaイオンを担持させることができる。
カチオン交換樹脂をこのようなカルシウム化合物の水溶液で処理することにより、市販のNa形カチオン交換樹脂のNaイオンに比べて選択性の大きいCaイオンが容易にNaイオンと置換されるため、Ca担持カチオン交換樹脂を得ることができる。
Usually, by treatment with an aqueous solution containing the above calcium compound, that is, for example, by adding a cation exchange resin to the calcium compound aqueous solution and stirring and mixing, or in a column packed with the cation exchange resin, the aqueous calcium compound solution By passing the solution, Ca ions can be supported on the cation exchange resin.
By treating the cation exchange resin with such an aqueous solution of a calcium compound, Ca ions having a higher selectivity than Na ions of a commercially available Na-type cation exchange resin are easily replaced with Na ions. An exchange resin can be obtained.

このCa担持処理に当たり、Caの担持後、硝酸、塩酸、硫酸等の鉱酸を添加して弱アルカリ性以下に保持し、また、水酸化カリウム、水酸化ナトリウム等のアルカリを添加して、処理液のpHを2〜4に調整することにより、Caイオンを沈澱させることなく多量に担持することができる。   In this Ca supporting treatment, after supporting Ca, a mineral acid such as nitric acid, hydrochloric acid, sulfuric acid, etc. is added to keep it below weak alkalinity, and an alkali such as potassium hydroxide, sodium hydroxide is added. By adjusting the pH to 2 to 4, a large amount of Ca ions can be supported without precipitation.

このようにして得られるCa担持カチオン交換樹脂のCa担持量は、0.5〜2.5meq/g−樹脂、特に1.0〜2.5meq/g−樹脂程度であることが好ましい。Ca担持量が少な過ぎると、十分なリン酸イオン吸着能を得ることができない。
なお、上記Ca担持処理後にカチオン交換樹脂の平均粒径や均一係数を調整するために粉砕、分級等の処理を行ってもよい。
The amount of Ca supported on the Ca-supported cation exchange resin thus obtained is preferably about 0.5 to 2.5 meq / g-resin, particularly about 1.0 to 2.5 meq / g-resin. If the amount of Ca supported is too small, sufficient phosphate ion adsorption ability cannot be obtained.
In addition, you may perform processes, such as a grinding | pulverization and classification, in order to adjust the average particle diameter and uniformity coefficient of a cation exchange resin after the said Ca carrying | support process.

[被処理液]
本発明で砒素吸着処理する被処理液は、砒素イオンを含む水であり、例えば、前述の黄鉄石やリン鉱石等を原料として使用するリンやリン化合物の製造工場、硫酸製造工場等の廃水、半導体の製造・加工工場の廃水、鉱山廃水や温泉水等などが挙げられるが、何らこれらに限定されるものではない。
このような砒素含有水の砒素濃度には特に制限はないが、通常、1μg/L〜100mg/L程度であり、このような被処理液を本発明により処理することにより、砒素濃度を廃水基準値の0.1mg/L以下、好ましくは0.01mg/L以下に処理する必要がある。
[Processed liquid]
The liquid to be treated for arsenic adsorption treatment in the present invention is water containing arsenic ions, for example, waste water from a manufacturing plant of phosphorus or a phosphorus compound using the above-mentioned pyrite or phosphorus ore as a raw material, a sulfuric acid manufacturing plant, Examples include, but are not limited to, wastewater from semiconductor manufacturing and processing factories, mine wastewater, and hot spring water.
The arsenic concentration of such arsenic-containing water is not particularly limited, but is usually about 1 μg / L to 100 mg / L. By treating such a liquid to be treated according to the present invention, the arsenic concentration is determined based on wastewater standards. It is necessary to treat the value to 0.1 mg / L or less, preferably 0.01 mg / L or less.

また、本発明においては、Fe担持カチオン交換樹脂と共にCa担持カチオン交換樹脂を併用することにより、砒素とリン酸イオンを含む被処理液をも好適に処理することができる。砒素とリン酸イオンを含む被処理液としては半導体廃水、地下水、河川・湖沼水等が挙げられ、通常、そのリン酸イオン濃度はPO−P換算濃度で0.5〜500mg/L程度である。 Moreover, in this invention, the to-be-processed liquid containing an arsenic and a phosphate ion can also be processed suitably by using together Ca carrying | support cation exchange resin with Fe carrying | support cation exchange resin. Examples of liquids containing arsenic and phosphate ions include semiconductor wastewater, groundwater, river / lake water, etc., and the phosphate ion concentration is usually about 0.5 to 500 mg / L in terms of PO 4 -P. is there.

[Fe担持カチオン交換樹脂による砒素吸着処理]
Fe担持カチオン交換樹脂により被処理液を処理して被処理液中の砒素を吸着除去する方法は、被処理液中にFe担持カチオン交換樹脂を添加して撹拌混合するバッチ処理方式であってもよく、Fe担持カチオン交換樹脂を充填したカラムに被処理液を通液する連続処理方法であってもよい。
[Arsenic adsorption treatment with Fe-supported cation exchange resin]
The method of adsorbing and removing the arsenic in the liquid to be treated by treating the liquid to be treated with the Fe-supported cation exchange resin is a batch processing method in which the Fe-supported cation exchange resin is added to the liquid to be treated and mixed by stirring. It may be a continuous processing method in which a liquid to be processed is passed through a column filled with Fe-supported cation exchange resin.

いずれの場合も、砒素吸着処理時の水温は高い方が吸着速度が大きいことから、処理時の水温は、0〜99℃、特に20〜50℃とすることが好ましい。水温が上記下限以上であると高い吸着効率で処理を行うことができる。水温が過度に高くなると被処理液が液相を維持し得なくなるので、処理水温は、通常上記上限以下とする。   In any case, the higher the water temperature during the arsenic adsorption treatment, the higher the adsorption rate. Therefore, the water temperature during the treatment is preferably 0 to 99 ° C., particularly 20 to 50 ° C. When the water temperature is equal to or higher than the above lower limit, the treatment can be performed with high adsorption efficiency. If the water temperature becomes excessively high, the liquid to be treated cannot maintain the liquid phase.

また、砒素吸着処理時の被処理液のpHが高いとFeイオンの沈澱が生成し、低過ぎるとFeイオンが漏出し、吸着量が低下することから、砒素吸着処理時の被処理液はpH2〜4、特に2.5〜3.5の範囲であることが好ましい。従って、被処理液のpHがこの範囲から外れる場合は、酸又はアルカリでpH調整を行うことが好ましい。被処理液のpH調整に用いるアルカリとしては、例えば水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、水酸化アンモニウム等が用いられるが、特に水酸化ナトリウム、水酸化カリウムが好ましい。また酸としては、例えば塩酸、硫酸、硝酸、酢酸、シュウ酸等が挙げられるが、特に塩酸、硫酸が好ましい。   Further, if the pH of the liquid to be treated at the time of arsenic adsorption treatment is high, precipitation of Fe ions is generated, and if it is too low, Fe ions leak and the amount of adsorption decreases, so that the liquid to be treated at the time of arsenic adsorption treatment has a pH of 2 It is preferable that it is in the range of ˜4, particularly 2.5 to 3.5. Therefore, when the pH of the liquid to be treated falls outside this range, it is preferable to adjust the pH with an acid or an alkali. Examples of the alkali used for adjusting the pH of the liquid to be treated include lithium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, and ammonium hydroxide. Is preferred. Examples of the acid include hydrochloric acid, sulfuric acid, nitric acid, acetic acid, oxalic acid and the like, and hydrochloric acid and sulfuric acid are particularly preferable.

被処理液中にFe担持カチオン交換樹脂を添加して撹拌混合するバッチ処理方式で砒素の吸着処理を行う場合、用いるFe担持カチオン交換樹脂量は、被処理液中の砒素濃度によっても異なるが、通常、前述のFe担持処理で得られるFe担持カチオン交換樹脂の砒素吸着能(砒素吸着量)は0.1〜1.5mmol/g−乾燥樹脂程度であるため、Fe担持カチオン交換樹脂の砒素吸着能を勘案してFe担持カチオン交換樹脂の使用量を決定することが好ましい。なお、撹拌混合時間としては、通常0.1〜3時間程度とすることが好ましい。   When performing an arsenic adsorption treatment in a batch processing method in which an Fe-supported cation exchange resin is added to the liquid to be treated and mixed by stirring, the amount of Fe-supported cation exchange resin used varies depending on the arsenic concentration in the liquid to be treated. Usually, the arsenic adsorption capacity (arsenic adsorption amount) of the Fe-supported cation exchange resin obtained by the above-described Fe-supporting treatment is about 0.1 to 1.5 mmol / g-dry resin. It is preferable to determine the amount of Fe-supported cation exchange resin in consideration of the performance. The stirring and mixing time is usually preferably about 0.1 to 3 hours.

一方、Fe担持カチオン交換樹脂を充填したカラムに被処理液を通液する場合、通液SVは、1〜200hr−1、特に2〜50hr−1とすることが好ましい。SVが低過ぎると処理効率が悪く、所定量の被処理液の処理に長時間を要することになるが、SVが過度に高いと被処理液中の砒素を十分に吸着し得ないおそれがある。 On the other hand, when the liquid to be treated is passed through a column packed with Fe-supported cation exchange resin, the liquid passing SV is preferably 1 to 200 hr −1 , particularly preferably 2 to 50 hr −1 . If the SV is too low, the processing efficiency is poor, and it takes a long time to process a predetermined amount of the liquid to be processed. However, if the SV is excessively high, the arsenic in the liquid to be processed may not be sufficiently adsorbed. .

なお、被処理液は上向流通液であっても下向流通液であってもよい。   The liquid to be treated may be an upward flowing liquid or a downward flowing liquid.

被処理液の砒素吸着処理に使用したFe担持カチオン交換樹脂は、pH10以上、より好ましくはpH13以上のアルカリで処理することにより、樹脂に吸着された砒素を回収すると共にFe担持カチオン交換樹脂を再生することができる。
このようなアルカリによる処理でカチオン交換樹脂に担持されたFeイオンが溶出することはなく、従って、再生後のFe担持カチオン交換樹脂は、純水で洗浄するなどして、砒素吸着処理に再利用することができる。
The Fe-supported cation exchange resin used for the arsenic adsorption treatment of the liquid to be treated is treated with an alkali having a pH of 10 or more, more preferably pH 13 or more to recover the arsenic adsorbed on the resin and regenerate the Fe-supported cation exchange resin. can do.
The Fe ions supported on the cation exchange resin are not eluted by such an alkali treatment. Therefore, the recycled Fe-supported cation exchange resin can be reused for arsenic adsorption treatment by washing with pure water. can do.

[Na担持カチオン交換樹脂によるFeイオン捕捉処理]
前述の通り、Fe担持カチオン交換樹脂の砒素吸着量が多くなると、Feイオンが漏出する場合がある。特に、被処理液の電解質濃度が高く、イオン強度Iとして0.5mol/L以上であると、Feイオンの漏出傾向が高くなる。従って、この場合には、Na担持カチオン交換樹脂を併用して漏出したFeイオンを捕捉することが好ましい。
[Fe ion capture treatment with Na-supported cation exchange resin]
As described above, when the arsenic adsorption amount of the Fe-supported cation exchange resin increases, Fe ions may leak out. In particular, when the electrolyte concentration of the liquid to be treated is high and the ionic strength I is 0.5 mol / L or more, the tendency of Fe ions to leak out increases. Therefore, in this case, it is preferable to capture the leaked Fe ions in combination with the Na-supported cation exchange resin.

Na担持カチオン交換樹脂を併用する場合、Na担持カチオン交換樹脂はFe担持カチオン交換樹脂と混合して用いてもよく、被処理液がFe担持カチオン交換樹脂と接触した後Na担持カチオン交換樹脂と接触するように用いてもよい。即ち、前述のバッチ処理方式の場合、被処理液中にFe担持カチオン交換樹脂と共にNa担持カチオン交換樹脂を添加して撹拌混合してもよく、被処理液中にFe担持カチオン交換樹脂を添加して撹拌混合した後Fe担持カチオン交換樹脂を固液分離し、その後分離液にNa担持カチオン交換樹脂を添加して撹拌混合してもよい。   When the Na-supported cation exchange resin is used in combination, the Na-supported cation exchange resin may be used in combination with the Fe-supported cation exchange resin. It may be used as is. That is, in the case of the batch processing method described above, the Na-supported cation exchange resin may be added together with the Fe-supported cation exchange resin in the liquid to be treated and mixed with stirring, and the Fe-supported cation exchange resin may be added to the liquid to be treated. After stirring and mixing, the Fe-supported cation exchange resin may be subjected to solid-liquid separation, and then the Na-supported cation exchange resin may be added to the separated liquid and stirred and mixed.

また、連続処理方式の場合、カラムにFe担持カチオン交換樹脂とNa担持カチオン交換樹脂の混合物を充填し、カラム内にFe担持カチオン交換樹脂とNa担持カチオン交換樹脂の混床を形成して被処理液を通液してもよいし、一つのカラムの被処理液の入口側にFe担持カチオン交換樹脂床を形成し、出口側にNa担持カチオン交換樹脂床を形成する二層式としてもよい。或いは、Fe担持カチオン交換樹脂を充填したカラムとNa担持カチオン交換樹脂を充填したカラムを用い、被処理液をFe担持カチオン交換樹脂充填カラムに通液した後Na担持カチオン交換樹脂充填カラムに通液してもよい。   In the case of the continuous processing method, the column is filled with a mixture of Fe-supported cation exchange resin and Na-supported cation exchange resin, and a mixed bed of Fe-supported cation exchange resin and Na-supported cation exchange resin is formed in the column to be treated. The liquid may be passed, or a two-layer system in which an Fe-supported cation exchange resin bed is formed on the inlet side of the liquid to be treated in one column and an Na-supported cation exchange resin bed is formed on the outlet side. Alternatively, using a column packed with Fe-supported cation exchange resin and a column packed with Na-supported cation exchange resin, the liquid to be treated was passed through the Fe-supported cation exchange resin-filled column, and then passed through the Na-supported cation-exchange resin packed column. May be.

Fe担持カチオン交換樹脂と併用するNa担持カチオン交換樹脂量は、Fe担持カチオン交換樹脂からのFeイオンの漏出の程度により適宜決定される。   The amount of Na-supported cation exchange resin used in combination with the Fe-supported cation exchange resin is appropriately determined depending on the degree of leakage of Fe ions from the Fe-supported cation exchange resin.

Feイオンを捕捉、吸着したNa担持カチオン交換樹脂は、塩酸、硫酸、又は硝酸溶液を通液し、AsやFeイオンを溶離することにより再生することができる。   The Na-supported cation exchange resin that captures and adsorbs Fe ions can be regenerated by passing hydrochloric acid, sulfuric acid, or nitric acid solution and eluting As and Fe ions.

なお、市販のNa形カチオン交換樹脂に前述の方法でFe担持処理を行った場合、一部のカチオン交換樹脂はNaイオンとFeイオンとの置換がなされず、Na担持カチオン交換樹脂としてFe担持カチオン交換樹脂中に混在している。しかしながら、このようにFe担持カチオン交換樹脂中に混在しているNa担持カチオン交換樹脂のみでは、前述の通り、被処理液の電解質濃度が高い場合には、被処理液中の他のカチオンの吸着処理に混在したNa担持カチオン交換樹脂が使用されてしまい、Fe担持カチオン交換樹脂から漏出したFeイオンを捕捉し得ないため、別途Na担持カチオン交換樹脂を用いることが好ましい。   In addition, when the Fe loading treatment was performed on the commercially available Na-type cation exchange resin by the above-described method, some of the cation exchange resins were not substituted with Na ions and Fe ions, and the Fe-supported cations were used as Na-supported cation exchange resins. It is mixed in exchange resin. However, only the Na-supported cation exchange resin mixed in the Fe-supported cation exchange resin as described above can adsorb other cations in the process liquid when the electrolyte concentration of the process liquid is high. Since the Na-supported cation exchange resin mixed in the treatment is used and Fe ions leaked from the Fe-supported cation exchange resin cannot be captured, it is preferable to use a Na-supported cation exchange resin separately.

[Ca担持カチオン交換樹脂によるリン酸イオン捕捉処理]
前述の通り、被処理液中にリン酸イオンが存在すると、リン酸イオンがFe担持カチオン交換樹脂の砒素吸着作用を阻害するため、この場合には、Ca担持カチオン交換樹脂を用いて、予め被処理液中のリン酸イオンを吸着除去することが好ましい。
[Phosphate ion capture treatment with Ca-supported cation exchange resin]
As described above, when phosphate ions are present in the liquid to be treated, the phosphate ions inhibit the arsenic adsorption action of the Fe-supported cation exchange resin. In this case, the Ca-supported cation exchange resin is used in advance. It is preferable to adsorb and remove phosphate ions in the treatment liquid.

Ca担持カチオン交換樹脂を併用する場合、Ca担持カチオン交換樹脂は被処理液がCa担持カチオン交換樹脂と接触した後Fe担持カチオン交換樹脂と接触するように用いる。従って、バッチ処理方式の場合は、例えば、被処理液中にCa担持カチオン交換樹脂を添加して撹拌混合した後Ca担持カチオン交換樹脂を固液分離し、その後分離液にFe担持カチオン交換樹脂を添加して撹拌混合する。   When the Ca-supported cation exchange resin is used in combination, the Ca-supported cation exchange resin is used so that the liquid to be treated comes into contact with the Fe-supported cation exchange resin after contacting with the Ca-supported cation exchange resin. Therefore, in the case of the batch processing method, for example, the Ca-supported cation exchange resin is added to the liquid to be treated, and the mixture is stirred and mixed, and then the Ca-supported cation exchange resin is solid-liquid separated. Add and mix with stirring.

また、連続処理方式の場合、一つのカラムの被処理液の入口側にCa担持カチオン交換樹脂床を形成し、出口側にFe担持カチオン交換樹脂床を形成する二層式として被処理液を通液する。或いは、Ca担持カチオン交換樹脂を充填したカラムとFe担持カチオン交換樹脂を充填したカラムを用い、被処理水をCa担持カチオン交換樹脂充填カラムに通液した後Fe担持カチオン交換樹脂充填カラムに通液する。   In the case of a continuous processing method, the liquid to be processed is passed as a two-layer system in which a Ca-supported cation exchange resin bed is formed on the inlet side of the liquid to be processed in one column and an Fe-supported cation exchange resin bed is formed on the outlet side. Liquid. Alternatively, using a column packed with a Ca-supported cation exchange resin and a column packed with an Fe-supported cation exchange resin, water to be treated is passed through the Ca-supported cation exchange resin-filled column and then passed through the Fe-supported cation exchange resin-filled column. To do.

Fe担持カチオン交換樹脂と併用するCa担持カチオン交換樹脂量は、被処理液中のリン酸イオン量により適宜決定される。   The amount of Ca-supported cation exchange resin used in combination with the Fe-supported cation exchange resin is appropriately determined depending on the amount of phosphate ions in the liquid to be treated.

リン酸イオンを捕捉、吸着したCa担持カチオン交換樹脂は、塩酸、硫酸、又は硝酸溶液を通液し、Asやリン酸イオンを溶離することにより再生することができる。   The Ca-supported cation exchange resin that has captured and adsorbed phosphate ions can be regenerated by passing a hydrochloric acid, sulfuric acid, or nitric acid solution and eluting As and phosphate ions.

Fe担持カチオン交換樹脂と共にCa担持カチオン交換樹脂及びNa担持カチオン交換樹脂を併用する本発明の砒素吸着装置は、工業的実用化の面では、例えば、Ca担持カチオン交換樹脂充填カラム、Fe担持カチオン交換樹脂充填カラム、及びNa担持カチオン交換樹脂充填カラムを直列に接続した形態とすることができる。   The arsenic adsorption device of the present invention that uses both a Ca-supported cation exchange resin and a Na-supported cation exchange resin together with an Fe-supported cation exchange resin is, for example, a Ca-supported cation exchange resin-filled column, an Fe-supported cation exchange, in terms of industrial practical use. The resin packed column and the Na-supported cation exchange resin packed column can be connected in series.

以下、本発明を実施例によりさらに詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded.

〔カチオン交換樹脂〕
以下の実施例、比較例、参考例で用いたカチオン交換樹脂(いずれもNa形カチオン交換樹脂)の詳細は下記表1に示す通りである。
[Cation exchange resin]
The details of the cation exchange resins (all of which are Na-type cation exchange resins) used in the following examples, comparative examples, and reference examples are as shown in Table 1 below.

Figure 2015193001
Figure 2015193001

〔参考例1〜7、比較例1〕
[被処理液]
参考例1〜7及び比較例1において、砒素の吸着実験に被処理液として用いた砒素水溶液は、1N硝酸水溶液及び1N水酸化カリウム水溶液と、砒酸水素二ナトリウム・7結晶水(NaHAsO・7HO)を加えて、砒素濃度=10mg/L、イオン強度I=0.05mol/L、pH=3.0となるように調整したものである。
[Reference Examples 1 to 7, Comparative Example 1]
[Processed liquid]
In Reference Examples 1 to 7 and Comparative Example 1, the arsenic aqueous solution used as the liquid to be treated in the arsenic adsorption experiment was 1N nitric acid aqueous solution and 1N potassium hydroxide aqueous solution, disodium hydrogen arsenate · 7 crystal water (Na 2 HAsO 4 7H 2 O) is added to adjust the arsenic concentration to 10 mg / L, the ionic strength I to 0.05 mol / L, and the pH to 3.0.

[カチオン交換樹脂のFe担持量の分析]
カチオン交換樹脂に担持されたFe量の分析は高周波誘導結合プラズマ発光分光分析(ICP)により行った。
[Analysis of Fe loading of cation exchange resin]
The amount of Fe supported on the cation exchange resin was analyzed by high frequency inductively coupled plasma emission spectroscopy (ICP).

[砒素濃度の分析]
処理水中の砒素濃度は高周波誘導結合プラズマ発光分光分析(ICP)により求めた。ICPによる砒素濃度の検出限界は0.01mg/Lである。
[Analysis of arsenic concentration]
The arsenic concentration in the treated water was determined by high frequency inductively coupled plasma optical emission spectrometry (ICP). The detection limit of arsenic concentration by ICP is 0.01 mg / L.

[参考例1]
カチオン交換樹脂(ダイヤイオンSK104)10mLを0.2重量%の硝酸第二鉄・9結晶水(Fe(NO・9HO)の水溶液1Lに加えて室温で1時間攪拌した。ここへ硝酸水溶液と水酸化カリウム水溶液を添加して溶液のpHを2.0に調整した。
このようにしてFeの担持処理を行ったカチオン交換樹脂のFe担持量は、1.73meq/g−樹脂であった。
このFe担持カチオン交換樹脂を内径9mm×長さ15cmのカラムに、乾燥樹脂量として1.0g(約2.4mL)充填した後、脱塩水を室温でSV10hr−1で1時間通液して樹脂を水洗した。
ここへ砒素水溶液を30℃にてSV20.7hr−1で下向流にて通液した。
[Reference Example 1]
And stirred for 1 hour at room temperature added to an aqueous solution 1L of cation exchange resin (Diaion SK104) 10 mL 0.2 wt% ferric nitrate-9 crystal water (Fe (NO 3) 3 · 9H 2 O). A nitric acid aqueous solution and a potassium hydroxide aqueous solution were added thereto to adjust the pH of the solution to 2.0.
The Fe carrying amount of the cation exchange resin thus subjected to Fe carrying treatment was 1.73 meq / g-resin.
The Fe-supported cation exchange resin was packed in a column having an inner diameter of 9 mm and a length of 15 cm as a dry resin amount of 1.0 g (about 2.4 mL), and then demineralized water was passed at room temperature at SV10 hr −1 for 1 hour. Washed with water.
The arsenic aqueous solution was passed therethrough at 30 ° C. with SV 20.7 hr −1 in a downward flow.

通液開始から72時間は、処理水(カラム流出液)中に砒素のリークは認められなかった(検出限界以下)が、72時間後から処理水中に砒素が検出されるようになり、通液開始から120時間後には処理水の砒素濃度は9mg/Lとなった。
このときのカチオン交換樹脂の砒素吸着量は0.799mmol/g−樹脂、59.9mg−As/g−樹脂であった。
Arsenic leaks were not observed in the treated water (column effluent) for 72 hours from the start of liquid flow (below the detection limit), but arsenic began to be detected in the treated water after 72 hours. After 120 hours from the start, the arsenic concentration of the treated water was 9 mg / L.
The arsenic adsorption amount of the cation exchange resin at this time was 0.799 mmol / g-resin and 59.9 mg-As / g-resin.

[参考例2]
カチオン交換樹脂(ダイヤイオンSK104)5gに、0.2重量%の硝酸第二鉄水溶液を100mL加え、室温で1時間攪拌した。ここへ硝酸水溶液と水酸化カリウム水溶液を添加して、溶液のpHを2.0に調整してFe担持カチオン交換樹脂を得た。得られたFe担持カチオン交換樹脂のFe担持量は1.659meq/g−樹脂であった。
砒素水溶液200mLにこのFe担持カチオン交換樹脂を乾燥樹脂量として0.5g入れて振盪器で1時間振盪し、振盪後の上澄み液の砒素濃度の分析結果から、Fe担持カチオン交換樹脂の砒素吸着量を求めたところ、0.037mmol/g−樹脂、2.77mg−As/g−樹脂であった。なお、上澄み液の砒素濃度は3.1mg/Lであった。
[Reference Example 2]
To 5 g of cation exchange resin (Diaion SK104), 100 mL of 0.2 wt% aqueous ferric nitrate solution was added and stirred at room temperature for 1 hour. A nitric acid aqueous solution and a potassium hydroxide aqueous solution were added thereto to adjust the pH of the solution to 2.0 to obtain an Fe-supported cation exchange resin. The amount of Fe supported on the obtained Fe-supported cation exchange resin was 1.659 meq / g-resin.
0.5 g of this Fe-supported cation exchange resin is put in 200 mL of an arsenic aqueous solution as a dry resin amount, shaken with a shaker for 1 hour, and the arsenic adsorption amount of Fe-supported cation exchange resin is determined from the analysis result of the arsenic concentration of the supernatant after shaking. Was 0.037 mmol / g-resin, 2.77 mg-As / g-resin. The arsenic concentration in the supernatant was 3.1 mg / L.

[参考例3]
参考例2において、振盪時間を96時間としたことと樹脂添加量を0.02gとしたこと以外は同様にして吸着実験を行ったところ、上澄み液の砒素濃度は4.5mg/Lで、Fe担持カチオン交換樹脂の砒素吸着量は0.73mmol/g−樹脂、54.7mg−As/g−樹脂であった。
[Reference Example 3]
In Reference Example 2, an adsorption experiment was conducted in the same manner except that the shaking time was 96 hours and the resin addition amount was 0.02 g. As a result, the arsenic concentration of the supernatant was 4.5 mg / L, Fe The arsenic adsorption amount of the supported cation exchange resin was 0.73 mmol / g-resin and 54.7 mg-As / g-resin.

[参考例4]
参考例2において、Feの担持処理で得られたFe担持カチオン交換樹脂を乳鉢を用いて粉砕し、粉砕後の樹脂を開き目75μmから150μmの篩を用い分級した(平均粒径150μm、均一係数1.6)。粉砕、分級後のFe担持カチオン交換樹脂のFe担持量を分析した結果、1.659meq/g−樹脂であった。
この粉砕、分級後のFe担持カチオン交換樹脂を用いて参考例2と同様に吸着実験を行ったところ、樹脂添加量を0.03gとした場合には、上澄み液の砒素濃度は3.0mg/Lで、Fe担持カチオン交換樹脂の砒素吸着量は0.63mmol/g−樹脂、46.9mg−As/g−樹脂であった。
[Reference Example 4]
In Reference Example 2, the Fe-supported cation exchange resin obtained by Fe-supporting treatment was pulverized using a mortar, and the pulverized resin was classified using a sieve having an opening of 75 μm to 150 μm (average particle size 150 μm, uniformity coefficient 1.6). As a result of analyzing the Fe carrying amount of the Fe carrying cation exchange resin after pulverization and classification, it was 1.659 meq / g-resin.
When an adsorption experiment was conducted in the same manner as in Reference Example 2 using the Fe-supported cation exchange resin after pulverization and classification, when the resin addition amount was 0.03 g, the arsenic concentration of the supernatant was 3.0 mg / L, the arsenic adsorption amount of the Fe-supported cation exchange resin was 0.63 mmol / g-resin, 46.9 mg-As / g-resin.

[参考例5]
カチオン交換樹脂として、ダイヤイオンMCI−GEL CK04Sを用いたこと以外は、参考例2と同様にしてFe担持処理を行ったところ、得られたFe担持カチオン交換樹脂のFe担持量は2.285meq/g−樹脂であった。
このFe担持カチオン交換樹脂を用いて参考例2と同様に吸着実験を行ったところ、樹脂添加量0.02gの場合には、上澄み液の砒素濃度は4.6mg/Lで、Fe担持カチオン交換樹脂の砒素吸着量は0.72mmol/g−樹脂、53.9mg−As/g−樹脂であった。
[Reference Example 5]
Except that Diaion MCI-GEL CK04S was used as the cation exchange resin, the Fe carrying treatment was performed in the same manner as in Reference Example 2. As a result, the Fe carrying amount of the obtained Fe carrying cation exchange resin was 2.285 meq / g-resin.
Using this Fe-supported cation exchange resin, an adsorption experiment was conducted in the same manner as in Reference Example 2. When the amount of resin added was 0.02 g, the arsenic concentration of the supernatant was 4.6 mg / L, and Fe-supported cation exchange was performed. The arsenic adsorption amount of the resin was 0.72 mmol / g-resin and 53.9 mg-As / g-resin.

[参考例6]
カチオン交換樹脂として、ダイヤイオンPK208を用いたこと以外は、参考例2と同様にしてFe担持処理を行ったところ、得られたFe担持カチオン交換樹脂のFe担持量は1.50meq/g−樹脂であった。
このFe担持カチオン交換樹脂を用いて参考例2と同様に吸着実験を行ったところ、上澄み液の砒素濃度は1.6mg/Lで、Fe担持カチオン交換樹脂の砒素吸着量は0.045mmol/g−樹脂、3.4mg−As/g−樹脂であった。
[Reference Example 6]
Except that Diaion PK208 was used as the cation exchange resin, the Fe carrying treatment was performed in the same manner as in Reference Example 2, and the Fe carrying amount of the obtained Fe carrying cation exchange resin was 1.50 meq / g-resin. Met.
When an adsorption experiment was performed using this Fe-supported cation exchange resin in the same manner as in Reference Example 2, the arsenic concentration of the supernatant was 1.6 mg / L, and the arsenic adsorption amount of the Fe-supported cation exchange resin was 0.045 mmol / g. -Resin, 3.4 mg-As / g-resin.

[参考例7]
カチオン交換樹脂として、ダイヤイオンRCR160Mを用いたこと以外は、参考例2と同様にしてFe担持処理を行ったところ、得られたFe担持カチオン交換樹脂のFe担持量は1.309meq/g−樹脂であった。
このFe担持カチオン交換樹脂を用いて参考例2と同様に吸着実験を行ったところ、樹脂添加量0.2gの場合には、上澄み液の砒素濃度は2.6mg/Lで、Fe担持カチオン交換樹脂の砒素吸着量は0.10mmol/g−樹脂、7.5mg−As/g−樹脂であった。
[Reference Example 7]
Except that Diaion RCR160M was used as the cation exchange resin, the Fe carrying treatment was carried out in the same manner as in Reference Example 2, and the Fe carrying amount of the obtained Fe carrying cation exchange resin was 1.309 meq / g-resin. Met.
Using this Fe-supported cation exchange resin, an adsorption experiment was conducted in the same manner as in Reference Example 2. When the resin addition amount was 0.2 g, the arsenic concentration of the supernatant was 2.6 mg / L, and Fe-supported cation exchange was performed. The arsenic adsorption amount of the resin was 0.10 mmol / g-resin and 7.5 mg-As / g-resin.

[比較例1]
参考例1において、乾燥樹脂量として0.5g(約1.2mL)とし、砒素水溶液の通液速度をSV78.6hr−1としたこと以外は同様にして吸着実験を行ったところ、通液開始初期から処理水中に0.5mg/L程度の砒素がリークした。
[Comparative Example 1]
In Reference Example 1, when the adsorption experiment was conducted in the same manner except that the dry resin amount was 0.5 g (about 1.2 mL) and the flow rate of the arsenic aqueous solution was SV78.6 hr −1 , the flow start was started. Arsenic of about 0.5 mg / L leaked into the treated water from the beginning.

〔参考例8〕
<被処理液>
吸着実験に用いた被処理液は以下のとおりである。
[Reference Example 8]
<Processed liquid>
The liquids to be treated used in the adsorption experiment are as follows.

(リンの吸着実験)
リンの吸着実験に被処理液として用いたリン水溶液は、1N硝酸水溶液及び1N水酸化ナトリウム水溶液と、リン酸水素二ナトリウム(NaHPO・7HO)を加えて、リン濃度=10mg/L、イオン強度I=0.05mol/L、pH=9.0となるように調整した。
(Phosphorus adsorption experiment)
The phosphorus aqueous solution used as the liquid to be treated in the phosphorus adsorption experiment was obtained by adding 1N nitric acid aqueous solution and 1N sodium hydroxide aqueous solution and disodium hydrogen phosphate (Na 2 HPO 4 · 7H 2 O) to obtain a phosphorous concentration = 10 mg / L, ionic strength I = 0.05 mol / L, and pH = 9.0.

(砒素の吸着実験)
砒素の吸着実験に被処理液として用いた砒素水溶液は、1N硝酸水溶液及び1N水酸化ナトリウム水溶液と、砒酸水素二ナトリウム・7結晶水(NaHAsO・7HO)を加えて、砒素濃度=10mg/L、イオン強度I=0.05mol/L、pH=11.0となるように調整した。
(Arsenic adsorption experiment)
The arsenic aqueous solution used as the treatment liquid in the arsenic adsorption experiment was added with 1N nitric acid aqueous solution and 1N sodium hydroxide aqueous solution, and disodium hydrogen arsenate · 7 crystal water (Na 2 HAsO 4 · 7H 2 O) to obtain an arsenic concentration. = 10 mg / L, ionic strength I = 0.05 mol / L, and pH was adjusted to 11.0.

<カチオン交換樹脂のCa担持量の分析>
カチオン交換樹脂に担持されたCa量の分析は高周波誘導結合プラズマ発光分光分析(ICP)により行った。
<Analysis of Ca loading of cation exchange resin>
The amount of Ca supported on the cation exchange resin was analyzed by high frequency inductively coupled plasma emission spectroscopy (ICP).

<リン濃度の分析>
処理水中のリン濃度はモリブデンブルー法を用いて発色させ、分析は吸光度測定法により行った。
<Analysis of phosphorus concentration>
The phosphorus concentration in the treated water was developed using the molybdenum blue method, and the analysis was performed by the absorbance measurement method.

<Ca担持カチオン交換樹脂の製造>
カチオン交換樹脂(ダイヤイオンSK104)乾燥重量5.0gに、0.1重量%の塩化カルシウム水溶液を1000mL加え、室温で1時間攪拌した。ここへ硝酸水溶液と水酸化カリウム水溶液を添加して、溶液のpHを3.0に調整してCaイオン担持カチオン交換樹脂を得た。得られたCa担持カチオン交換樹脂のCa担持量は2.045meq/g−樹脂であった。
<Production of Ca-supported cation exchange resin>
To a dry weight of 5.0 g of cation exchange resin (Diaion SK104), 1000 mL of a 0.1 wt% aqueous solution of calcium chloride was added and stirred at room temperature for 1 hour. A nitric acid aqueous solution and a potassium hydroxide aqueous solution were added thereto to adjust the pH of the solution to 3.0 to obtain a Ca ion-supporting cation exchange resin. The amount of Ca supported on the obtained Ca supported cation exchange resin was 2.045 meq / g-resin.

<リンの吸着実験>
リン水溶液200mLにこのCa担持カチオン交換樹脂を乾燥樹脂量として1.0g入れて振盪器で1時間振盪し、振盪後の上澄み液のリン濃度の分析結果から、Caイオン担持カチオン交換樹脂のリン吸着量を求めたところ、0.592mmol/g−樹脂、18.33mg−P/g−樹脂であった。なお、上澄み液のリン濃度は5.32mg/Lであった。
<Adsorption experiment of phosphorus>
1.0 g of this Ca-supported cation exchange resin is put in 200 mL of an aqueous phosphorous solution as a dry resin amount, shaken with a shaker for 1 hour, and the phosphorus adsorption of the Ca ion-supported cation exchange resin is determined from the analysis result of the phosphorus concentration of the supernatant after shaking. When the quantity was calculated | required, they were 0.592 mmol / g-resin and 18.33 mg-P / g-resin. The phosphorus concentration in the supernatant was 5.32 mg / L.

<砒素の吸着実験>
砒素水溶液200mLに、Caイオン担持カチオン交換樹脂を乾燥樹脂量として1.0g入れて振盪器で1時間振盪し、振盪後の上澄み液の砒素濃度の分析結果から、Caイオン担持カチオン交換樹脂の砒素吸着量を求めたところ、0.0007mmol/g−樹脂、0.04997mg−As/g−樹脂であった。なお、上澄み液の砒素濃度は9.79mg/Lであった。
<Arsenic adsorption experiment>
In 200 mL of an arsenic aqueous solution, 1.0 g of a Ca ion-supported cation exchange resin as a dry resin amount is added and shaken for 1 hour with a shaker. From the analysis result of the arsenic concentration of the supernatant after shaking, the arsenic of the Ca ion-supported cation exchange resin is obtained. The adsorption amount was determined to be 0.0007 mmol / g-resin and 0.04997 mg-As / g-resin. The arsenic concentration in the supernatant was 9.79 mg / L.

上記の実験から砒素とリン酸が混在する溶液から、砒素イオンの吸着の際に妨害イオンとなるリン酸をCaイオン担持交換樹脂で先に前処理し、リン酸濃度を下げた溶液をFeイオン担持カチオン交換樹脂で砒素イオンを捕捉できることが分かる。   From the above experiment, from a mixed solution of arsenic and phosphoric acid, phosphoric acid, which becomes an interfering ion during the adsorption of arsenic ions, is pretreated with a Ca ion-supporting exchange resin first, and a solution with a reduced phosphoric acid concentration is Fe ion. It can be seen that arsenic ions can be captured by the supported cation exchange resin.

〔参考例9〕
<Fe担持用Fe(III)溶液の調製>
2Lメスフラスコに、硝酸第二鉄・9結晶水でFe(III)濃度が1,000mg/LとなるようにFe(III)溶液を調製した。3,000mLビーカーにこのFe(III)溶液を移した後、インペラで撹拌を行ないながらpH2に調整してFe担持用Fe(III)溶液を調製した。pH調整は、1M HNOと1M NaOHを適当に薄めた溶液を調製し、マイクロピペットで1滴ずつ加えて行った。その際、できる限りNaOHを添加せずに目標pHとなるようにした。
目標pHに達したら、撹拌しながらシリンジを用いて溶液を採取し、孔径0.45μmのメンブランフィルターで濾過した。得られた濾液を濾液Iとした。
[Reference Example 9]
<Preparation of Fe (III) solution for Fe support>
An Fe (III) solution was prepared in a 2 L volumetric flask so that the Fe (III) concentration was 1,000 mg / L with ferric nitrate · 9 crystal water. After this Fe (III) solution was transferred to a 3,000 mL beaker, the pH was adjusted to 2 while stirring with an impeller to prepare a Fe (III) solution for supporting Fe. The pH was adjusted by preparing a solution in which 1M HNO 3 and 1M NaOH were appropriately diluted, and adding each drop with a micropipette. At that time, as much as possible, NaOH was not added to reach the target pH.
When the target pH was reached, the solution was collected using a syringe while stirring and filtered through a membrane filter having a pore size of 0.45 μm. The obtained filtrate was designated as filtrate I.

<カチオン交換樹脂へのFe(III)担持>
Fe担持用Fe(III)溶液に、真空乾燥したカチオン交換樹脂(ダイヤイオンSK104)を投入した。1時間撹拌後、濾液Iと同様にシリンジで溶液を採取し、濾過した。得られた濾液を濾液IIとする。
濾液Iと濾液IIについてICP発光分光分析装置でFe(III)濃度を測定した。
濾液IIの採取後、カチオン交換樹脂を回収するため、孔径0.45μmの濾紙を使用してアスピレーターを用いて吸引濾過を行なった。その際、カチオン交換樹脂表面でのFe(III)の付着や沈殿生成を避けるため、硝酸を添加してpH2程度に調整した溶液で洗浄を行なった。濾過、洗浄を行なって得られたカチオン交換樹脂を約24時間加熱乾燥してFe(III)担持カチオン交換樹脂を得た。
濾液Iと濾液IIのFe(III)濃度とカチオン交換樹脂量から求めた乾燥樹脂重量当たりのFe(III)担持量は1.75meq/g−樹脂であった。
<Fe (III) loading on cation exchange resin>
A vacuum-dried cation exchange resin (Diaion SK104) was added to the Fe (III) solution for supporting Fe. After stirring for 1 hour, the solution was collected with a syringe in the same manner as in filtrate I, and filtered. The obtained filtrate is designated as Filtrate II.
For the filtrate I and the filtrate II, the Fe (III) concentration was measured with an ICP emission spectroscopic analyzer.
After collecting the filtrate II, suction filtration was performed using an aspirator using a filter paper having a pore size of 0.45 μm in order to collect the cation exchange resin. At that time, in order to avoid adhesion of Fe (III) and precipitation formation on the surface of the cation exchange resin, washing was performed with a solution adjusted to about pH 2 by adding nitric acid. The cation exchange resin obtained by filtration and washing was heated and dried for about 24 hours to obtain a Fe (III) -supported cation exchange resin.
The amount of Fe (III) supported per dry resin weight determined from the Fe (III) concentration and the amount of cation exchange resin in filtrate I and filtrate II was 1.75 meq / g-resin.

<カラム試験>
内径9mm、長さ150mmのアクリル製のカラムに、不織布、Fe(III)担持樹カチオン交換樹脂、不織布の順で充填したカラムを準備した。Fe(III)担持カチオン交換樹脂の充填量は、乾燥重量で2.0g−樹脂又は1.0g−樹脂とした。
EYELA製MP−2000型ペリスタルティックチューブポンプ及びSMP−21型カセットチューブポンプを用い、各々のカラムに砒素水溶液を、50mL/hr(カラムの樹脂充填量が2.0gの場合)、又は25mL/hr(カラムの樹脂充填量が1.0gの場合)の一定流量で上向流で通液した。この通液量は1時間1BVに相当する。
砒素水溶液の供給に際しては、予め純水を約1時間通液して洗浄した後に、同一流量で砒素水溶液を通液した。
カラム流出液は一定時間毎に採取し、採取した液のAs(V)濃度を卓上型ICP発光分光分析装置で測定した。
As(V)濃度の測定結果から求めたAs(V)の破過曲線を図1に示した。
図1からわかるように、通液開始から192時間後まで、即ち、処理量192BVまでAs(V)イオンは漏洩せず、Fe(III)担持カチオン交換樹脂によって砒素を吸着除去することができた。
<Column test>
An acrylic column having an inner diameter of 9 mm and a length of 150 mm was prepared by filling a non-woven fabric, an Fe (III) -supporting tree cation exchange resin, and a non-woven fabric in this order. The filling amount of the Fe (III) -supported cation exchange resin was 2.0 g-resin or 1.0 g-resin by dry weight.
Using EYELA's MP-2000 type peristaltic tube pump and SMP-21 type cassette tube pump, arsenic aqueous solution is applied to each column at 50 mL / hr (when the resin packing amount of the column is 2.0 g), or 25 mL / hr. The liquid was passed in an upward flow at a constant flow rate (when the resin packing amount of the column was 1.0 g). This flow rate corresponds to 1 BV for 1 hour.
In supplying the arsenic aqueous solution, pure water was passed in advance for about 1 hour for cleaning, and then the arsenic aqueous solution was passed at the same flow rate.
The column effluent was collected at regular time intervals, and the As (V) concentration of the collected liquid was measured with a desktop ICP emission spectroscopic analyzer.
The breakthrough curve of As (V) obtained from the measurement result of As (V) concentration is shown in FIG.
As can be seen from FIG. 1, As (V) ions did not leak up to 192 hours after the start of liquid flow, that is, up to a treatment amount of 192 BV, and arsenic could be adsorbed and removed by the Fe (III) -supported cation exchange resin. .

[実施例1]
以下のとおり、被処理液に1段目バッチ試験を実施した後に、2段目バッチ試験を実施した。
[Example 1]
As described below, after the first stage batch test was performed on the liquid to be treated, the second stage batch test was performed.

〈被処理液〉
pH:11、As(V)濃度:10.731ppm、P濃度:4.25ppmとなるように被処理液を調製した。被処理液の調製には、1N硝酸水溶液及び1N水酸化ナトリウム水溶液と、リン酸水素二ナトリウム(NaHPO・7HO)と、砒酸水素二ナトリウム・7結晶水(NaHAsO・7HO)を用いた。以下の比較例2,3においても同様である。
<Processed liquid>
The liquid to be treated was prepared so that the pH was 11, the As (V) concentration was 10.731 ppm, and the P concentration was 4.25 ppm. For the preparation of the liquid to be treated, a 1N nitric acid aqueous solution and a 1N sodium hydroxide aqueous solution, disodium hydrogen phosphate (Na 2 HPO 4 · 7H 2 O), disodium hydrogen arsenate · 7 crystal water (Na 2 HAsO 4 · 7H 2 O) was used. The same applies to Comparative Examples 2 and 3 below.

〈1段目バッチ試験〉
上記の被処理液に、参考例8と同様に製造したCa担持カチオン交換樹脂を乾燥樹脂量として1g/Lを添加し、1時間撹拌したところ、溶液中の残存As(V)濃度は9.889ppm、残存P濃度は1.065ppmであった。
<First stage batch test>
When 1 g / L of the Ca-supported cation exchange resin produced in the same manner as in Reference Example 8 was added to the above-mentioned liquid to be treated as a dry resin amount and stirred for 1 hour, the residual As (V) concentration in the solution was 9. The residual P concentration was 889 ppm and 1.065 ppm.

1段目バッチ試験の結果から、Ca担持カチオン交換樹脂にて、Pのみが選択的に除去されたことが分かる。   From the results of the first-stage batch test, it can be seen that only P was selectively removed in the Ca-supported cation exchange resin.

〈2段目バッチ試験〉
1段目バッチ試験後の溶液を濾過してCa担持カチオン交換樹脂を除去した濾液に対して、1N硝酸水溶液を加えてpH3に調整した。その後、この濾液に対し、参考例9と同様にして製造したFe担持カチオン交換樹脂を乾燥樹脂量として1g/Lを添加し、1時間撹拌したところ、溶液中の残存As(V)濃度は4.372ppmとなった。
<Second stage batch test>
The solution after the first-stage batch test was filtered to remove the Ca-supported cation exchange resin, and a 1N nitric acid aqueous solution was added to adjust the pH to 3. Thereafter, 1 g / L of Fe-supported cation exchange resin produced in the same manner as in Reference Example 9 was added to this filtrate as a dry resin amount and stirred for 1 hour. As a result, the residual As (V) concentration in the solution was 4 372 ppm.

2段目バッチ試験の結果から、Ca担持カチオン交換樹脂およびFe担持カチオン交換樹脂を用いた砒素吸着装置は、As(V)単独溶液の除去能力とほぼ同じであった。つまり、Ca担持カチオン交換樹脂により、妨害イオンであるPイオン(リン酸イオン)を除去しているため、As(V)イオンおよびPイオンが共存している溶液においても充分なAs(V)イオン除去を行うことが可能であった。   From the results of the second batch test, the arsenic adsorption device using the Ca-supported cation exchange resin and the Fe-supported cation exchange resin was almost the same as the removal ability of the As (V) single solution. That is, since P ions (phosphate ions) that are interfering ions are removed by the Ca-supported cation exchange resin, sufficient As (V) ions can be obtained even in a solution in which As (V) ions and P ions coexist. Removal was possible.

[比較例2]
以下のとおり、被処理液にバッチ試験を実施した。
[Comparative Example 2]
A batch test was performed on the liquid to be treated as follows.

〈被処理液〉
pH:3、As(V)濃度:11.165ppm、P濃度:4.375ppmとなるように被処理液を調製した。
<Processed liquid>
The liquid to be treated was prepared so that the pH was 3, the As (V) concentration was 11.165 ppm, and the P concentration was 4.375 ppm.

〈バッチ試験〉
上記の被処理液に、参考例9と同様に製造したFe担持カチオン交換樹脂を乾燥樹脂量として1g/L添加し、1時間撹拌したが、As(V)およびPイオンともにほとんどFe担持カチオン交換樹脂には捕捉されずに溶液中にそのまま残存した。
<Batch test>
1 g / L of Fe-supported cation exchange resin produced in the same manner as in Reference Example 9 was added to the liquid to be treated as a dry resin amount and stirred for 1 hour, but both As (V) and P ions were mostly Fe-supported cation exchange. It remained in the solution without being trapped by the resin.

[比較例3]
以下のとおり、被処理液にバッチ試験を実施した。
[Comparative Example 3]
A batch test was performed on the liquid to be treated as follows.

〈被処理液〉
pH:3、As(V)濃度:10.78ppm、P濃度:4.17ppmとなるように被処理液を調製した。
<Processed liquid>
A liquid to be treated was prepared so that the pH was 3, the As (V) concentration was 10.78 ppm, and the P concentration was 4.17 ppm.

〈バッチ試験〉
上記の被処理液に、参考例8と同様にして調製したCa担持カチオン交換樹脂と参考例9と同様にして調製したFe担持カチオン交換樹脂との混合物(樹脂の比率=1:1)を乾燥樹脂量として1g/L添加し、1時間撹拌した。
その結果、溶液中の残存As(V)濃度は9.134ppm、残存P濃度は3.672ppmとなり、As(V)およびPイオンの両者ともほとんど除去されなかった。
<Batch test>
A mixture of the Ca-supported cation exchange resin prepared in the same manner as in Reference Example 8 and the Fe-supported cation exchange resin prepared in the same manner as in Reference Example 9 (resin ratio = 1: 1) was dried on the liquid to be treated. 1 g / L of resin was added and stirred for 1 hour.
As a result, the residual As (V) concentration in the solution was 9.134 ppm and the residual P concentration was 3.672 ppm, and both As (V) and P ions were hardly removed.

[比較例4]
〈溶液の調製〉
被処理液として用いた砒素・リン酸混合水溶液は1M HNOおよび1M NaOHと、砒酸水素二ナトリウム・7結晶水(NaHAsO・7HO)およびリン酸水素二ナトリウム(NaHPO)を加えて、砒素濃度=10mg/L,AsO/PO 3− モル比=1.0、イオン強度=0.05、pH=13となるように調整した。
[Comparative Example 4]
<Preparation of solution>
Arsenic / phosphoric acid mixed aqueous solution used as the liquid to be treated was 1M HNO 3 and 1M NaOH, disodium hydrogen arsenate · 7 crystal water (Na 2 HAsO 4 · 7H 2 O) and disodium hydrogen phosphate (Na 2 HPO 4). ) Was added so that the arsenic concentration = 10 mg / L, AsO 4 / PO 4 3− molar ratio = 1.0, ionic strength = 0.05, and pH = 13.

〈樹脂の調製〉
1M HNOおよび1M NaOHと、硝酸カルシウム・4水和物(Ca(NO・4HO)でCa(II)濃度=1000mg/L、pH=3となるように調整した。ここへカチオン交換樹脂(ダイヤイオンSK104)7.5g/Lを加えて室温で1時間撹拌した。樹脂を回収するため、濾紙0.45μmを使用してアスピレーターを用いて吸引濾過を行なった。濾過洗浄を行なった後、約24時間熱乾燥させ、これをCa(II)担持樹脂とした。このようにしてCa(II)の担持処理を行なったカチオン交換樹脂のCa(II)担持量は2.05mmol−Ca/g−樹脂となった。
<Preparation of resin>
1M HNO 3 and 1M NaOH and calcium nitrate tetrahydrate (Ca (NO 3 ) 2 .4H 2 O) were adjusted so that the Ca (II) concentration = 1000 mg / L and pH = 3. Cation exchange resin (Diaion SK104) 7.5g / L was added here, and it stirred at room temperature for 1 hour. In order to collect the resin, suction filtration was performed using an aspirator using 0.45 μm filter paper. After filtering and washing, it was heat-dried for about 24 hours to obtain a Ca (II) -supporting resin. The amount of Ca (II) supported by the cation exchange resin thus subjected to the Ca (II) support treatment was 2.05 mmol-Ca / g-resin.

〈通液法〉
このCa(II)担持カチオン交換樹脂を内径9mm×長さ150mmのアクリル製カラムに乾燥重量として1.9g充填した後、純水を室温で流量50ml/hr(SV=21.8hr−1)で1時間通液した。ここへ上記の砒素・リン酸混合水溶液を室温にて流量50ml/hr(SV=21.8hr−1)で上向流で通液した。
この結果、通液初期には処理水中にリンのリークは認められなかったが、21時間後には2.1mg/L、44時間後には12.5mg/Lのリンがリークした。このときの樹脂へのリン吸着量は0.36mmol/Lであった。またこのとき、砒素は樹脂へは吸着せず、全量処理水へリークした。処理水の金属濃度の分析結果を図2に示した。
<Liquid flow method>
After filling 1.9 g of this Ca (II) -supported cation exchange resin into an acrylic column having an inner diameter of 9 mm × length of 150 mm as a dry weight, pure water was flowed at room temperature at a flow rate of 50 ml / hr (SV = 21.8 hr −1 ). The solution was passed for 1 hour. The above arsenic / phosphoric acid mixed aqueous solution was passed therethrough at a flow rate of 50 ml / hr (SV = 21.8 hr −1 ) at room temperature.
As a result, no phosphorus leak was observed in the treated water at the beginning of the liquid flow, but 2.1 mg / L of phosphorus leaked after 21 hours and 12.5 mg / L of phosphorus leaked after 44 hours. The phosphorus adsorption amount to the resin at this time was 0.36 mmol / L. At this time, arsenic did not adsorb to the resin, but leaked into the whole treated water. The analysis result of the metal concentration of the treated water is shown in FIG.

Claims (10)

被処理液と接触して該被処理液中の砒素を吸着する砒素吸着剤を備える砒素吸着装置であって、該砒素吸着剤としてのFeイオンを対イオンとしたカチオン交換樹脂と、Caイオンを対イオンとしたカチオン交換樹脂とを有し、
前記被処理液が前記Feイオンを対イオンとしたカチオン交換樹脂と接触する前に、前記Caイオンを対イオンとしたカチオン交換樹脂と接触する構造であることを特徴とする砒素吸着装置。
An arsenic adsorbing device comprising an arsenic adsorbent that comes into contact with a liquid to be treated and adsorbs arsenic in the liquid to be treated, comprising a cation exchange resin using Fe ions as a counter ion as the arsenic adsorbent and Ca ions. A cation exchange resin as a counter ion,
An arsenic adsorption apparatus having a structure in which the liquid to be treated comes into contact with a cation exchange resin using Ca ions as a counter ion before coming into contact with the cation exchange resin using Fe ions as a counter ion.
前記Feイオンを対イオンとしたカチオン交換樹脂がゲル型であることを特徴とする請求項1に記載の砒素吸着装置。   2. The arsenic adsorption apparatus according to claim 1, wherein the cation exchange resin having the Fe ion as a counter ion is a gel type. 前記Feイオンを対イオンとしたカチオン交換樹脂の平均粒径が800μm以下であることを特徴とする請求項1または2に記載の砒素吸着装置。   3. The arsenic adsorption apparatus according to claim 1, wherein an average particle diameter of the cation exchange resin having Fe ions as a counter ion is 800 μm or less. 前記Feイオンを対イオンとしたカチオン交換樹脂の粒径の均一係数が1.2以下であることを特徴とする請求項1〜3のいずれか1項に記載の砒素吸着装置。   The arsenic adsorption apparatus according to any one of claims 1 to 3, wherein a uniformity coefficient of a particle size of the cation exchange resin using the Fe ion as a counter ion is 1.2 or less. 被処理液を砒素吸着剤に接触させて、該被処理液中の砒素を該砒素吸着剤に吸着させる砒素吸着方法であって、該砒素吸着剤としてのFeイオンを対イオンとしたカチオン交換樹脂と、Caイオンを対イオンとしたカチオン交換樹脂とを使用し、
前記被処理液を、前記Feイオンを対イオンとしたカチオン交換樹脂と接触させる前に、前記Caイオンを対イオンとしたカチオン交換樹脂に接触させることを特徴とする砒素吸着方法。
An arsenic adsorption method in which a liquid to be treated is brought into contact with an arsenic adsorbent and arsenic in the liquid to be treated is adsorbed on the arsenic adsorbent, wherein the cation exchange resin uses Fe ions as the arsenic adsorbent as a counter ion And a cation exchange resin with a Ca ion as a counter ion,
An arsenic adsorption method comprising contacting the liquid to be treated with a cation exchange resin using Ca ions as a counter ion before contacting with the cation exchange resin using Fe ions as a counter ion.
前記Feイオンを対イオンとしたカチオン交換樹脂がゲル型であることを特徴とする請求項5に記載の砒素吸着方法。   The arsenic adsorption method according to claim 5, wherein the cation exchange resin having the Fe ion as a counter ion is a gel type. 前記Feイオンを対イオンとしたカチオン交換樹脂の平均粒径が800μm以下であることを特徴とする請求項5または6に記載の砒素吸着方法。   The arsenic adsorption method according to claim 5 or 6, wherein an average particle diameter of the cation exchange resin using Fe ions as a counter ion is 800 µm or less. 前記Feイオンを対イオンとしたカチオン交換樹脂の粒径の均一係数が1.2以下であることを特徴とする請求項5〜7のいずれか1項に記載の砒素吸着方法。   The arsenic adsorption method according to any one of claims 5 to 7, wherein a uniformity coefficient of a particle size of the cation exchange resin using the Fe ion as a counter ion is 1.2 or less. 前記被処理液のpHが2〜4であることを特徴とする請求項5〜8のいずれか1項に記載の砒素吸着方法。   The arsenic adsorption method according to any one of claims 5 to 8, wherein the pH of the liquid to be treated is 2 to 4. 前記Feイオンを対イオンとしたカチオン交換樹脂の充填層に前記被処理液を通液する方法であって、該被処理液の通液SVを1〜200hr−1とすることを特徴とする請求項5〜9のいずれか1項に記載の砒素吸着方法。 A method of passing the liquid to be treated through a packed bed of a cation exchange resin using Fe ions as a counter ion, wherein the liquid SV of the liquid to be treated is 1 to 200 hr −1. Item 10. The arsenic adsorption method according to any one of Items 5 to 9.
JP2015061062A 2014-03-25 2015-03-24 Arsenic adsorption apparatus and arsenic adsorption method Active JP6376536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015061062A JP6376536B2 (en) 2014-03-25 2015-03-24 Arsenic adsorption apparatus and arsenic adsorption method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014061960 2014-03-25
JP2014061960 2014-03-25
JP2015061062A JP6376536B2 (en) 2014-03-25 2015-03-24 Arsenic adsorption apparatus and arsenic adsorption method

Publications (2)

Publication Number Publication Date
JP2015193001A true JP2015193001A (en) 2015-11-05
JP6376536B2 JP6376536B2 (en) 2018-08-22

Family

ID=54432565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015061062A Active JP6376536B2 (en) 2014-03-25 2015-03-24 Arsenic adsorption apparatus and arsenic adsorption method

Country Status (1)

Country Link
JP (1) JP6376536B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52133890A (en) * 1976-05-04 1977-11-09 Kagehira Ueno Selective removal of arsenic compounds by adsorption
JPS5475860A (en) * 1977-11-29 1979-06-18 Kurita Water Ind Ltd Device for treating water containing metal ions
JPH0716563A (en) * 1993-06-30 1995-01-20 Tosoh Corp Separation of phosphate ion from phosphate ion-containing aqueous solution
JPH09225298A (en) * 1996-02-23 1997-09-02 Miyoshi Oil & Fat Co Ltd Resin for adsorbing arsenic and method for recovering arsenic from solution containing arsenic
JP2004250630A (en) * 2003-02-21 2004-09-09 Mitsubishi Chemicals Corp Process for producing hydrophobic liquid droplet, process and apparatus for producing polymer bead and process for producing ion exchange resin
JP2009263309A (en) * 2008-04-28 2009-11-12 Mitsubishi Chemicals Corp Condensation reaction method
JP2011156470A (en) * 2010-01-29 2011-08-18 Nippon Sheet Glass Co Ltd Method for treatment of contaminant components

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52133890A (en) * 1976-05-04 1977-11-09 Kagehira Ueno Selective removal of arsenic compounds by adsorption
JPS5475860A (en) * 1977-11-29 1979-06-18 Kurita Water Ind Ltd Device for treating water containing metal ions
JPH0716563A (en) * 1993-06-30 1995-01-20 Tosoh Corp Separation of phosphate ion from phosphate ion-containing aqueous solution
JPH09225298A (en) * 1996-02-23 1997-09-02 Miyoshi Oil & Fat Co Ltd Resin for adsorbing arsenic and method for recovering arsenic from solution containing arsenic
JP2004250630A (en) * 2003-02-21 2004-09-09 Mitsubishi Chemicals Corp Process for producing hydrophobic liquid droplet, process and apparatus for producing polymer bead and process for producing ion exchange resin
JP2009263309A (en) * 2008-04-28 2009-11-12 Mitsubishi Chemicals Corp Condensation reaction method
JP2011156470A (en) * 2010-01-29 2011-08-18 Nippon Sheet Glass Co Ltd Method for treatment of contaminant components

Also Published As

Publication number Publication date
JP6376536B2 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
He et al. New insight into adsorption and co-adsorption of arsenic and tetracycline using a Y-immobilized graphene oxide-alginate hydrogel: Adsorption behaviours and mechanisms
Wang et al. Selective removals of heavy metals (Pb2+, Cu2+, and Cd2+) from wastewater by gelation with alginate for effective metal recovery
Liao et al. Adsorption of fluoride on zirconium (IV)-impregnated collagen fiber
Abu Tarboush et al. Metal–organic framework-74 for ultratrace arsenic removal from water: experimental and density functional theory studies
Yang et al. Fabrication of a reusable polymer-based cerium hydroxide nanocomposite with high stability for preferable phosphate removal
TWI428289B (en) Conditioning of ion exchangers for adsorption of oxoanions
Yang et al. Simultaneous organic/inorganic removal from water using a new nanocomposite adsorbent: a case study of p-nitrophenol and phosphate
US20050288181A1 (en) High capacity adsorption media for separating or removing constituents, associated apparatus, and methods of producing and using the adsorption media
Saiz et al. New functionalized magnetic materials for As5+ removal: adsorbent regeneration and reuse
JP2006527078A (en) Arsenic adsorption ion exchanger
Campos et al. Bismuth recovery from acidic solutions using Cyphos IL-101 immobilized in a composite biopolymer matrix
Malachowski et al. Immobilized peptides/amino acids on solid supports for metal remediation
JP2007301555A (en) Oxo anion-adsorbing ion exchanger
JP2007275887A (en) Amphoteric ion exchanger for adsorbing oxo anion
Cui et al. Adsorption of Cr (VI) on 1, 2-ethylenediamine-aminated macroporous polystyrene particles
JP2012025995A (en) Selective recovery method for rare metal
Sánchez et al. Arsenate retention from aqueous solution by hydrophilic polymers through ultrafiltration membranes
JPH03153522A (en) Method for removing sulfate ion from aqueous solution of alkali metal chloride
WO2019078368A1 (en) Method for separating rare earth element
Zhang et al. As (V) removal from aqueous environments using quaternary ammonium modified ZIF-8/chitosan composite adsorbent
CN106861604A (en) A kind of calcium carbonate magnetic adsorbent preparation method and applications
JP6376536B2 (en) Arsenic adsorption apparatus and arsenic adsorption method
JP2004066161A (en) Water treatment method
Lu et al. Strong adsorption of phosphate by amorphous lanthanum carbonate nano-adsorbents
Guo et al. Exceptional removal and immobilization of selenium species by bimetal-organic frameworks

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180717

R150 Certificate of patent or registration of utility model

Ref document number: 6376536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250