JPH0657347A - Method for recovering pd ion from waste liquid of pickling of stainless steel with palladium salt and nitric acid - Google Patents

Method for recovering pd ion from waste liquid of pickling of stainless steel with palladium salt and nitric acid

Info

Publication number
JPH0657347A
JPH0657347A JP1783392A JP1783392A JPH0657347A JP H0657347 A JPH0657347 A JP H0657347A JP 1783392 A JP1783392 A JP 1783392A JP 1783392 A JP1783392 A JP 1783392A JP H0657347 A JPH0657347 A JP H0657347A
Authority
JP
Japan
Prior art keywords
hydrochloric acid
waste liquid
pickling
acid
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1783392A
Other languages
Japanese (ja)
Inventor
Hiroyuki Masuda
広幸 益田
Takio Adachi
太起夫 安達
Yoshiyuki Imakire
義之 今給黎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Eco Tech Corp
Original Assignee
Nippon Steel Corp
Nittetsu Kakoki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nittetsu Kakoki KK filed Critical Nippon Steel Corp
Priority to JP1783392A priority Critical patent/JPH0657347A/en
Publication of JPH0657347A publication Critical patent/JPH0657347A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To efficiently separate and recover Pd by specifying the concn. of the excess hydrochloric acid in a waste liquid of pickling with an acid mixture composed of Pd-contg. hydrochloric acid and nitric acid to the specific value or below, absorbing the Pd ion to a ion exchange resin layer and eluting the Pd ion with the hydrochloric acid of a specific concn. etc. CONSTITUTION:The waste liquid of the pickling with the acid mixture composed of the Pd-contg. hydrochloric acid and nitric acid used for descaling of stainless steels is filtered to remove impurities therefrom; thereafter, the liquid is concd. and is diluted with water, by that, the concn. of the excess hydrochloric acid in the waste liquid is adjusted to 1mol/kg or lower. The waste liquid is then passed through the ion exchange resin layer, to which the greater part of the Pd is adsorbed. This Pd is eluted with a 10 to 36wt.% hydrochloric acid solution or an ammonia water contg. 0.1 to 5N ammonia and is then washed with pure water. As a result, the Pd is effectively separated and recovered from the waste liquid of the pickling with the acid mixture composed of the Pd-contg. hydrochloric acid and nitric acid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Pd(パラジウム)を
含有する塩酸・硝酸混合酸洗液で酸洗したステンレス鋼
の酸洗廃液や、ステンレス鋼に担持したPdを払拭した
塩酸・硝酸混合溶液の廃液等からPdイオンを回収する
方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a pickling waste solution of stainless steel pickled with a hydrochloric acid / nitric acid mixed pickling solution containing Pd (palladium) and a hydrochloric acid / nitric acid mixture obtained by wiping Pd carried on stainless steel. The present invention relates to a method for recovering Pd ions from a waste solution of a solution.

【0002】[0002]

【従来の技術】ステンレス鋼材のスケール除去にあって
は従来から硫酸が使用されていたが、この硫酸酸洗廃液
処理の方法は中和して金属酸化物として金属塩を除去す
る中和処理法か、または濃縮して硫化鉱焙焼炉に加え鉄
原料としての酸化鉄および硫酸を回収する焙焼法のいず
れかの方法であった。一方、普通鋼のスケール除去につ
いては、約20年前より硫酸酸洗から塩酸酸洗に置き替
わり、その際の塩酸酸洗廃液は熱分解焙焼により塩酸を
回収し、酸洗液として再使用し、一方得られた酸化鉄は
フェライト用原料等に有効利用されている。
2. Description of the Related Art Sulfuric acid has been conventionally used for scale removal of stainless steel materials, but this method of sulfuric acid pickling waste liquid treatment is a neutralization treatment method of neutralizing and removing metal salts as metal oxides. Alternatively, the method was one of a roasting method in which iron oxide and sulfuric acid as iron raw materials were recovered after being concentrated and added to a sulphide ore roasting furnace. On the other hand, for scale removal of ordinary steel, from about 20 years ago, sulfuric acid pickling was replaced with hydrochloric acid pickling, and the hydrochloric acid pickling waste liquid at that time was recovered by pyrolysis roasting and reused as pickling solution. On the other hand, the obtained iron oxide is effectively used as a raw material for ferrite.

【0003】ステンレス鋼材に対しても塩酸回収の容易
さから塩酸酸洗法が試みられているが、酸洗能力を改善
するために高価なPdを含有(あるいは溶解)させた塩
酸硝酸混合液の使用が試みられている。しかしこの廃液
からPdが上述の中和処理法又は焙焼法等によって回収
されない限り、パラジウム含有塩酸硝酸混合液による酸
洗処理は実用的でないという問題があった。
A hydrochloric acid pickling method has been attempted for stainless steel materials because of the ease of recovering hydrochloric acid. However, in order to improve the pickling ability, a hydrochloric acid / nitric acid mixed solution containing (or dissolving) expensive Pd is used. Attempted to use. However, there is a problem that the pickling treatment with the palladium-containing hydrochloric acid / nitric acid mixture is not practical unless Pd is recovered from the waste liquid by the above-mentioned neutralization treatment method or roasting method.

【0004】[0004]

【発明が解決しようとする課題】Pdイオンを含有する
塩酸・硝酸混合酸洗廃液の代表的な組成は表1の如くで
ある。ここで、NO3 - は廃液中のFe(II)により還
元され、わずかであることが多い。
A typical composition of a hydrochloric acid / nitric acid mixed pickling waste solution containing Pd ions is as shown in Table 1. Here, NO 3 is reduced by Fe (II) in the waste liquid and is often small.

【0005】 表1 塩酸・硝酸混合酸洗廃液の一例 ──────────────────────────────── 比重 1.176 Fe(II) 2.04 wt% Fe(III) 2.42 Cr(III) 0.884 Ni(II) 0.102 Mn(II) 0.016 Pd(II) 0.0033 Total−Cl 24.4 NO3 - ND ──────────────────────────────── 注)NDとは検出されないという意味である。Table 1 Example of hydrochloric acid / nitric acid mixed pickling waste liquid ───────────────────────────────── Specific gravity 1.176 Fe (II) 2.04 wt% Fe (III) 2.42 Cr (III) 0.884 Ni (II) 0.102 Mn (II) 0.016 Pd (II) 0.0033 Total-Cl 24.4 nO 3 - in the sense that ND ──────────────────────────────── Note) not detected with ND.

【0006】このような廃液から不純物を分離する場
合、中和による金属水酸化物析出法が多く用いられてい
る。中和処理としては、例えば金属鉄等の金属を用いる
方法、アンモニア又は水酸化ナトリウム等のアルカリを
用いる方法等があるが、表1のようにFe(II),Fe
(III)が共に多量含まれている場合、この中から微量の
Pdを回収することは困難である。
When separating impurities from such waste liquid, a metal hydroxide precipitation method by neutralization is often used. Examples of the neutralization treatment include a method using a metal such as metallic iron and a method using an alkali such as ammonia or sodium hydroxide. As shown in Table 1, Fe (II), Fe
When both (III) are contained in a large amount, it is difficult to recover a trace amount of Pd from this.

【0007】すなわち、Fe(II)水酸化物はpH8程度
以上で析出し、Fe(III)はpH2程度以上で析出するの
に対し、Pd(II)は塩化物イオン(この明細書におい
てこのようなPd錯体イオンもPdイオンという)濃度
によりpH2〜8程度以上で析出し、そのため、蒸発等に
より塩酸量の制御を行ったとしてもFe(II)または、
Fe(III)と挙動を共にし、多量の水酸化物の分離後さ
らにFe(II)またはFe(III)からの分離回収が必要
となる。中和処理以前に酸化あるいは還元処理を併用す
るとしても、酸化処理によりFeイオンのほとんどをF
e(III)とし、中和濾別する場合、溶液側にはPdと共
にNi,Mn,Cr等が依然残留しておりこれらイオン
からの再分離が必要となる。また、還元処理によりFe
イオンのほとんどをFe(II)とし、さらに遊離塩酸量
をわずかとし、中和処理によりPdのみを濾別分離する
場合は、Feイオンの標準酸化還元電位Fe3+/Fe2+
0.7volt(1M HCl)に対しPdCl4 2- /Pd
↓ 0.6volt,Pd2+/Pd↓ 0.99voltである
ためにFe(III)イオンと共にPdイオンも還元されP
dは金属Pdとして析出する。そのため還元剤として金
属鉄等の金属を使用した場合は、金属表面にPdが析出
するため、その回収が問題となる。還元剤として有機試
薬等を用いる場合は多量のFe(III)イオンを還元する
量が必要であり経済的に有利ではない。
That is, Fe (II) hydroxide is precipitated at a pH of about 8 or higher, Fe (III) is precipitated at a pH of about 2 or higher, while Pd (II) is chloride ion (as described in this specification). Pd complex ions are also referred to as Pd ions) depending on the concentration, and are precipitated at a pH of about 2 to 8 or higher. Therefore, even if the amount of hydrochloric acid is controlled by evaporation or the like, Fe (II) or
It behaves in the same manner as Fe (III), and after separation of a large amount of hydroxide, further separation and recovery from Fe (II) or Fe (III) is required. Even if an oxidation or reduction treatment is used together before the neutralization treatment, most of the Fe ions are F due to the oxidation treatment.
When e (III) is used and neutralization filtration is performed, Ni, Mn, Cr, etc. still remain on the solution side together with Pd, and re-separation from these ions is required. Moreover, Fe is reduced by the reduction treatment.
When most of the ions are Fe (II) and the amount of free hydrochloric acid is small and only Pd is separated by filtration by the neutralization treatment, the standard redox potential of Fe ions Fe 3+ / Fe 2+
PdCl 4 2- / Pd for 0.7 volt (1M HCl)
↓ 0.6 volt, Pd 2+ / Pd ↓ Since it is 0.99 volt, Pd ion is also reduced together with Fe (III) ion and Pd
d precipitates as metal Pd. Therefore, when a metal such as metallic iron is used as the reducing agent, Pd is deposited on the metal surface, and its recovery becomes a problem. When an organic reagent or the like is used as the reducing agent, a large amount of Fe (III) ions needs to be reduced, which is not economically advantageous.

【0008】従って、従来から使用されている中和法で
は有価物であるPdの回収は非常に困難であり、一連の
操作で塩酸及びPdを効果的かつ経済的に回収する方法
はいまだ確立されていない。本発明は、上記の事情に鑑
み、ステンレス塩酸酸洗廃液のように第一鉄イオン、第
二鉄イオンが多量に共存する廃液からPdを高効率で回
収することを目的とする。本発明の他の目的は更に上記
廃液から塩酸も焙焼を併用することにより回収できる形
にする方法を提供することである。
Therefore, it is very difficult to recover Pd, which is a valuable resource, by the conventionally used neutralization method, and a method for effectively and economically recovering hydrochloric acid and Pd by a series of operations is still established. Not not. In view of the above circumstances, the present invention has an object of highly efficiently recovering Pd from a waste liquid in which a large amount of ferrous ions and ferric ions coexist, such as a stainless hydrochloric acid pickling waste liquid. Another object of the present invention is to provide a method for recovering hydrochloric acid from the waste liquid by using roasting together.

【0009】[0009]

【課題を解決するための手段】本発明は、Pd(パラジ
ウム)を含有する塩酸・硝酸混合酸洗廃液を処理し、該
廃液中、の過剰塩酸濃度を1 mol/kg以下にした後、イ
オン交換樹脂層に通して大部分のPdをイオン交換樹脂
に吸着せしめ、しかる後10〜36wt%塩酸又は5N以
下のアンモニアを含むアンモニア水もしくはアンモニア
−塩化アンモニウム溶液によりPdイオンを溶離回収す
ることを特徴とするPdイオンの回収方法である。
According to the present invention, a hydrochloric acid / nitric acid mixed pickling waste solution containing Pd (palladium) is treated to reduce the excess hydrochloric acid concentration in the waste solution to 1 mol / kg or less, Most of Pd is adsorbed on the ion exchange resin through the exchange resin layer, and then Pd ions are eluted and recovered by ammonia water containing 10 to 36 wt% hydrochloric acid or 5N or less ammonia or ammonia-ammonium chloride solution. This is a method of recovering Pd ions.

【0010】本発明によれば、遊離塩酸濃度を低下させ
ることで陰イオン交換樹脂によってPdを選択的に回収
し、溶離液の酸洗廃液処理工程内で発生する塩酸を有効
に再利用する事で溶離液に使用する薬品の新規添加を不
要とし、あるいは溶離液としてアンモニアを用いる事で
高濃度でのPdの回収を可能とし、さらに得られる大部
分のPdを回収した酸洗廃液を、通常の方法、例えば焙
焼により金属酸化物と塩化水素ガスに分解し、金属酸化
物と塩酸を分離回収する事が可能な廃液を得ることがで
きる。
According to the present invention, Pd is selectively recovered by the anion exchange resin by reducing the concentration of free hydrochloric acid, and the hydrochloric acid generated in the process of treating the waste solution of the pickling solution of the eluent is effectively reused. It is possible to recover Pd at a high concentration by using ammonia as an eluent without adding new chemicals to be used as an eluent. It is possible to obtain a waste liquid which can be decomposed into a metal oxide and hydrogen chloride gas by the method described above, for example, roasting, and the metal oxide and hydrochloric acid can be separated and recovered.

【0011】以下、本発明について図面に従って詳細に
説明する。イオン交換樹脂に吸着したPdを溶離する場
合、使用する溶離液が塩酸系の場合とアンモニア系の場
合でその処理が若干異なるので各々に分けて説明する。
The present invention will be described in detail below with reference to the drawings. When eluting the Pd adsorbed on the ion exchange resin, the treatment is slightly different depending on whether the eluent used is a hydrochloric acid type or an ammonia type, and therefore the treatment will be described separately.

【0012】図1は本発明に係わるステンレス酸洗廃液
よりその中に含まれるPdを分離回収する方法において
イオン交換樹脂に吸着したPdの溶離に塩酸を用いる一
連の操作を示すものである。
FIG. 1 shows a series of operations in which hydrochloric acid is used to elute Pd adsorbed on an ion exchange resin in the method of separating and recovering Pd contained in the stainless acid pickling waste liquid according to the present invention.

【0013】酸洗設備より排出される廃液は若干の不溶
物を含有しているが、不溶物中にPdがほとんど含有さ
れていないため濾別除去される()。
The waste liquid discharged from the pickling equipment contains some insoluble matter, but since Pd is hardly contained in the insoluble matter, it is removed by filtration ().

【0014】酸洗廃液中のイオンの中でFe(III)及び
Pdはクロロ陰イオン錯体を形成し易く、生成する陰イ
オン錯体は単純にはFeCl4 - およびPdCl
m n-(m=3又は4,n=m−2)で示され、これらの
イオンの生成はCl- イオン濃度に影響される。図2は
FeCl2 4.6wt%,FeCl3 7.0wt%,CrC
32.7wt%,NiCl2 0.23wt%,MnCl2
0.037wt%,PdCl20.0167wt%の溶液に
対し過剰塩酸濃度を変化させた場合の強塩基性陰イオン
交換樹脂によるPdの除去効果の一例である。過剰塩酸
量が少ないほどPdの回収性が良くなっている。これは
過剰塩酸量が多くなると、Cl- 陰イオン濃度の増大あ
るいはFeCl4 - の生成により、パラジウムクロロ錯
体の吸着が妨害されるためと思われる。従って、図1に
おいて陰イオン交換処理の前に廃液を濃縮、スチームス
トリッピング又は拡散透析等の処理により過剰の塩酸を
一部除いた後、場合によっては水により希釈するなどし
て過剰塩酸量を1 mol/kg以下に制御し()、イオン
交換工程()に送る(○中の数字は工程上の位置を示
す)。
Among the ions in the pickling waste liquid, Fe (III) and Pd tend to form a chloroanion complex, and the anion complex produced is simply FeCl 4 - and PdCl.
m is represented by n-(m = 3 or 4, n = m-2) , the generation of these ions Cl - is influenced by ionic concentration. Fig. 2 shows FeCl 2 4.6 wt%, FeCl 3 7.0 wt%, CrC
l 3 2.7 wt%, NiCl 2 0.23 wt%, MnCl 2
This is an example of the effect of removing Pd by the strongly basic anion exchange resin when the concentration of excess hydrochloric acid is changed with respect to a solution of 0.037 wt% and PdCl 2 0.0167 wt%. The smaller the amount of excess hydrochloric acid, the better the recovery of Pd. This is probably because when the amount of excess hydrochloric acid increases, the adsorption of the palladium chloro complex is hindered by the increase in Cl anion concentration or the formation of FeCl 4 . Therefore, in FIG. 1, after the waste liquid is concentrated, steam stripping, diffusion dialysis, or the like to remove a part of the excess hydrochloric acid before the anion exchange treatment, and in some cases diluted with water to remove the excess hydrochloric acid amount. It is controlled to 1 mol / kg or less () and sent to the ion exchange process () (the numbers in ○ indicate the position on the process).

【0015】廃酸中に硝酸根が残っている場合はイオン
交換樹脂の劣化要因となる場合がある。この場合は拡散
透析法よりも濃縮またはスチームストリッピングの方が
好ましい。すなわち廃酸中の硝酸は濃縮またはスチーム
ストリッピングによりFe(II)との反応が進み分解
し、ほとんど無視できる量にまで減少する。留出又は放
散された塩酸ガス(または拡散透析により分離された塩
酸)は塩酸回収装置により回収される()。濃縮操作
の場合に凝縮回収される塩酸濃度は20wt%程度であり
この場合はそのまま後述するイオン交換樹脂からの溶離
液(再生液)として再使用できる。
If nitrate radicals remain in the waste acid, it may cause deterioration of the ion exchange resin. In this case, concentration or steam stripping is preferable to diffusion dialysis. That is, the nitric acid in the waste acid is decomposed by the reaction with Fe (II) due to concentration or steam stripping, and is reduced to an almost negligible amount. The hydrochloric acid gas that has been distilled or diffused (or hydrochloric acid separated by diffusion dialysis) is recovered by the hydrochloric acid recovery device (). In the case of the concentration operation, the concentration of hydrochloric acid condensed and recovered is about 20 wt%, and in this case, it can be reused as it is as an eluent (regeneration liquid) from the ion exchange resin described later.

【0016】図3は強塩基性陰イオン交換樹脂カラム
に、FeCl2 4.6wt%,FeCl 3 7.0wt%,C
rCl3 2.7wt%,NiCl2 0.23wt%,MnC
2 0.037wt%,PdCl2 0.0875wt%、過
剰塩酸1 mol/kgの溶液を連続通液した場合のPd漏出
曲線の一例である。Pdが樹脂によく吸着されているこ
とがわかる。実際のイオン交換塔では図3における漏出
点以前で溶離(再生)操作に切り替えられる。溶離は1
0wt%以上好ましくは20wt%以上の塩酸を用い、吸着
流れ方向に対し向流または並流で行うことができる。図
4は図3においてPdを吸着させたイオン交換樹脂カラ
ムに35wt%または20wt%塩酸を並流で流した場合の
Pd溶離曲線の一例である。それぞれ30〜40L/L
−Rまたは80〜100L/L−Rの通液で吸着したP
dの大部分が溶離することがわかる。溶離(再生)操作
を終了したカラムは残留する未溶離Pdの溶出を抑える
ため場合によっては水洗し、再び吸着操作に切り替えら
れる。
FIG. 3 shows a strongly basic anion exchange resin column.
And FeCl24.6 wt%, FeCl 37.0 wt%, C
rCl32.7 wt%, NiCl20.23 wt%, MnC
l20.037wt%, PdCl20.0875 wt%, excess
Leakage of Pd when continuously passing 1 mol / kg solution of surplus hydrochloric acid
It is an example of a curve. Pd is well adsorbed on the resin
I understand. Leakage in Figure 3 in the actual ion exchange tower
The elution (regeneration) operation is switched to before the point. Elution is 1
Adsorption using 0 wt% or more, preferably 20 wt% or more hydrochloric acid
It can be carried out countercurrently or cocurrently with respect to the flow direction. Figure
4 is an ion exchange resin color in which Pd is adsorbed in FIG.
When flowing 35 wt% or 20 wt% hydrochloric acid in cocurrent
It is an example of a Pd elution curve. 30-40L / L each
-R or P adsorbed by passing 80-100 L / L-R
It can be seen that most of d elutes. Elution (regeneration) operation
The column that has completed the process suppresses the elution of residual uneluted Pd.
If necessary, wash with water and switch to adsorption operation again.
Be done.

【0017】溶離に使用する塩酸は図1酸濃度調整工
程から回収される塩酸、あるいは酸洗設備に新規に供給
される塩酸等を用いる事ができる。溶離液中に回収され
たPdは溶離液が塩酸溶液であるためほとんど後処理を
経ないでそのまま酸洗設備に戻すことができる。この方
法は通常のイオン交換樹脂処理、例えば水の脱塩等の場
合に比べ必要な溶離液量が多く、塩酸が充分には利用で
きないプロセスの場合は成立しにくい方法である。しか
し、本発明の目的である塩酸を用いた酸洗設備からの廃
液の処理の様に回収される塩酸、Pd両者を酸洗設備に
戻すことを考えると使用できる塩酸量は充分にあり、さ
らにそのまま酸洗設備用のPd塩酸溶液として使用でき
るので塩酸の損失とはならず、この事が塩酸溶離法の特
徴的な優位点といえる。
The hydrochloric acid used for elution may be hydrochloric acid recovered from the acid concentration adjusting step shown in FIG. 1 or hydrochloric acid newly supplied to the pickling equipment. Since Pd recovered in the eluent is a hydrochloric acid solution, it can be returned to the pickling facility as it is with almost no post-treatment. This method requires a larger amount of the eluent than in the case of a usual ion exchange resin treatment, such as desalting of water, and is a method that is difficult to be established in a process in which hydrochloric acid cannot be sufficiently utilized. However, the amount of hydrochloric acid that can be used is sufficient considering that both the hydrochloric acid and Pd recovered as in the treatment of the waste liquid from the pickling equipment using hydrochloric acid, which is the object of the present invention, are returned to the pickling equipment. Since it can be used as it is as a Pd-hydrochloric acid solution for pickling equipment, there is no loss of hydrochloric acid, and this is a characteristic advantage of the hydrochloric acid elution method.

【0018】図5は本発明に係わるステンレス酸洗廃液
よりその中に含まれるPdを分離回収する方法におい
て、イオン交換樹脂に吸着したPdの溶離にアンモニア
水を用いる一連の操作を示すものである。
FIG. 5 shows a series of operations in which ammonia water is used to elute the Pd adsorbed on the ion exchange resin in the method for separating and recovering Pd contained in the stainless pickling waste liquid according to the present invention. .

【0019】図5は基本的には図1と同様であるがイ
オン交換工程において溶離にアンモニア水を用いるため
その処理に若干の相違がある。イオン交換工程からPd
回収にいたる塩酸溶離法との相違点について以下に記述
する。
FIG. 5 is basically the same as FIG. 1, but there is a slight difference in the treatment because ammonia water is used for elution in the ion exchange step. From the ion exchange process to Pd
Differences from the hydrochloric acid elution method for recovery are described below.

【0020】Pd吸着処理までは塩酸溶離法と同様に操
作される。アンモニア溶離法の場合はその溶離液がアル
カリ性のためFe(III)等の金属が加水分解し水酸化物
の沈澱となって析出し、樹脂の性能の劣化、目詰まり等
のおそれがある。そこで、樹脂に付着又は吸着したPd
以外の金属の大半を除くため、いったん、水又は1 mol
/L以下の希塩酸溶液で洗浄した後Pdの溶離処理を行
う。Pdの溶離はアンモニア濃度0.1〜5N好ましく
は0.5〜1N程度のアンモニア水で行うことができ
る。図6は図3と同様の処理を行ったカラムに対し本処
理を行った場合の溶離曲線の一例である。この例で使用
したアンモニア濃度は1Nである。図4と比較して非常
によい溶離性を持っている。これはアンモニアによりP
dのクロロ錯体がアンミン錯体に変化し錯体の電価が負
から正に変化するため容易に陰イオン交換樹脂より溶離
されるからであると考えられる。
Up to the Pd adsorption treatment, the same operation as in the hydrochloric acid elution method is performed. In the case of the ammonia elution method, since the eluent is alkaline, metals such as Fe (III) are hydrolyzed and precipitated as hydroxide precipitates, which may deteriorate the performance of the resin and cause clogging. Therefore, Pd attached or adsorbed to the resin
To remove most of the other metals, once water or 1 mol
After washing with a diluted hydrochloric acid solution of not more than / L, Pd is eluted. Pd can be eluted with ammonia water having an ammonia concentration of 0.1 to 5N, preferably about 0.5 to 1N. FIG. 6 is an example of an elution curve when this treatment is performed on a column that has been treated in the same manner as in FIG. The ammonia concentration used in this example is 1N. It has a very good elution property as compared with FIG. This is P due to ammonia
It is considered that this is because the chloro complex of d changed to an ammine complex and the charge of the complex changed from negative to positive, so that the complex was easily eluted from the anion exchange resin.

【0021】同様の効果はアンモニア−塩化アンモニウ
ム溶液を用いても得られることが容易に類推できる。
It can be easily analogized that the same effect can be obtained by using an ammonia-ammonium chloride solution.

【0022】アンモニア溶離処理の前に洗浄を行っても
溶離液中にわずかにPd以外の金属が残留し、溶離液に
は微量の水酸化物の沈澱が存在することがある。これら
は場合により濾過工程等を併用し除去される。
Even if washing is performed before the ammonia elution treatment, a small amount of metal other than Pd remains in the eluent, and a slight amount of hydroxide precipitates may exist in the eluent. These may be removed by using a filtration process or the like in some cases.

【0023】アンモニア系溶離液を用いる溶離法によれ
ば塩酸溶離法に比べ溶離性がよい為に、溶離回収液中の
Pd濃度を塩酸溶離の場合に比べ数倍以上に濃縮して回
収できる。アンモニアは揮発性が高いので必要に応じ濃
縮し、大部分のアンモニアは蒸発・凝縮させ回収しイオ
ン交換樹脂の溶離液として再利用する事ができる。この
場合、濃縮液中のPdはイオン交換工程、濃縮工程によ
り原液に比べ数百倍以上に濃縮されており、Pd濃厚液
として回収される。アンモニア溶離法の優位点は溶離液
が少量ですむためイオン交換工程における濃縮度を大き
くとれることにある。
Since the elution method using an ammonia-based eluent has a better elution property than the hydrochloric acid elution method, the concentration of Pd in the eluate recovery solution can be concentrated several times more than in the case of hydrochloric acid elution. Since ammonia has high volatility, it can be concentrated if necessary, and most of the ammonia can be evaporated and condensed, recovered, and reused as the eluent of the ion exchange resin. In this case, Pd in the concentrated solution is concentrated several hundred times or more as compared with the stock solution in the ion exchange step and the concentration step, and is recovered as a concentrated Pd solution. The advantage of the ammonia elution method is that a small amount of eluent can be used and a large degree of concentration can be achieved in the ion exchange process.

【0024】イオン交換工程でほとんどのPdと微量の
第2鉄などを除かれた廃液中の主要金属はFe(II),
Fe(III),Cr(III),Ni(II),Mn(II)であ
り、各々塩化物の形で溶存している。この廃液は通常の
金属塩化物塩酸溶液と同様であり、必要に応じ焙焼を行
うことにより金属塩化物を金属酸化物と塩化水素に分解
せしめ、金属酸化物と塩酸として回収することができ
る。
Fe (II) is the main metal in the waste liquid from which most of Pd and traces of ferric iron have been removed in the ion exchange process.
Fe (III), Cr (III), Ni (II), Mn (II), each dissolved in the form of chloride. This waste liquid is the same as an ordinary metal chloride-hydrochloric acid solution, and can be roasted if necessary to decompose the metal chloride into metal oxides and hydrogen chloride, and recover as metal oxides and hydrochloric acid.

【0025】回収された金属酸化物を例えば廃棄する場
合、Crが問題となることがある。この場合は以下の処
理を行うことによりその大部分を除くことができる。す
なわち、Fe(II),Fe(III),Cr(III),Ni
(II),Mn(II)の金属が加水分解をするpHは各々
8,2,5,7,8程度であり、従って、この廃液の焙
焼の前に金属鉄又は他の還元剤によりFe(III)→Fe
(II)とし、金属鉄又はアンモニア等により、pH5〜6
程度に中和することによりCrを水酸化物の沈澱として
選択的に分離することができる。
When the recovered metal oxide is discarded, Cr may become a problem. In this case, most of them can be removed by performing the following processing. That is, Fe (II), Fe (III), Cr (III), Ni
The pH at which the metals of (II) and Mn (II) hydrolyze is about 8, 2, 5, 7, and 8, respectively. Therefore, before the waste liquid is roasted, Fe is added by metallic iron or another reducing agent. (III) → Fe
(II), pH 5-6 with metallic iron or ammonia
By neutralizing to a certain extent, Cr can be selectively separated as a hydroxide precipitate.

【0026】以上の操作によりステンレス塩酸・硝酸酸
洗廃液から有価物のPdを効率よく回収することが可能
となり、廃液の焙焼を併用することで容易に塩酸の回収
も行うことができる。
By the above operation, it becomes possible to efficiently recover Pd of valuables from the waste liquid of stainless hydrochloric acid / nitric acid pickling, and hydrochloric acid can be easily recovered by using roasting of the waste liquid together.

【0027】イオン交換工程において塩酸溶離法を用い
るかアンモニア溶離法を用いるかは回収するPd溶液の
用途あるいは製作する設備の要求度に応じて決定され
る。また、塩酸溶離法において適宜アンモニア溶離を挿
入することでイオン交換樹脂に微量残留し長期間に蓄積
したPdを溶離し樹脂の再生を行うこともできる。
Whether to use the hydrochloric acid elution method or the ammonia elution method in the ion exchange step is determined depending on the use of the Pd solution to be recovered or the requirements of the equipment to be manufactured. Further, by appropriately inserting ammonia elution in the hydrochloric acid elution method, it is possible to regenerate the resin by eluting Pd accumulated in the ion exchange resin in a trace amount and accumulated for a long period of time.

【0028】上記方法を排ガス触媒のようにステンレス
薄板にPdを担持した触媒の溶解廃液等に適用してPd
等の貴金属を回収することもできる。
The above method is applied to a waste solution of a catalyst in which Pd is carried on a stainless steel thin plate such as an exhaust gas catalyst, and the like.
It is also possible to recover precious metals such as.

【0029】[0029]

【実施例】以下、ステンレス塩酸・硝酸酸洗廃液からの
パラジウムの回収法について実施例により説明する。
[Examples] Hereinafter, a method for recovering palladium from a waste solution of a stainless hydrochloric acid / nitric acid pickling solution will be described with reference to Examples.

【0030】実施例1 (溶離に塩酸を用いた場合)ろ過により不溶物を除いた
前出表1の組成の塩酸・硝酸混合酸洗廃液100L(1
18kg)を濃縮し、過剰塩酸濃度1.6 mol/kgの溶液
45.4kgを作成した。この時留出した液量は72.0
kgであり、塩酸濃度は21.7wt%であった。
Example 1 (when hydrochloric acid was used as an eluent) 100 L of hydrochloric acid / nitric acid mixed pickling waste liquid having the composition shown in the above Table 1 (1)
18 kg) was concentrated to prepare 45.4 kg of a solution having an excess hydrochloric acid concentration of 1.6 mol / kg. The amount of liquid distilled at this time was 72.0.
kg and hydrochloric acid concentration was 21.7 wt%.

【0031】過剰塩酸濃度を1 mol/kg以下とするため
得られた濃縮液に純水40kgを加え過剰塩酸濃度を0.
85 mol/kgとした。得られた酸濃度調整液中のPd濃
度は45.4mg/kgであった。
40 kg of pure water was added to the concentrated solution obtained in order to adjust the concentration of excess hydrochloric acid to 1 mol / kg or less, and the concentration of excess hydrochloric acid was adjusted to 0.
It was set to 85 mol / kg. The Pd concentration in the obtained acid concentration adjusting solution was 45.4 mg / kg.

【0032】この液85.4kgを、あらかじめ樹脂を安
定化するため酸濃度調整液と同様の組成を持つ液と20
wt%程度の塩酸水溶液で数回吸着・溶離を繰り返した強
塩基性陰イオン交換樹脂層に、流し、Pdを吸着分離し
た。イオン交換樹脂層を通過した金属塩化物溶液中のパ
ラジウム濃度は1.8mg/kgに減少していた。
85.4 kg of this solution was mixed with a solution having the same composition as the acid concentration adjusting solution to stabilize the resin in advance.
Pd was adsorbed and separated by pouring onto a strongly basic anion exchange resin layer which was repeatedly adsorbed and eluted several times with a wt% hydrochloric acid aqueous solution. The palladium concentration in the metal chloride solution passed through the ion exchange resin layer was reduced to 1.8 mg / kg.

【0033】次にPdを溶離するためイオン交換樹脂層
に吸着時と並流する方向に、上記濃縮時に発生し凝縮し
た塩酸(21.7wt%)35.2kgを流し、さらに未溶
離Pdの溶離を停止させ層内を洗浄するために純水1l
を流し、先の溶離液と合わせ回収液36.2kgを得た。
回収液中のPd、塩酸濃度は以下の通りであった。
Next, in order to elute Pd, 35.2 kg of hydrochloric acid (21.7 wt%) generated and condensed during the above-mentioned concentration is caused to flow in a direction parallel to the time of adsorption on the ion-exchange resin layer, and the uneluted Pd is eluted. 1 l of pure water to stop the cleaning process
Then, 36.2 kg of a recovered liquid was obtained by combining with the above eluent.
The Pd and hydrochloric acid concentrations in the recovered liquid were as follows.

【0034】 Pd:101mg/kg HCl:21.1wt% パラジウムの回収率は94.2%であった。Pd: 101 mg / kg HCl: 21.1 wt% Recovery rate of palladium was 94.2%.

【0035】溶離に使用した塩酸は濃縮操作で回収した
塩酸の一部であり得られたパラジウム回収液を酸洗設備
に戻す場合は塩酸の損失にはならない。
The hydrochloric acid used for elution is a part of the hydrochloric acid recovered by the concentration operation, and when the obtained palladium recovery liquid is returned to the pickling equipment, there is no loss of hydrochloric acid.

【0036】イオン交換樹脂を通過した金属塩化物溶液
は前述したように焙焼することで塩酸と金属酸化物の回
収を図る事ができる。
The metal chloride solution that has passed through the ion-exchange resin can be roasted as described above to recover hydrochloric acid and metal oxide.

【0037】実施例2 (溶離にアンモニア水を用いた場合)ろ過により不溶物
を除いた前出表1の組成の塩酸・硝酸混合酸洗廃液10
0L(118kg)を濃縮し、過剰塩酸濃度1.6 mol/
kgの溶液45.2kgを作成した。この時留出した液量は
72.2kgであり、塩酸濃度は21.6wt%であった。
Example 2 (When Ammonia Water is Used for Elution) The hydrochloric acid / nitric acid mixed pickling waste liquid 10 having the composition shown in Table 1 above, in which insoluble matters were removed by filtration.
0 L (118 kg) was concentrated to give an excess hydrochloric acid concentration of 1.6 mol /
45.2 kg of a kg solution was prepared. The amount of liquid distilled at this time was 72.2 kg, and the hydrochloric acid concentration was 21.6 wt%.

【0038】過剰塩酸濃度を1 mol/kg以下とするため
得られた濃縮液に純水40kgを加え過剰塩酸濃度を0.
85 mol/kgとした。得られた酸濃度調整液中のパラジ
ウム濃度は45.5mg/kgであった。
40 kg of pure water was added to the concentrated solution obtained in order to adjust the concentration of excess hydrochloric acid to 1 mol / kg or less, and the concentration of excess hydrochloric acid was adjusted to 0.
It was set to 85 mol / kg. The palladium concentration in the obtained acid concentration adjusting liquid was 45.5 mg / kg.

【0039】この液85.2kgを、あらかじめ樹脂を安
定化するため酸濃度調整液と同様の組成を持つ液、純
水、1N程度のアンモニア水で数回吸着・洗浄・溶離・
洗浄を繰り返した強塩基性陰イオン交換樹脂層に、流
し、パラジウムを吸着分離した。吸着操作を終了したイ
オン交換樹脂層は1Lの純水で洗浄し、イオン交換樹脂
層を通過した金属塩化物溶液に合わせた。混合液中のパ
ラジウム濃度は1.6mg/kgであった。
85.2 kg of this solution was adsorbed, washed, and eluted several times with a solution having the same composition as the acid concentration adjusting solution, pure water, and 1N ammonia water to stabilize the resin in advance.
It was poured into a strongly basic anion exchange resin layer which was repeatedly washed, and palladium was adsorbed and separated. The ion-exchange resin layer after the adsorption operation was washed with 1 L of pure water, and was combined with the metal chloride solution that passed through the ion-exchange resin layer. The palladium concentration in the mixed solution was 1.6 mg / kg.

【0040】次にPdを溶離するためイオン交換樹脂層
に吸着時と並流する方向に、1Nアンモニア水を3.2
L流し、純水1Lにより洗浄し、両者を合わせ回収液
4.3kgを得た。回収液中のPd濃度は以下の通りであ
った。
Next, in order to elute Pd, 1N ammonia water was added in the direction of cocurrent with the time of adsorption to the ion-exchange resin layer in 3.2.
L was poured and washed with 1 L of pure water, and both were combined to obtain 4.3 kg of a recovered liquid. The Pd concentration in the recovered liquid was as follows.

【0041】Pd;863mg/kg Pdの回収率は95.7%であった。The recovery rate of Pd: 863 mg / kg Pd was 95.7%.

【0042】得られた回収液中のアンモニアはその揮発
性が高いので場合により濃縮する事で容易にその大半を
回収する事ができ、同時に、Pd濃度をさらに高くでき
る。
Since ammonia in the obtained recovery liquid has a high volatility, most of it can be easily recovered by concentrating it depending on the case, and at the same time, the Pd concentration can be further increased.

【0043】[0043]

【発明の効果】以上述べたように、本発明に係わるPd
の回収法を採用することにより、塩酸・硝酸混合酸洗廃
液より効果的にPdを回収することができ、焙焼を併用
する事で塩酸の回収も可能である。本発明が達成される
ことによりステンレス鋼材のスケール除去に際し、塩
酸、Pdが循環使用できることからPdイオンを含んだ
塩酸硝酸混合液を用いることが実用的に可能となった。
As described above, the Pd according to the present invention is
By adopting the recovery method of Pd, it is possible to recover Pd more effectively from the hydrochloric acid / nitric acid mixed pickling waste liquid, and it is also possible to recover hydrochloric acid by using roasting together. The achievement of the present invention makes it practically possible to use a hydrochloric acid / nitric acid mixed solution containing Pd ions, since hydrochloric acid and Pd can be circulated and used for scale removal of stainless steel materials.

【0044】また、本発明を排ガス触媒のようにステン
レス薄板にPd等を担持した触媒の溶解廃液等に適用す
る事でPd等の貴金属の回収も可能である。
Further, by applying the present invention to a waste solution of a catalyst such as an exhaust gas catalyst in which Pd or the like is carried on a stainless steel thin plate, it is possible to recover a noble metal such as Pd.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる塩酸溶離法によるパラジウムの
回収プロセスを示すフロー図。
FIG. 1 is a flowchart showing a palladium recovery process by a hydrochloric acid elution method according to the present invention.

【図2】強塩基性陰イオン交換樹脂処理における過剰塩
酸濃度の影響の一例を示すグラフ。
FIG. 2 is a graph showing an example of the influence of excess hydrochloric acid concentration in the treatment with a strongly basic anion exchange resin.

【図3】強塩基性陰イオン交換樹脂によるパラジウム漏
出曲線の一例を示すグラフ。
FIG. 3 is a graph showing an example of a palladium leakage curve due to a strongly basic anion exchange resin.

【図4】塩酸によるパラジウム溶離曲線の一例を示すグ
ラフ。
FIG. 4 is a graph showing an example of a palladium elution curve with hydrochloric acid.

【図5】本発明に係わるアンモニア溶離法によるパラジ
ウムの回収プロセスを示すフロー図。
FIG. 5 is a flow chart showing a palladium recovery process by an ammonia elution method according to the present invention.

【図6】1Nアンモニア水によるパラジウム溶離曲線の
一例を示すグラフ。
FIG. 6 is a graph showing an example of a palladium elution curve with 1N aqueous ammonia.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今給黎 義之 東京都板橋区舟渡4丁目4番26号 日鉄化 工機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshiyuki Imayasu 4-4-2, Funato, Itabashi-ku, Tokyo Inside Nittetsu Kakoki Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Pd(パラジウム)を含有する塩酸・硝
酸混合酸洗廃液を処理し、該廃液中、の過剰塩酸濃度を
1 mol/kg以下にした後、イオン交換樹脂層に通して大
部分のPdをイオン交換樹脂に吸着せしめ、しかる後1
0〜36wt%塩酸又は0.1〜5Nのアンモニアを含む
アンモニア水もしくはアンモニア−塩化アンモニウム溶
液によりPdイオンを溶離回収することを特徴とするP
dイオンの回収方法。
1. After treating a hydrochloric acid / nitric acid mixed pickling waste solution containing Pd (palladium) to reduce the concentration of excess hydrochloric acid in the waste solution to 1 mol / kg or less, most of it is passed through an ion exchange resin layer. After adsorbing Pd on the ion exchange resin, after that 1
Pd ion is eluted and recovered by ammonia water containing 0 to 36 wt% hydrochloric acid or 0.1 to 5N ammonia or ammonia-ammonium chloride solution.
A method of collecting d ions.
JP1783392A 1992-02-03 1992-02-03 Method for recovering pd ion from waste liquid of pickling of stainless steel with palladium salt and nitric acid Withdrawn JPH0657347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1783392A JPH0657347A (en) 1992-02-03 1992-02-03 Method for recovering pd ion from waste liquid of pickling of stainless steel with palladium salt and nitric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1783392A JPH0657347A (en) 1992-02-03 1992-02-03 Method for recovering pd ion from waste liquid of pickling of stainless steel with palladium salt and nitric acid

Publications (1)

Publication Number Publication Date
JPH0657347A true JPH0657347A (en) 1994-03-01

Family

ID=11954702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1783392A Withdrawn JPH0657347A (en) 1992-02-03 1992-02-03 Method for recovering pd ion from waste liquid of pickling of stainless steel with palladium salt and nitric acid

Country Status (1)

Country Link
JP (1) JPH0657347A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5997719A (en) * 1998-04-17 1999-12-07 Shor International Corporation Electrochemical process for refining platinum group metals with ammonium chloride electrocyte
JP2008150251A (en) * 2006-12-19 2008-07-03 Nippon Rensui Co Ltd Method of manufacturing ammonium tungstate aqueous solution
JP2010229446A (en) * 2009-03-26 2010-10-14 Nippon Mining & Metals Co Ltd Method of recovering platinum group element
WO2012121495A2 (en) * 2011-03-09 2012-09-13 (주)알티아이엔지니어링 Method for recovering precious metal from polyketone polymerization reaction waste liquid
CN106222437A (en) * 2016-08-29 2016-12-14 金川集团股份有限公司 A kind of method of refine palladium from alkalescence strip liquor
CN111500872A (en) * 2019-01-30 2020-08-07 鹏鼎控股(深圳)股份有限公司 Recovery treatment method of low-concentration palladium-containing waste liquid
US11179279B2 (en) 2016-10-21 2021-11-23 Daio Paper Corporation Underpants-type disposable diaper

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5997719A (en) * 1998-04-17 1999-12-07 Shor International Corporation Electrochemical process for refining platinum group metals with ammonium chloride electrocyte
JP2008150251A (en) * 2006-12-19 2008-07-03 Nippon Rensui Co Ltd Method of manufacturing ammonium tungstate aqueous solution
JP2010229446A (en) * 2009-03-26 2010-10-14 Nippon Mining & Metals Co Ltd Method of recovering platinum group element
WO2012121495A2 (en) * 2011-03-09 2012-09-13 (주)알티아이엔지니어링 Method for recovering precious metal from polyketone polymerization reaction waste liquid
WO2012121495A3 (en) * 2011-03-09 2012-11-22 (주)알티아이엔지니어링 Method for recovering precious metal from polyketone polymerization reaction waste liquid
CN103476956A (en) * 2011-03-09 2013-12-25 Rti化学工程有限公司 Method for recovering precious metal from polyketone polymerization reaction waste liquid
CN106222437A (en) * 2016-08-29 2016-12-14 金川集团股份有限公司 A kind of method of refine palladium from alkalescence strip liquor
US11179279B2 (en) 2016-10-21 2021-11-23 Daio Paper Corporation Underpants-type disposable diaper
CN111500872A (en) * 2019-01-30 2020-08-07 鹏鼎控股(深圳)股份有限公司 Recovery treatment method of low-concentration palladium-containing waste liquid

Similar Documents

Publication Publication Date Title
US4666683A (en) Process for removal of copper from solutions of chelating agent and copper
US4732609A (en) Recovery of cyanide from waste waters by an ion exchange process
CA2016562C (en) Elution process for gold-iodine complex from ion-exchange resins
JPH0657347A (en) Method for recovering pd ion from waste liquid of pickling of stainless steel with palladium salt and nitric acid
US4082546A (en) Recovery of waste heavy metals from solutions by cementation with aluminum
JPH09225298A (en) Resin for adsorbing arsenic and method for recovering arsenic from solution containing arsenic
JP4082050B2 (en) Method for removing cobalt or cobalt and zinc from aqueous iron chloride solution
JPS5932542B2 (en) Method for controlling copper ion concentration and salt-forming anion concentration in electroless copper deposition bath
RU2153026C2 (en) Purification of solutions containing metal
JP3896423B2 (en) Method for recovering palladium from palladium-containing liquid
CA2481729C (en) Method for refining aqueous nickel chloride solution
JP3043522B2 (en) Method for recovering noble metal ions from pickling waste liquid containing noble metal ions
CA1236308A (en) Process for hydrometallurgical extraction of precious metals
JP3784940B2 (en) Method for removing arsenic in copper electrolyte
JP2004130175A (en) Method for separating metal ion from solution of metal complex
JP3387109B2 (en) Recovery of rhodium
JP2535937B2 (en) Cyan-containing wastewater treatment method
JP3025576B2 (en) How to recycle pickling liquid
JP2691016B2 (en) How to regenerate iron liquid
US20230399719A1 (en) Process for recovering precious metal from an aqueous solution
JPH05125562A (en) Treatment of waste etchant of ferric chloride solution
JPS5888124A (en) Palladium purification and recovery
JPH01111825A (en) Method for recovering palladium from palladium-containing liquid
CA3196527A1 (en) Process for removing cyanide from a cyanide-bearing aqueous fluid
JPH08260166A (en) Method for regenerating ferric chloride solution

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518