JPH10116716A - Oxide magnetic material and carrier using the same - Google Patents

Oxide magnetic material and carrier using the same

Info

Publication number
JPH10116716A
JPH10116716A JP27041696A JP27041696A JPH10116716A JP H10116716 A JPH10116716 A JP H10116716A JP 27041696 A JP27041696 A JP 27041696A JP 27041696 A JP27041696 A JP 27041696A JP H10116716 A JPH10116716 A JP H10116716A
Authority
JP
Japan
Prior art keywords
magnetic material
magnetization
compound
oxide magnetic
granulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27041696A
Other languages
Japanese (ja)
Inventor
Toshiaki Tomosawa
利昭 友澤
Takeshi Mochizuki
武史 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP27041696A priority Critical patent/JPH10116716A/en
Publication of JPH10116716A publication Critical patent/JPH10116716A/en
Pending legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently manufacture carriers using an oxide magnetic material, by a method wherein an Mn compound and an Li compound in a specific range are mixed into hematite and granulated, and the granulated matter is sintered at a temperature in a specific range with low oxygen, etc., and magnetization and resistivity characteristics of a specific value or more and a coercive force of a specific value or less are set. SOLUTION: In an arrangement step 1, an Mn compound 31 to 65mol%, an Li compound 5 to 20mol% and the remaining hematite are arranged, and the arranged matter obtained in the arrangement step 1 is mixed and pulverized by a mixture step 2 and a powdering step 3 in a granulating step 4, and the powder is granulated. This granulated matter is sintered at 1150 to 1300 deg.C during low oxygen or during an air, whereby an oxide magnetic material set to be magnetization 35emu or more, a coercive force 100e or less and resistivity characteristics 5000V/cm or more is manufactured. The oxide magnetic material is coated with resin a coating step 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化物磁性材料お
よびそれを用いたキャリアに関するものである。複写機
やプリンタ等に用いられるトナー担体であるキャリアに
使用する酸化物磁性材料は、特に近年の環境汚染の懸念
などの問題から重金属を含まないクリーンキャリアで十
分な磁化や抵抗率特性などを有するものが望まれてい
る。
TECHNICAL FIELD The present invention relates to an oxide magnetic material and a carrier using the same. The oxide magnetic material used for the carrier, which is a toner carrier used in copiers, printers, etc., has sufficient magnetization and resistivity characteristics in a clean carrier containing no heavy metal due to problems such as concerns about environmental pollution in recent years. Things are desired.

【0002】[0002]

【従来の技術】酸化物磁性材料は、プリンタなどの現像
剤として使用する場合、実用磁界下においてある程度以
上の磁化が必要とされると共に、ある程度の抵抗率特性
を有する必要がある。
2. Description of the Related Art When used as a developer for a printer or the like, an oxide magnetic material needs to have a certain degree of magnetization under a practical magnetic field and to have a certain degree of resistivity characteristics.

【0003】[0003]

【発明が解決しようとする課題】従来、酸化物磁性材料
を現像剤としてプリンタなどに用いる場合、一般的に実
用磁界下における磁化が低いとキャリアの感光体への付
着などの原因になっていた。
Conventionally, when an oxide magnetic material is used as a developer in a printer or the like, a low magnetization under a practical magnetic field generally causes the carrier to adhere to a photosensitive member. .

【0004】また、磁化という特性は雰囲気に対して非
常に敏感であり抵抗調製などの処理の際に、酸素濃度あ
るいは空気導入温度に影響されてしまい、磁化低下など
の問題を生じていた。
Further, the characteristic of magnetization is very sensitive to the atmosphere, and is affected by the oxygen concentration or the air introduction temperature during processing such as resistance adjustment, causing problems such as a decrease in magnetization.

【0005】更に、クリーンキャリアと呼ばれるキャリ
アでは、コア自体の高磁化および高抵抗率特性を同時に
満足するものがなかった。また、Mg系やCa系のキャ
リアは、抵抗、保磁力、磁化の特性から装置によって使
えないという場合があった。これは、特に保磁力の問題
から生じ、コア自体の高抵抗化が目的で雰囲気焼結ある
いは抵抗処理を行った場合にCa系で顕著に生じてい
た。
Further, there is no carrier called a clean carrier that simultaneously satisfies the high magnetization and high resistivity characteristics of the core itself. In some cases, Mg-based or Ca-based carriers cannot be used depending on the device due to resistance, coercive force, and magnetization characteristics. This is particularly caused by the problem of coercive force, and has been remarkably caused in the Ca-based material when atmosphere sintering or resistance treatment is performed for the purpose of increasing the resistance of the core itself.

【0006】本発明は、これらの問題を解決するため、
Mn化合物およびLi化合物をヘマタイトに混入して低
酸素あるいは空気中で焼成し、磁化、抵抗率特性および
保磁力が良好な酸化物磁性材料およびこれを使用したキ
ャリアの製造を実現することを目的としている。
[0006] The present invention solves these problems,
With the object of mixing an Mn compound and a Li compound into hematite and firing in low oxygen or air, the purpose is to realize an oxide magnetic material having good magnetization, resistivity characteristics and coercive force and to manufacture a carrier using the same. I have.

【0007】[0007]

【課題を解決するための手段】図1を参照して課題を解
決するための手段を説明する。図1において、配合工程
1は、Mn化合物31ないし65モル%、Li化合物5
ないし20モル%および残部ヘマタイトを配合する工程
である。
Means for solving the problem will be described with reference to FIG. In FIG. 1, the blending step 1 comprises 31 to 65 mol% of a Mn compound, a Li compound 5
This is a step of blending about 20 mol% and the balance of hematite.

【0008】造粒工程4は、混合した粉体を造粒する工
程である。焼成工程5は、造粒物を1150ないし13
00°Cにおいて低酸素中あるいは空気中で焼成するも
のである。
The granulating step 4 is a step of granulating the mixed powder. In the firing step 5, the granulated material is
It is fired in low oxygen or air at 00 ° C.

【0009】コーティング工程7は、酸化物磁性材料を
樹脂でコーティングしてキャリアを生成する工程であ
る。次に、製造方法を説明する。
The coating step 7 is a step of coating the oxide magnetic material with a resin to generate a carrier. Next, a manufacturing method will be described.

【0010】配合工程1でMn化合物31ないし65モ
ル%、Li化合物5ないし20モル%および残部ヘマタ
イトを配合し、造粒工程4で配合・混合された粉体を造
粒し、焼成工程5で造粒物を低酸素中あるいは空気中に
おいて1150ないし1300°Cで焼成し、酸化物磁
性材料を製造するようにしている。
In the blending step 1, 31 to 65 mol% of the Mn compound, 5 to 20 mol% of the Li compound and the balance of hematite are blended, and the powder blended and mixed in the granulating step 4 is granulated. The granulated material is calcined in low oxygen or air at 1150 to 1300 ° C. to produce an oxide magnetic material.

【0011】そして、コーティング工程7で酸化物磁性
材料を樹脂でコーティングし、キャリアを製造するよう
にしている。従って、Mn化合物およびLi化合物をヘ
マタイトに混入して低酸素あるいは空気中で焼成し、磁
化、抵抗率特性および保磁力が良好な酸化物磁性材料お
よびこれを使用したキャリアを製造することが可能とな
る。
In the coating step 7, the oxide magnetic material is coated with a resin to manufacture a carrier. Therefore, it is possible to mix an Mn compound and a Li compound into hematite and fire it in low oxygen or air to produce an oxide magnetic material having good magnetization, resistivity characteristics and coercive force, and a carrier using the same. Become.

【0012】[0012]

【発明の実施の形態】次に、図1から図3を用いて本発
明の実施の形態および動作を順次詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment and operation of the present invention will be sequentially described in detail with reference to FIGS.

【0013】図1は、本発明の1実施例構成図を示す。
図1において、配合工程1は、Mn化合物31ないし6
5モル%、Li化合物5ないし20モル%および残部ヘ
マタイトを配合する工程である。
FIG. 1 is a block diagram showing an embodiment of the present invention.
In FIG. 1, the compounding step 1 includes the Mn compounds 31 to 6
In this step, 5 mol%, 5 to 20 mol% of a Li compound and the balance of hematite are blended.

【0014】混合工程2は、配合工程1によって配合さ
れたMn化合物、Li化合物、およびヘマタイトを混ぜ
た混合粉に、−C−C−あるいは−C=C−を分子中に
有する液状物質あるいは粉末物質を0.1〜4.0wt
%混合する工程である。
In the mixing step 2, a liquid substance or powder containing -CC- or -C = C- in a molecule is added to a mixed powder obtained by mixing the Mn compound, the Li compound and hematite mixed in the mixing step 1. 0.1-4.0 wt of substance
% Mixing process.

【0015】粉砕工程3は、混合工程2によって混合し
たものを、アトリションミルで湿式粉砕して混合粉の濃
度約50wt%のスラリーを作成する工程である。造粒
工程4は、球状顆粒を生成する工程である。ここでは、
スラリーをアトライターで1時間撹拌後、スプレードラ
イヤーで熱風乾燥して球状顆粒化する。
The pulverizing step 3 is a step of wet-pulverizing the mixture obtained in the mixing step 2 with an attrition mill to prepare a slurry having a mixed powder concentration of about 50% by weight. The granulation step 4 is a step for producing spherical granules. here,
After the slurry is stirred for 1 hour with an attritor, it is dried with hot air using a spray dryer to form spherical granules.

【0016】焼成工程5は、造粒工程4で得られた顆粒
を低酸素中あるいは空気中で1150〜1300°Cの
範囲内の温度で2時間加熱処理し、スピネル構造をもつ
磁性相と非磁性相が混在した粉末を形成する工程であ
る。
In the calcination step 5, the granules obtained in the granulation step 4 are subjected to a heat treatment in a low oxygen atmosphere or in air at a temperature in the range of 1150 to 1300 ° C. for 2 hours to form a magnetic phase having a spinel structure and a non-magnetic phase. This is a step of forming a powder mixed with a magnetic phase.

【0017】篩別工程6は、焼成して整粒した粉末を所
定の篩で篩別するものである。ここでは、例えば30〜
100μmの篩で篩別した粉末を酸化物磁性材料の製品
としている。
In the sieving step 6, the baked and sized powder is sieved with a predetermined sieve. Here, for example,
The powder sieved with a 100 μm sieve is used as a product of the oxide magnetic material.

【0018】コーティング工程7は、篩別工程6で篩別
された酸化物磁性材料に樹脂をコーティングする工程で
ある。ここでは、フッ素アクリル系樹脂をトルエン溶剤
に溶解させ、流動層を用いてキャリアを芯材に対して
1.0wt%コーティングし100°Cで2時間加熱乾
燥させコートキャリアを得た。
The coating step 7 is a step of coating the oxide magnetic material sieved in the sieving step 6 with a resin. Here, a fluoroacrylic resin was dissolved in a toluene solvent, the carrier was coated on the core material at 1.0 wt% using a fluidized bed, and dried by heating at 100 ° C. for 2 hours to obtain a coated carrier.

【0019】以上のように、主組成である酸化鉄および
Mn化合物そしてLi化合物を所定の組成にて造粒し、
焼成を始めから空気中雰囲気下で行うことで、実用磁界
下における磁化が35emu/g以上の酸化物磁性材料
であり、かつ抵抗率の電界特性が5000V/cmでも
絶縁破壊しない酸化物磁性材料を製造することができ
た。酸化鉄およびMn化合物の2成分におけるキャリア
は従来のフェライトなどの領域から容易に思いつくが、
そこにLi化合物を混ぜることにより、従来のフェライ
トに比べ比較的低い温度での焼成が可能となった。
As described above, the main composition of iron oxide, Mn compound and Li compound is granulated with a predetermined composition.
By performing the firing in an air atmosphere from the beginning, the oxide magnetic material having a magnetization of 35 emu / g or more under a practical magnetic field and having no dielectric breakdown even when the electric field characteristic of resistivity is 5000 V / cm is obtained. Could be manufactured. Carriers in the two components of iron oxide and Mn compound can be easily conceived from the region of conventional ferrite and the like,
By mixing the Li compound therein, firing at a relatively lower temperature than that of conventional ferrite became possible.

【0020】また、従来のCa系に比較して保磁力が低
いとされてきたMg系においても抵抗処理後で保磁力が
20〜30Oe程度であったが、本発明の酸化物磁性材
料では全て10Oe未満である(後述する図2参照)。
The coercive force of the Mg-based material, which has been considered to be lower than that of the conventional Ca-based material, is about 20 to 30 Oe after the resistance treatment. It is less than 10 Oe (see FIG. 2 described later).

【0021】図2は、本発明の実験例を示す。これは、
主成分としてFeをFe23換算で30〜65モル%、
MnをMnO換算で50〜70モル%、LiをLi2
換算で8〜30モル%、ポリビニルアルコール2.0w
t%を添加し、水と混合して粉体濃度50wt%のスラ
リーとし、アトライターで1時間撹拌後、スプレードラ
イヤーで造粒した。その後、酸素濃度(0〜21%O2
で一定な酸素濃度)を制御しながら電気炉にて約120
0°Cで2時間焼成して酸化物磁性材料を得た。図3の
(a)に加熱のパターンを示す。製造した酸化物磁性材
料を直径6mmのサンプル樹脂ホルダに埋め込みVSM
(振動型磁力計)にて1kOeの磁気特性(最大磁化σ
s)の測定を行った(図3の(c)参照)。また、静的
抵抗率などを後述する図3の(b)に示すような治具を
用いて測定した。電極サイズは円形で直径5mmであ
る。
FIG. 2 shows an experimental example of the present invention. this is,
30 to 65 mol% of Fe as a main component in terms of Fe 2 O 3 ;
Mn is 50 to 70 mol% in terms of MnO, and Li is Li 2 O
8-30 mol% in conversion, polyvinyl alcohol 2.0w
After adding t%, the mixture was mixed with water to obtain a slurry having a powder concentration of 50% by weight, stirred for 1 hour with an attritor, and then granulated with a spray drier. Thereafter, the oxygen concentration (0 to 21% O 2)
In an electric furnace while controlling the oxygen concentration at a constant
Calcination was performed at 0 ° C. for 2 hours to obtain an oxide magnetic material. FIG. 3A shows a heating pattern. VSM embedded with the manufactured oxide magnetic material in a sample resin holder with a diameter of 6 mm
(Vibration magnetometer) 1 kOe magnetic characteristics (maximum magnetization σ)
s) was measured (see FIG. 3 (c)). In addition, the static resistivity and the like were measured using a jig as shown in FIG. The electrode size is circular and 5 mm in diameter.

【0022】次に、図2の実験例について説明する。 ・実施例1ないし実施例5は、磁化、保磁力、および抵
抗率特性がともに良好な実験例を示す。ここで、がF
23の上限49.0モル%であり、がFe23の下
限30.0モル%である。この、のときに、磁化の
最小値は49emu、保磁力の最大値は8.0Oe、抵
抗率特性の最小値は5000V/cmとなり、いずれも
磁気特性が良好と判断する目安の磁化35emu/g、
保磁力10Oe以下、抵抗率特性5000V/cm以上
に該当し、良好な磁気特性を持つと判断される。
Next, the experimental example of FIG. 2 will be described. Examples 1 to 5 show experimental examples in which the magnetization, coercive force, and resistivity characteristics are all good. Where F
The upper limit of e 2 O 3 is 49.0 mol%, and the lower limit of Fe 2 O 3 is 30.0 mol%. At this time, the minimum value of the magnetization is 49 emu, the maximum value of the coercive force is 8.0 Oe, and the minimum value of the resistivity characteristic is 5000 V / cm, and the magnetization is 35 emu / g which is a guideline for judging that the magnetic characteristics are good. ,
This corresponds to a coercive force of 10 Oe or less and a resistivity characteristic of 5000 V / cm or more, and is determined to have good magnetic characteristics.

【0023】がMnOの上限65.0モル%であり、
がMnOの下限31.0モル%である。この、の
ときに、磁化の最小値は46emu/g、保磁力の最大
値は7.0Oe、抵抗率特性の最小値は5000V/c
mとなり、いずれも磁気特性が良好と判断する目安の磁
化35emu/g、保磁力10Oe以下、抵抗率特性5
000V/cm以上に該当し、良好な磁気特性を持つと
判断される。
Is an upper limit of 65.0 mol% of MnO,
Is the lower limit of 31.0 mol% of MnO. In this case, the minimum value of the magnetization is 46 emu / g, the maximum value of the coercive force is 7.0 Oe, and the minimum value of the resistivity characteristic is 5000 V / c.
m, the magnetization is 35 emu / g, the coercive force is 10 Oe or less, and the resistivity is 5
000 V / cm or more, and is judged to have good magnetic properties.

【0024】がLi2CO3の上限20.0モル%であ
り、がLi2CO3の下限5.0モル%である。この
、のときに、磁化の最小値は50emu/g、保磁
力の最大値は6.5Oe、抵抗率特性の最小値は500
0V/cmとなり、いずれも磁気特性が良好と判断する
目安の磁化35emu/g、保磁力10Oe以下、抵抗
率特性5000V/cm以上に該当し、良好な磁気特性
を持つと判断される。
The upper limit of Li 2 CO 3 is 20.0 mol%, and the lower limit of Li 2 CO 3 is 5.0 mol%. In this case, the minimum value of the magnetization is 50 emu / g, the maximum value of the coercive force is 6.5 Oe, and the minimum value of the resistivity characteristic is 500 emu / g.
0 V / cm, all of which correspond to a magnetization of 35 emu / g, a coercive force of 10 Oe or less, and a resistivity characteristic of 5000 V / cm or more, which are criteria for judging that magnetic properties are good, and are judged to have good magnetic properties.

【0025】・比較例1ないし比較例4は、磁化、保磁
力中の×印の部分が磁気特性が良好と判断する目安の磁
化35emu/g、保磁力10Oe以下に該当しない部
分である。
In Comparative Examples 1 to 4, the portions marked with “x” in the magnetization and coercive force are portions that do not correspond to magnetization of 35 emu / g and coercive force of 10 Oe or less, which are guidelines for judging that magnetic properties are good.

【0026】以上の説明から判明するように、図2の実
験結果から ・Fe23が30〜49モル% ・MnOが31.0〜65.0モル% ・Li2CO3が5.0〜20.0モル% の範囲のときに磁化、保磁力、抵抗率特性の良好な酸化
物磁性材料が得られることが判明した。
As can be seen from the above description, from the results of the experiment shown in FIG. 2, 30 to 49 mol% of Fe 2 O 3 .31.0 to 65.0 mol% of MnO. 5.0 of Li 2 CO 3. It has been found that an oxide magnetic material having good magnetization, coercive force, and resistivity characteristics can be obtained when the content is in the range of 220.0 mol%.

【0027】図3は、本発明の説明図を示す。図3の
(a)は、焼結時の加熱温度特性を示す。これは、焼成
時に200°C/Hの温度上昇速度で加熱し、焼成温度
のここでは例えば1200°Cとなってから2時間その
ままの温度を保持し、次に200°C/Hの温度降下速
度で冷却し、所定温度となったときに雰囲気制御を停止
する。ここでは、図示のように雰囲気制御は21%O2
(空気)を供給している。
FIG. 3 shows an explanatory diagram of the present invention. FIG. 3A shows a heating temperature characteristic during sintering. This is because the sintering is carried out at a temperature rising rate of 200 ° C./H, the sintering temperature is kept at, for example, 1200 ° C. for 2 hours, and then the temperature is lowered by 200 ° C./H. At that time, the atmosphere control is stopped when a predetermined temperature is reached. Here, the atmosphere control is 21% O 2 as shown in the figure.
(Air).

【0028】図3の(b)は、静的抵抗率を測定する様
子を模式的に示す。電極と電極との間に電圧を印加し、
そのときに流れる電流を測定して図示の式から抵抗率R
(Ω・cm)を算出する。また、B.D.電界強度は、
電極と電極との間に印加する電圧を徐々に高めたときに
急激に電流が増加するブレークダウン(B.D.)して
しまう電界強度を測定し、そのときの値(V/cm)で
表す。尚、この例では、電極サイズが円形で直径5mm
の容器に試料(酸化物磁性材料)を入れ、両側の電極の
間に定電圧Vを印加し、そのときに流れる電流Iを測定
し図示の式に代入して抵抗率を求めている。
FIG. 3B schematically shows how the static resistivity is measured. Applying a voltage between the electrodes,
The current flowing at that time is measured, and the resistivity R
(Ω · cm) is calculated. B. D. The electric field strength is
When the voltage applied between the electrodes is gradually increased, the electric current suddenly increases, and the electric field strength which causes a breakdown (BD) is measured, and the value (V / cm) at that time is measured. Represent. In this example, the electrode size is circular and the diameter is 5 mm.
The sample (oxide magnetic material) is placed in the container (1), a constant voltage V is applied between the electrodes on both sides, the current I flowing at that time is measured, and the measured value is substituted into the formula shown in the figure to determine the resistivity.

【0029】以上のようにして求めた酸化物磁性材料の
B.D.は、図2の右欄の抵抗率特性(B.D.)とな
る。図3の(c)は、本発明の磁化(飽和磁化)の説明
図を示す。これは、図2の磁化を測定するときの説明図
である。横軸は印加する磁界の強さH Oeを表し、縦
軸はそのときの磁化の強さM emuを表す。振動型磁
界計は、図示のように例えば1kOeの磁界を印加した
状態で、そのときのマグネタイトと非磁性相が混在した
粉体の磁化の強さMs emuを測定する。そして、飽
和磁化は、図示の下記の式 δs=Ms/(粉体の重量) [emu/g] (1) によって求める。この式(1)によって求めたものが図
2の磁化emu/gである。
The B.V. of the oxide magnetic material obtained as described above was used. D. Is the resistivity characteristic (BD) in the right column of FIG. FIG. 3C is an explanatory diagram of the magnetization (saturated magnetization) of the present invention. This is an explanatory diagram when measuring the magnetization in FIG. The horizontal axis represents the intensity H Oe of the applied magnetic field, and the vertical axis represents the magnetization intensity Memu at that time. The vibrating magnetometer measures a magnetization strength Msemu of a powder in which magnetite and a non-magnetic phase are mixed at that time in a state where a magnetic field of, for example, 1 kOe is applied as shown in the figure. Then, the saturation magnetization is determined by the following equation: δs = Ms / (weight of powder) [emu / g] (1) The magnetization emu / g shown in FIG. 2 is obtained by the equation (1).

【0030】[0030]

【発明の効果】以上説明したように、本発明によれば、
Mn化合物およびLi化合物をヘマタイトに混入して低
酸素あるいは空気中で焼成し、磁化、抵抗率特性および
保磁力が良好な酸化物磁性材料およびこれを使用したキ
ャリアを製造することができるようになった。これらに
より、主組成である酸化鉄を適量に抑えることで、空気
中(あるいは低酸素中)でも焼成した際にFe34→F
23を抑え、それに伴う磁化低下を抑制し、更に適量
のLi化合物を加えることによって所定の磁化制御と抵
抗率特性を得ることができる。また、従来の抵抗率調製
として行ってきた抵抗処理を行うことなく、非常に簡単
な工程で良好な特性を持つ酸化物磁性材料を製造するこ
とが可能となった。
As described above, according to the present invention,
An Mn compound and a Li compound are mixed in hematite and calcined in low oxygen or air to produce an oxide magnetic material having good magnetization, resistivity characteristics and coercive force, and a carrier using the same. Was. By suppressing iron oxide, which is the main composition, to an appropriate amount, Fe 3 O 4 → F when firing in air (or in low oxygen).
By suppressing e 2 O 3 , suppressing the accompanying decrease in magnetization, and adding an appropriate amount of a Li compound, predetermined magnetization control and resistivity characteristics can be obtained. Further, it has become possible to manufacture an oxide magnetic material having good characteristics in a very simple process without performing the resistance treatment which has been performed as a conventional resistivity adjustment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施例構成図である。FIG. 1 is a configuration diagram of one embodiment of the present invention.

【図2】本発明の実験例である。FIG. 2 is an experimental example of the present invention.

【図3】本発明の説明図である。FIG. 3 is an explanatory diagram of the present invention.

【符号の説明】[Explanation of symbols]

1:配合工程 2:混合工程 3:粉砕工程 4:造粒工程 5:焼成工程 6:篩別工程 7:コーティング工程 1: compounding step 2: mixing step 3: pulverizing step 4: granulating step 5: firing step 6: sieving step 7: coating step

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】Mn化合物31ないし65モル%、Li化
合物5ないし20モル%および残部ヘマタイトを混合し
て造粒し、造粒物を1150ないし1300°Cで焼成
することにより磁化35emu以上、保磁力10Oe以
下、かつ抵抗率特性5000V/cm以上にしたことを
特徴とする酸化物磁性材料。
1. A mixture of 31 to 65 mol% of a Mn compound, 5 to 20 mol% of a Li compound and the balance of hematite is granulated, and the granulated material is fired at 1150 to 1300 ° C. to maintain a magnetization of 35 emu or more. An oxide magnetic material having a magnetic force of 10 Oe or less and a resistivity characteristic of 5000 V / cm or more.
【請求項2】上記焼成を低酸素中あるいは空気中で行う
ことを特徴とする請求項1記載の酸化物磁性材料。
2. The oxide magnetic material according to claim 1, wherein said firing is performed in low oxygen or air.
【請求項3】上記請求項1あるいは請求項2で製造した
酸化物磁性材料をコーティングしたことを特徴とするキ
ャリア。
3. A carrier coated with the oxide magnetic material produced according to claim 1 or 2.
JP27041696A 1996-10-14 1996-10-14 Oxide magnetic material and carrier using the same Pending JPH10116716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27041696A JPH10116716A (en) 1996-10-14 1996-10-14 Oxide magnetic material and carrier using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27041696A JPH10116716A (en) 1996-10-14 1996-10-14 Oxide magnetic material and carrier using the same

Publications (1)

Publication Number Publication Date
JPH10116716A true JPH10116716A (en) 1998-05-06

Family

ID=17485971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27041696A Pending JPH10116716A (en) 1996-10-14 1996-10-14 Oxide magnetic material and carrier using the same

Country Status (1)

Country Link
JP (1) JPH10116716A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5812508B1 (en) * 2015-05-22 2015-11-17 Dowaエレクトロニクス株式会社 Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5812508B1 (en) * 2015-05-22 2015-11-17 Dowaエレクトロニクス株式会社 Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP2016218295A (en) * 2015-05-22 2016-12-22 Dowaエレクトロニクス株式会社 Carrier core material, and electrophotographic developing carrier and electrophotographic developer using the same

Similar Documents

Publication Publication Date Title
US7476482B2 (en) Mg-based ferrite, an electrophotographic development carrier containing the ferrite, and developer containing the carrier
JP4779141B2 (en) Carrier core material for electrophotographic development, method for producing the same, and magnetic carrier
CN101641651B (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
KR101519318B1 (en) Method for producing carrier core for electrophotographic developer, carrier core for electrophotographic developer, carrier for electrophotographic carrier, and electrophotographic developer
JP5377386B2 (en) Carrier core material for electrophotographic developer, production method thereof, carrier for electrophotographic developer, and electrophotographic developer
JP6766134B2 (en) Method for manufacturing ferrite carrier core material for electrophotographic developer, ferrite carrier for electrophotographic developer, ferrite carrier core material for electrophotographic developer and electrophotographic developer
KR101291909B1 (en) Carrier core material for electrophotography developer, carrier for electrophotography developer, and electrophotography developer
JP2006259294A (en) Carrier core material for electrophotographic developer, carrier powder for electrophotographic developer, and method for manufacturing the same
US7470498B2 (en) Mg-based ferrite, an electrophotographic development carrier containing the ferrite, and a developer containing the carrier
JPS58123550A (en) Electrophotographic developing carrier
JPH10116716A (en) Oxide magnetic material and carrier using the same
JPH10116717A (en) Oxide magnetic material and carrier using the same
JPS6148430A (en) Manufacture of ferrite carrier for electrostatic copying
CN110476128A (en) Carrier core material and electronic photo developing carrier and electronic photo developer using it
JP2001093720A (en) Method for manufacturing soft ferrite
EP2891925B1 (en) Carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
CA2141857C (en) Magnetic oxide and process for producing same
JP2000172017A (en) Production of ferrite carrier core for electrophotographic development
JP3106413B2 (en) Oxide magnetic material and method for producing the same
CN1768307A (en) A Mg-based ferrite, an electrophotographic development carrier containing the ferrite, and a developer containing the carrier
US20030073022A1 (en) Electrophotographic carrier core magnetite powder
JPH1140407A (en) Magnetic oxide material
JP2005504345A (en) Electrophotographic carrier core magnetite powder
JP2860929B2 (en) Manufacturing method of oxide magnetic material
JPH1138682A (en) Production of oxide magnetic material