JP2016218295A - Carrier core material, and electrophotographic developing carrier and electrophotographic developer using the same - Google Patents

Carrier core material, and electrophotographic developing carrier and electrophotographic developer using the same Download PDF

Info

Publication number
JP2016218295A
JP2016218295A JP2015104093A JP2015104093A JP2016218295A JP 2016218295 A JP2016218295 A JP 2016218295A JP 2015104093 A JP2015104093 A JP 2015104093A JP 2015104093 A JP2015104093 A JP 2015104093A JP 2016218295 A JP2016218295 A JP 2016218295A
Authority
JP
Japan
Prior art keywords
core material
carrier core
carrier
ferrite
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015104093A
Other languages
Japanese (ja)
Other versions
JP5812508B1 (en
Inventor
心 濱田
Shin Hamada
心 濱田
翔 小川
Sho Ogawa
翔 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Dowa IP Creation Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Dowa IP Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd, Dowa IP Creation Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2015104093A priority Critical patent/JP5812508B1/en
Application granted granted Critical
Publication of JP5812508B1 publication Critical patent/JP5812508B1/en
Publication of JP2016218295A publication Critical patent/JP2016218295A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carrier core material that has a necessary magnetic force that does not cause carrier scattering, has a high insulation breakdown resistance and a high electrostatic propensity, and can stably generate a high-quality image not only in normal use but also when a high bias voltage is applied.SOLUTION: The carrier core material is made of ferrite particles and contains Li. The content of Li is 3.0 mass% or less. A main peak intensity value A in powder X-ray diffraction and a peak intensity value B of Li ferrite satisfy the equation (1), 0.16≤B/(A+B) ---(1).SELECTED DRAWING: Figure 1

Description

本発明はキャリア芯材並びにそれを用いた電子写真現像用キャリア及び電子写真用現像剤に関するものである。   The present invention relates to a carrier core material, an electrophotographic developer carrier and an electrophotographic developer using the same.

電子写真方式を用いたファクシミリやプリンター、複写機などの画像形成装置では、フェライト粒子から構成されるキャリア芯材の表面を絶縁性樹脂で被覆したいわゆるコーティングキャリアとトナーとを混合した二成分系現像剤によって、感光体表面に形成された静電潜像を可視像化している。   In image forming apparatuses such as facsimiles, printers, and copiers that use electrophotography, two-component development in which a so-called coating carrier in which the surface of a carrier core composed of ferrite particles is coated with an insulating resin and toner is mixed. The electrostatic latent image formed on the surface of the photoreceptor is visualized by the agent.

ここで使用されるキャリア芯材には電気的特性と磁気的特性とが要求される。具体的には、高抵抗且つ高磁力であることが要求される。キャリア芯材の抵抗が低いと、電荷注入が起こってトナーと共にキャリアが用紙に付着するいわゆるキャリア現像が生じやすくなる。また、キャリア芯材の磁力が低いと、現像スリーブへの吸着が弱くなりキャリア飛散が生じやすくなる。   The carrier core material used here is required to have electrical characteristics and magnetic characteristics. Specifically, high resistance and high magnetic force are required. If the resistance of the carrier core material is low, so-called carrier development in which charge injection occurs and the carrier adheres to the paper together with the toner tends to occur. Further, when the magnetic force of the carrier core material is low, the adsorption to the developing sleeve is weakened and carrier scattering is likely to occur.

例えば特許文献1では、Li−Mn系フェライト粒子から構成されるキャリア芯材において、芯材組成を最適化することで帯電と磁化を制御するとともに、樹脂コートの厚みを適切にすることで抵抗を制御し高画質の画像を安定して形成する技術が提案されている。   For example, in Patent Document 1, in a carrier core material composed of Li-Mn ferrite particles, the core material composition is optimized to control charging and magnetization, and the resin coating is made appropriate in thickness to reduce resistance. A technique for controlling and stably forming a high-quality image has been proposed.

特開平09−236945号公報JP 09-236945 A 特開2011−53491号公報JP 2011-53491 A 特開2009−244570号公報JP 2009-244570 A 特開2008−175883号公報JP 2008-175883 A

しかしながら、特許文献1のキャリア芯材では、通常使用時にコート層が剥がれると抵抗が著しく低下し、画像欠陥(キャリア現像)が生じるというおそれがある。また、キャリア芯材の絶縁破壊電圧が低く、高いバイアス電圧が印加されることによっても画像欠陥(キャリア現像)が発生するおそれがある。   However, in the carrier core material of Patent Document 1, when the coat layer is peeled off during normal use, the resistance is remarkably lowered, and image defects (carrier development) may occur. Further, the dielectric breakdown voltage of the carrier core material is low, and image defects (carrier development) may also occur when a high bias voltage is applied.

そこで本発明の目的は、キャリア飛散が発生しない必要な磁力を有しながら高い絶縁破壊抵抗と帯電性を有し、通常使用時のみならず高いバイアス電圧が印加された時においても高画質の画像を安定して形成できるキャリア芯材を提供することにある。   Accordingly, an object of the present invention is to have a high dielectric breakdown resistance and chargeability while having a necessary magnetic force that does not cause carrier scattering, and to provide a high-quality image not only during normal use but also when a high bias voltage is applied. It is in providing the carrier core material which can be formed stably.

また本発明の他の目的は、前記キャリア芯材を効率的に製造できる方法を提供することにある。   Another object of the present invention is to provide a method capable of efficiently producing the carrier core material.

本発明によれば、フェライト粒子から構成されLi(リチウム)を含有するキャリア芯材であって、Liの含有量が3.0質量%以下であり、粉末X線回折におけるメインピーク強度値Aと、Liフェライトのピーク強度値Bとが下記式(1)を満足することを特徴とするキャリア芯材が提供される。なお、本願発明においてメインピーク強度値AはLiフェライトのピーク強度値以外のメインピーク強度値というものとする。
0.16≦B/(A+B) ・・・・・・(1)
According to the present invention, the carrier core material is composed of ferrite particles and contains Li (lithium), the Li content is 3.0% by mass or less, and the main peak intensity value A in powder X-ray diffraction and There is provided a carrier core material characterized in that the peak intensity value B of Li ferrite satisfies the following formula (1). In the present invention, the main peak intensity value A is a main peak intensity value other than the peak intensity value of Li ferrite.
0.16 ≦ B / (A + B) (1)

前記メインピーク強度値AがMnフェライトのメインピーク強度値であるのが好ましい。Mnの含有量としては20.2質量%以下であるのが好ましい。   The main peak intensity value A is preferably the main peak intensity value of Mn ferrite. The Mn content is preferably 20.2% by mass or less.

また、前記メインピーク強度値AがMnMgフェライトのメインピーク強度値であるのが好ましい。Mg含有量としては8.0質量%以下であるのが好ましい。   The main peak intensity value A is preferably the main peak intensity value of MnMg ferrite. The Mg content is preferably 8.0% by mass or less.

そしてまた体積平均粒径としては25μm以上50μm未満であるのが好ましい。   The volume average particle diameter is preferably 25 μm or more and less than 50 μm.

また本発明によれば、前記のいずれかに記載のキャリア芯材の表面を樹脂で被覆したことを特徴とする電子写真現像用キャリアが提供される。   According to the present invention, there is also provided an electrophotographic developing carrier characterized in that the surface of the carrier core material described above is coated with a resin.

さらに本発明によれば、前記記載の電子写真現像用キャリアとトナーとを含む電子写真用現像剤が提供される。   Furthermore, according to the present invention, there is provided an electrophotographic developer comprising the electrophotographic developer carrier described above and a toner.

そしてまた本発明によれば,前記のいずれかに記載のキャリア芯材の製造方法であって、フェライト粒子から構成される芯粒子の表面にLi成分原料粉体を付着させる工程と、Li成分原料粉体が付着させた粒子を加熱処理する工程とを含むことを特徴とするキャリア芯材の製造方法が提供される。   Further, according to the present invention, there is provided a method for producing a carrier core material according to any one of the above, wherein the Li component raw material powder is attached to the surface of the core particles composed of ferrite particles; And a step of heat-treating the particles to which the powder is adhered.

また本発明によれば、前記のいずれかに記載のキャリア芯材の製造方法であって、フェライト粒子から構成される芯粒子の表面にLi成分溶液を塗布する工程と、Li成分溶液が塗布された粒子を加熱処理する工程とを含むことを特徴とするキャリア芯材の製造方法が提供される。   According to the invention, there is provided the method for producing a carrier core material according to any one of the above, wherein the step of applying the Li component solution to the surface of the core particles composed of ferrite particles, and the application of the Li component solution And a step of heat-treating the particles. A method for producing a carrier core material is provided.

ここで、前記加熱処理の条件としては、加熱温度が500℃以上1300℃以下の範囲、酸素濃度が100ppm以上20%以下の範囲であるのが好ましい。   Here, as the conditions for the heat treatment, it is preferable that the heating temperature is in the range of 500 ° C. to 1300 ° C., and the oxygen concentration is in the range of 100 ppm to 20%.

本発明のキャリア芯材によれば、高磁力で高い抵抗及び高い帯電性が得られる。これにより、通常使用時のみならず高いバイアス電圧が印加された時においても高画質の画像を安定して形成できる。   According to the carrier core material of the present invention, high resistance and high chargeability can be obtained with high magnetic force. As a result, a high-quality image can be stably formed not only during normal use but also when a high bias voltage is applied.

また本発明の製造方法によれば、本発明のキャリア芯材を効率的に製造することができる。   Moreover, according to the manufacturing method of this invention, the carrier core material of this invention can be manufactured efficiently.

実施例1,比較例1,4のキャリア芯材の粉末X線回折(XRD)パターンを示す図である。It is a figure which shows the powder X-ray-diffraction (XRD) pattern of the carrier core material of Example 1 and Comparative Examples 1 and 4. FIG.

本発明者等は、キャリア飛散が発生しない必要な磁力を有し、しかも高い絶縁破壊抵抗と高い帯電性とを有するキャリア芯材を得るべく鋭意検討を重ねた結果、フェライト粒子にLiを含有させることによって絶縁破壊抵抗及び帯電性は向上すること、また一方でLi含有量を多くしすぎると磁気特性が低下することを見出した。そしてさらに、Li含有量を所定値以下に抑えながら絶縁破壊抵抗及び帯電性を向上させるためにはLiを粒子表面に多く存在させればよいとの着想を得て本発明を成すに至った。そして、粒子の表面におけるLiフェライト相の存在割合を、粉末X線回折におけるメインピーク強度値AとLiフェライトのピーク強度値Bとの関係で規定することとした。   As a result of intensive studies to obtain a carrier core material having a necessary magnetic force that does not cause carrier scattering and having high dielectric breakdown resistance and high chargeability, the present inventors have incorporated Li into ferrite particles. As a result, it was found that the dielectric breakdown resistance and the chargeability were improved, and on the other hand, if the Li content was increased too much, the magnetic properties were lowered. Further, the present invention has been made with the idea that a large amount of Li should be present on the particle surface in order to improve the dielectric breakdown resistance and the chargeability while keeping the Li content below a predetermined value. Then, the ratio of the Li ferrite phase existing on the surface of the particles is defined by the relationship between the main peak intensity value A and the peak intensity value B of Li ferrite in powder X-ray diffraction.

すなわち、本発明の大きな特徴の一つは、粉末X線回折におけるメインピーク強度値Aと、Liフェライトのピーク強度値Bとが前記式(1)を満足することにある。B/(A+B)の値が0.16未満であると、キャリア芯材の絶縁破壊抵抗及び帯電性が低くなりキャリア現像が生じる。B/(A+B)のより好ましい下限値は0.19である。   That is, one of the major features of the present invention is that the main peak intensity value A in powder X-ray diffraction and the peak intensity value B of Li ferrite satisfy the above formula (1). When the value of B / (A + B) is less than 0.16, the dielectric breakdown resistance and chargeability of the carrier core material are lowered, and carrier development occurs. A more preferable lower limit value of B / (A + B) is 0.19.

従来のようなLi成分原料をFe成分原料などの他原料成分と共に混合し焼成して作製されたキャリア芯材においても、Li含有量を多くすれば芯材粒子表面に存在するLiフェライトも多くなり、B/(A+B)の値が0.16以上になることはあり得るが、前述のように、Li含有量が3.0wt%を超えるとキャリア芯材の磁気特性が急激に低下しキャリア飛散が生じる。したがって、Li含有量を3.0質量%以下に抑えることも本発明のもう一つの大きな特徴である。   Even in the carrier core material produced by mixing and firing the conventional Li component raw material together with other raw material components such as the Fe component raw material, if the Li content is increased, the amount of Li ferrite existing on the surface of the core material particles also increases. The value of B / (A + B) can be 0.16 or more, but as described above, when the Li content exceeds 3.0 wt%, the magnetic properties of the carrier core material are drastically reduced and carrier scattering occurs. Occurs. Therefore, suppressing the Li content to 3.0% by mass or less is another major feature of the present invention.

Li含有量を所定値以下に抑えながらLiを粒子表面に多く存在させる製造方法としては、例えば、フェライト粒子からなる芯粒子の表面にLi成分原料粉を付着させた後、加熱処理し、芯粒子中のFeと表面のLiとを反応させて芯粒子の表面にLiフェライト相を生成させる方法がある。本発明のキャリア芯材の具体的製造方法は後段で詳述する。   As a manufacturing method in which a large amount of Li is present on the particle surface while suppressing the Li content to a predetermined value or less, for example, after the Li component raw material powder is attached to the surface of the core particle made of ferrite particles, the core particle is heated. There is a method in which Fe in the inside reacts with Li on the surface to generate a Li ferrite phase on the surface of the core particle. A specific method for producing the carrier core material of the present invention will be described in detail later.

本発明におけるフェライト粒子に特に限定はなく、例えば、一般式MFe3−X(但し、MはMg,Mn,Ti,Cu,Zn,Niなどの金属,0<X<1)で表される組成の粒子が挙げられる。Ca、Srも含まれていても良い。これらの中でもMnフェライト粒子及びMnMgフェライト粒子が好適に使用される。Mnは多くの原子価をとるので、電荷保障の観点から結晶格子内への陽イオン(Li)の進入に寛容で、粒子内部へのLiの拡散を促すからである。ただし、Mn含有量が多くなると相対的にFe含有量が少なくなる結果、Liフェライト層が少なくなって電導パスができるおそれがある。このため、Mn含有量は20.2質量%以下であるのが好ましい。 The ferrite particles in the present invention are not particularly limited. For example, the general formula M X Fe 3 -X O 4 (where M is a metal such as Mg, Mn, Ti, Cu, Zn, Ni, 0 <X <1) The particle | grains of the composition represented are mentioned. Ca and Sr may also be included. Among these, Mn ferrite particles and MnMg ferrite particles are preferably used. This is because Mn has many valences and is therefore tolerant to the entry of cations (Li + ) into the crystal lattice from the viewpoint of charge security, and promotes the diffusion of Li + into the particles. However, when the Mn content is increased, the Fe content is relatively decreased. As a result, the Li ferrite layer is decreased and a conductive path may be formed. For this reason, it is preferable that Mn content is 20.2 mass% or less.

また、Mgを含むことが好ましい。Mgを含むことでフェライトの結晶構造が安定化し、Li添加による磁力の低下を抑制できる。   Moreover, it is preferable that Mg is included. By including Mg, the crystal structure of ferrite is stabilized, and a decrease in magnetic force due to addition of Li can be suppressed.

本発明におけるLiフェライトとは、スピネルフェライト型結晶構造、マグネトプランバイト型結晶構造、ガーネット型結晶構造などのFeを含む結晶構造物であれば、特に制限はなく、結晶構造の一部にLiが配位された置換型の結晶物であってもよい。   The Li ferrite in the present invention is not particularly limited as long as it is a crystal structure containing Fe, such as a spinel ferrite type crystal structure, a magnetoplumbite type crystal structure, a garnet type crystal structure, and Li is part of the crystal structure. A coordinated substitutional crystal may be used.

本発明におけるLi成分原料に特に限定はなく、LiCO、LiOH、LiCl、LiSOなどのリチウム塩を使用することができる。これらの中でも、LiCOが好ましい。 There is no particular limitation on the Li ingredient material in the present invention can be used Li 2 CO 3, LiOH, LiCl, lithium salts such as Li 2 SO 4. Among these, Li 2 CO 3 is preferable.

また、フェライト粒子の形状は真球状とは限らず、楕円球状、針状形状でも良く、表面も平滑でなくても良く、表面に凹凸、穴などがあっても良い。酸化処理など表面処理を施した粒子にも適用可能である。また本発明に係る製造方法ではフェライト粒子であれば、組成、形状等を問わず適用可能である。   Further, the shape of the ferrite particles is not limited to a true sphere, and may be an oval sphere or a needle shape, the surface may not be smooth, and the surface may have irregularities or holes. It can also be applied to particles that have undergone surface treatment such as oxidation treatment. Further, in the production method according to the present invention, any ferrite particles can be applied regardless of the composition, shape, and the like.

本発明におけるキャリア芯材の粒径に特に限定はないが、体積平均粒径で20μm〜50μmの範囲が好ましく、粒度分布はシャープであるのが好ましい。   The particle diameter of the carrier core material in the present invention is not particularly limited, but the volume average particle diameter is preferably in the range of 20 μm to 50 μm, and the particle size distribution is preferably sharp.

また、Liフェライト相の相厚としては特に限定はなく、芯粒子の粒径等を考慮し適宜決定すればよいが、通常、0.1μm以上が好ましい。Liフェライト相は、芯粒子の表面上に形成するため、その形状は芯粒子の外形に沿った相形状となる。すなわち、フェライト粒子の表面の凹凸と、Liフェライト相の表面とは、ほぼ同一の凹凸形状となる。芯粒子の表面に厚さ5μm以下の薄相が形成されている状態である。   Further, the phase thickness of the Li ferrite phase is not particularly limited and may be appropriately determined in consideration of the particle diameter of the core particles and the like. Since the Li ferrite phase is formed on the surface of the core particle, the shape thereof is a phase shape along the outer shape of the core particle. That is, the irregularities on the surface of the ferrite particles and the surface of the Li ferrite phase have substantially the same irregular shape. In this state, a thin phase having a thickness of 5 μm or less is formed on the surface of the core particle.

本発明のキャリア芯材の製造方法に特に限定はないが、以下に説明する製造方法が好適である。   Although there is no limitation in particular in the manufacturing method of the carrier core material of this invention, the manufacturing method demonstrated below is suitable.

(第1の製造方法)
フェライト粒子から構成される芯粒子とLiCOなどのLi成分原料粉末とを混合して芯粒子の表面にLi成分原料粉末を付着させる。Li成分原料粉末の平均粒径は芯粒子の平均粒径よりも小さいことが望まれる。芯粒子とLi成分原料粉末との混合は、V型混合機など従来公知の混合機を用いることができる。混合時間は、芯粒子の表面にLi成分原料粉末が付着する限りにおいて特に限定はないが、通常、数時間程度である。
(First manufacturing method)
Core particles composed of ferrite particles and Li component raw material powder such as Li 2 CO 3 are mixed to adhere the Li component raw material powder to the surface of the core particles. The average particle size of the Li component raw material powder is desirably smaller than the average particle size of the core particles. For mixing the core particles and the Li component raw material powder, a conventionally known mixer such as a V-type mixer can be used. The mixing time is not particularly limited as long as the Li component raw material powder adheres to the surface of the core particles, but is usually about several hours.

次いで、得られた混合物を500℃以上に加熱した炉に投入して焼成し、芯粒子表面のLiと芯粒子を構成するフェライトのFeとからLiフェライト相を芯粒子表面に生成させる。加熱温度が500℃以上であればLiフェライトが合成される。加熱温度の好ましい上限値は1300℃である。焼成温度が1300℃以下であると、フェライト粒子同士の過剰焼結が起こらず、異形粒子の発生が抑制されるからである。したがって、加熱温度としては500℃〜1300℃の範囲が好ましい。また、炉内の酸素濃度は100ppm〜20%の範囲が好ましい。   Next, the obtained mixture is put into a furnace heated to 500 ° C. or more and fired, and a Li ferrite phase is generated on the surface of the core particle from Li on the surface of the core particle and Fe of ferrite constituting the core particle. If the heating temperature is 500 ° C. or higher, Li ferrite is synthesized. A preferable upper limit of the heating temperature is 1300 ° C. This is because when the firing temperature is 1300 ° C. or lower, the ferrite particles are not excessively sintered and the generation of irregularly shaped particles is suppressed. Therefore, the heating temperature is preferably in the range of 500 ° C to 1300 ° C. The oxygen concentration in the furnace is preferably in the range of 100 ppm to 20%.

次に、得られた焼成物を必要により解砕する。具体的には、例えば、ハンマーミル等によって焼成物を解砕する。解砕工程の形態としては連続式及び回分式のいずれであってもよい。そして、必要により、粒径を所定範囲に揃えるため分級を行ってもよい。分級方法としては、風力分級や篩分級など従来公知の方法を用いることができる。また、風力分級機で1次分級した後、振動篩や超音波篩で粒径を所定範囲に揃えるようにしてもよい。さらに、分級工程後に、磁場選鉱機によって非磁性粒子を除去するようにしてもよい。   Next, the obtained fired product is crushed as necessary. Specifically, for example, the fired product is crushed by a hammer mill or the like. As a form of a crushing process, any of a continuous type and a batch type may be sufficient. And if necessary, classification may be performed in order to make the particle size in a predetermined range. As a classification method, a conventionally known method such as air classification or sieve classification can be used. In addition, after primary classification with an air classifier, the particle size may be aligned within a predetermined range with a vibration sieve or an ultrasonic sieve. Furthermore, you may make it remove a nonmagnetic particle with a magnetic field separator after a classification process.

以上のようにして作製した本発明のキャリア芯材の表面を樹脂で被覆して電子写真現像用キャリアとする。   The surface of the carrier core material of the present invention produced as described above is coated with a resin to obtain an electrophotographic developing carrier.

(第2の製造方法)
まず、LiCOを溶媒に投入してLi溶液を作製する。溶媒としては水が好適である。LiCO溶液の濃度としては0.1wt%〜13.1wt%の範囲が好ましい。
(Second manufacturing method)
First, Li 2 CO 3 is added to a solvent to prepare a Li solution. Water is preferred as the solvent. The concentration of the Li 2 CO 3 solution is preferably in the range of 0.1 wt% to 13.1 wt%.

次に、作製されたLi溶液に、フェライト粒子から構成される芯粒子を浸漬し、芯粒子の表面にLi溶液の塗布層を形成する。塗布層の厚みは、Li溶液の濃度などによって調整することができる。なお、芯粒子表面へのLi溶液の塗布は、浸漬法に限定されるものではなく、スプレードライ法や流動床法、流動床を用いたスプレードライ法など従来公知の塗布方法を用いることができる。   Next, core particles composed of ferrite particles are immersed in the prepared Li solution to form a Li solution coating layer on the surface of the core particles. The thickness of the coating layer can be adjusted by the concentration of the Li solution. The application of the Li solution to the surface of the core particles is not limited to the dipping method, and a conventionally known coating method such as a spray drying method, a fluidized bed method, or a spray drying method using a fluidized bed can be used. .

次いで、Liが塗布された粒子を500℃以上に加熱した炉に投入して焼成し、芯粒子表面のLiと芯粒子を構成するフェライトのFeとからLiフェライト相を芯粒子表面に生成させる。前記の製造方法と同様に、加熱温度としては500℃〜1300℃の範囲が好ましく、炉内の酸素濃度としては100ppm〜20%の範囲が好ましい。   Next, the particles coated with Li are put into a furnace heated to 500 ° C. or higher and fired to generate a Li ferrite phase on the surface of the core particles from Li on the surface of the core particles and Fe of ferrite constituting the core particles. Similar to the above production method, the heating temperature is preferably in the range of 500 ° C. to 1300 ° C., and the oxygen concentration in the furnace is preferably in the range of 100 ppm to 20%.

次に、前記の製造方法と同様に、得られた焼成物を必要により解砕する。また、風力分級機で1次分級した後、振動篩や超音波篩で粒径を所定範囲に揃えるようにしてもよい。さらに、分級工程後に、磁場選鉱機によって非磁性粒子を除去するようにしてもよい。   Next, similarly to the above production method, the obtained fired product is crushed as necessary. In addition, after primary classification with an air classifier, the particle size may be aligned within a predetermined range with a vibration sieve or an ultrasonic sieve. Furthermore, you may make it remove a nonmagnetic particle with a magnetic field separator after a classification process.

以上のようにして作製した本発明のキャリア芯材の表面を樹脂で被覆して電子写真現像用キャリアとする。   The surface of the carrier core material of the present invention produced as described above is coated with a resin to obtain an electrophotographic developing carrier.

以上説明した第1の製造方法又は第2の製造方法によれば、芯粒子の表面にLiフェライト相を自在に形成することが可能であり、所望の特性に応じて柔軟に製造が可能となる。例えば、同一のフェライト粒子であっても、Liフェライト相の相厚などを調整することで、帯電量などを所望特性値に応じて製造することができる。従来は、特性の変更する際は、芯粒子の組成の変更が必要であり、原料段階から、全ての工程条件の変更が必要な場合もあり、時間、コストもと費やすものであるが、第1の製造方法又は第2の製造方法によれば、芯粒子の表面のLiフェライト相の生成領域などを容易に制御することができ、画期的なキャリア芯材の製造方法である。   According to the first manufacturing method or the second manufacturing method described above, it is possible to freely form the Li ferrite phase on the surface of the core particles, and it is possible to manufacture flexibly according to desired characteristics. . For example, even with the same ferrite particles, the charge amount and the like can be manufactured in accordance with the desired characteristic value by adjusting the phase thickness of the Li ferrite phase. Conventionally, when changing the characteristics, it is necessary to change the composition of the core particles, and from the raw material stage, it may be necessary to change all the process conditions. According to the manufacturing method 1 or the second manufacturing method, the formation region of the Li ferrite phase on the surface of the core particles can be easily controlled, and this is an epoch-making method for manufacturing a carrier core material.

キャリア芯材の表面を被覆する樹脂としては、従来公知のものが使用でき、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ−4−メチルペンテン−1、ポリ塩化ビニリデン、ABS(アクリロニトリル−ブタジエン−スチレン)樹脂、ポリスチレン、(メタ)アクリル系樹脂、ポリビニルアルコール系樹脂、並びにポリ塩化ビニル系やポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系等の熱可塑性エストラマー、フッ素シリコーン系樹脂などが挙げられる。   As the resin for coating the surface of the carrier core material, conventionally known resins can be used, for example, polyethylene, polypropylene, polyvinyl chloride, poly-4-methylpentene-1, polyvinylidene chloride, ABS (acrylonitrile-butadiene-styrene). ) Resin, polystyrene, (meth) acrylic resin, polyvinyl alcohol resin, polyvinyl chloride, polyurethane, polyester, polyamide, polybutadiene, and other thermoplastic elastomers, and fluorosilicone resins.

キャリア芯材の表面を樹脂で被覆するには、樹脂の溶液又は分散液をキャリア芯材に施せばよい。塗布溶液用の溶媒としては、トルエン、キシレン等の芳香族炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン、ジオキサン等の環状エーテル類溶媒;エタノール、プロパノール、ブタノール等のアルコール系溶媒;エチルセロソルブ、ブチルセロソルブ等のセロソルブ系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒などの1種又は2種以上を用いることができる。塗布溶液中の樹脂成分濃度は、一般に0.001〜30wt%、特に0.001〜2wt%の範囲内にあるのがよい。   In order to coat the surface of the carrier core material with the resin, a resin solution or dispersion may be applied to the carrier core material. Solvents for the coating solution include aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; cyclic ether solvents such as tetrahydrofuran and dioxane; ethanol, propanol, and butanol Alcohol solvents such as ethyl cellosolve, cellosolve solvents such as butyl cellosolve; ester solvents such as ethyl acetate and butyl acetate; amide solvents such as dimethylformamide and dimethylacetamide, etc. . The concentration of the resin component in the coating solution is generally in the range of 0.001 to 30 wt%, particularly 0.001 to 2 wt%.

キャリア芯材への樹脂の被覆方法としては、例えばスプレードライ法や流動床法あるいは流動床を用いたスプレードライ法、浸漬法等を用いることができる。これらの中でも、少ない樹脂量で効率的に塗布できる点で流動床法が特に好ましい。樹脂被覆量は、例えば流動床法の場合には吹き付ける樹脂溶液量や吹き付け時間によって調整することができる。   As a method of coating the resin on the carrier core material, for example, a spray drying method, a fluidized bed method, a spray drying method using a fluidized bed, an immersion method, or the like can be used. Among these, the fluidized bed method is particularly preferable in that it can be efficiently applied with a small amount of resin. For example, in the case of the fluidized bed method, the resin coating amount can be adjusted by the amount of resin solution sprayed and the spraying time.

キャリアの粒子径は、一般に体積平均粒子径で25〜50μmのものが好ましい。またキャリアの見掛け密度は、磁性材料を主体とする場合は磁性体の組成や表面構造等によっても相違するが、一般に1.5〜3.0g/cmの範囲が好ましい。 The particle diameter of the carrier is generally preferably 25 to 50 μm in terms of volume average particle diameter. Further, the apparent density of the carrier is preferably in the range of 1.5 to 3.0 g / cm 3 , although it varies depending on the composition of the magnetic material, the surface structure and the like when the magnetic material is mainly used.

本発明に係る電子写真用現像剤は、以上のようにして作製したキャリアとトナーとを混合してなる。キャリアとトナーとの混合比に特に限定はなく、使用する現像装置の現像条件などから適宜決定すればよい。一般に現像剤中のトナー濃度は1〜20wt%の範囲が好ましい。トナー濃度が1wt%未満の場合、画像濃度が薄くなりすぎ、他方トナー濃度が20wt%を超える場合、現像装置内でトナー飛散が発生し機内汚れや転写紙などの背景部分にトナーが付着する不具合が生じるおそれがあるからである。より好ましいトナー濃度は3〜15wt%の範囲である。   The electrophotographic developer according to the present invention is obtained by mixing the carrier prepared as described above and a toner. The mixing ratio of the carrier and the toner is not particularly limited, and may be determined as appropriate based on the developing conditions of the developing device to be used. In general, the toner concentration in the developer is preferably in the range of 1 to 20 wt%. When the toner density is less than 1 wt%, the image density becomes too low, and when the toner density exceeds 20 wt%, the toner scatters in the developing device, and the toner adheres to the background portion such as internal dirt or transfer paper. This is because there is a risk of occurrence. A more preferable toner concentration is in the range of 3 to 15 wt%.

本発明で使用するトナーは、少なくとも結着樹脂と着色剤とを有してなる。結着樹脂としては、例えば、ポリエステル樹脂、スチレン系重合体、アクリル系重合体、スチレン−アクリル系重合体、塩素化ポリスチレン、ホリプロピレン、アイオノマー等のオレフィン系重合体、ポリ塩化ビニル、ポリエステル系樹脂、ポリアミド、ポリウレタン、エポキシ樹脂、ジアリルフタレート樹脂、シリコーン樹脂、ケトン樹脂、ポリビニルブチラール樹脂、フェノール樹脂、ロジン変性フェノール樹脂、キシレン樹脂、ロジン変性マレイン酸樹脂、ロジンエステルなどを挙げることができる。   The toner used in the present invention comprises at least a binder resin and a colorant. Examples of the binder resin include polyester resins, styrene polymers, acrylic polymers, styrene-acrylic polymers, olefin polymers such as chlorinated polystyrene, polypropylene, and ionomer, polyvinyl chloride, and polyester resins. , Polyamide, polyurethane, epoxy resin, diallyl phthalate resin, silicone resin, ketone resin, polyvinyl butyral resin, phenol resin, rosin-modified phenol resin, xylene resin, rosin-modified maleic acid resin, rosin ester, and the like.

本発明で使用する結着樹脂はガラス転移温度が45〜90℃の範囲にあることが好ましい。ガラス転移温度が45℃未満の場合、トナーカートリッジや現像機内で固まるおそれがあり、他方90℃を超える場合、転写材へのトナーの定着が不十分となることがある。   The binder resin used in the present invention preferably has a glass transition temperature in the range of 45 to 90 ° C. When the glass transition temperature is less than 45 ° C., the toner cartridge or the developing machine may be hardened. When the glass transition temperature exceeds 90 ° C., the toner may be insufficiently fixed on the transfer material.

前記結着樹脂中に含有させる着色剤としては、例えば、黒色顔料として、アセチレンブラック、ランブラック、アニリンブラック等のカーボンブラック;黄色顔料として、黄鉛、亜鉛黄、カドミウムイエロー、黄色酸化鉄、ミネラルファストイエロー、ニッケルチタンイエロー、ネーブルスイエロー、ナフトールイエローS、ハンザイエローG、ハンザイエロー10G、ベンジジンイエローG、ベンジジンイエローGR、キノリンイエローレーキ、パーマンネントイエローNCG、タートラジンレーキ;橙色顔料として、赤口黄鉛、モリブテンオレンジ、パーマネントオレンジGTR、ピラゾロンオレンジ、バルカンオレンジ、インダスレンブリリアントオレンジRK、ベンジジンオレンジG、インダスレンブリリアントオレンジGK;赤色顔料として、ベンガラ、カドミウムレッド、鉛丹、硫化水銀カドミウム、パーマネントレッド4R、リソールレッド、ピラゾロンレッド、ウオッチングレッドカルシウム塩、レーキレッドD、ブリリアントカーミン6B、エオシンレーキ、ローダミンレーキB、アリザリンレーキ、ブリリアントカーミン3B;紫色顔料として、マンガン紫、ファストバイオレットB、メチルバイオレットレーキ;青色顔料として、紺青、コバルトブルー、アルカリブルーレーキ、ビクトリアブルーレーキ、フタロシアニンブルー、無金属フタロシアニンブルー、フタロシアニンブルー部分塩素化物、ファーストスカイブルー、インダスレンブルーBC;緑色顔料として、クロムグリーン、酸化クロム、ピグメントグリーンB、マラカイトグリーンレーキ、ファナルイエローグリーンG;白色顔料として、亜鉛華、酸化チタン、アンチモン白、硫化亜鉛;白色顔料として、バライト粉、炭酸バリウム、クレー、シリカ、ホワイトカーボン、タルク、アルミナホワイト等を使用できる。上記着色剤の含有量は、結着樹脂100重量部当り2〜20重量部の範囲が好ましく、より好ましくは5〜15重量部の範囲である。   Examples of the colorant contained in the binder resin include carbon black such as acetylene black, lanblack, and aniline black as a black pigment; yellow lead, zinc yellow, cadmium yellow, yellow iron oxide, mineral as a yellow pigment Fast Yellow, Nickel Titanium Yellow, Navels Yellow, Naphthol Yellow S, Hansa Yellow G, Hansa Yellow 10G, Benzidine Yellow G, Benzidine Yellow GR, Quinoline Yellow Lake, Permanent Yellow NCG, Tartrazine Lake; reddish yellow as orange pigment Lead, molybdenum orange, permanent orange GTR, pyrazolone orange, vulcan orange, indanthrene brilliant orange RK, benzidine orange G, indanthrene brilliant orange GK; red Bengara, cadmium red, red lead, mercury cadmium sulfide, permanent red 4R, risor red, pyrazolone red, watching red calcium salt, lake red D, brilliant carmine 6B, eosin lake, rhodamine lake B, alizarin lake, brilliant Carmine 3B: purple pigment, manganese purple, fast violet B, methyl violet lake; blue pigment, bitumen, cobalt blue, alkali blue lake, Victoria blue lake, phthalocyanine blue, metal-free phthalocyanine blue, phthalocyanine blue partially chlorinated, first Sky Blue, Induslen Blue BC; Green pigments such as chrome green, chrome oxide, pigment green B, malachite green lake, As a white pigment include zinc white, titanium oxide, antimony white, zinc sulfide; null Yellow Green G as a white pigment, baryta powder, barium carbonate, clay, silica, white carbon, talc, alumina white can be used. The content of the colorant is preferably in the range of 2 to 20 parts by weight, more preferably in the range of 5 to 15 parts by weight per 100 parts by weight of the binder resin.

上記結着樹脂中に含有される離型剤としては、各種ワックス類や低分子量オレフィン系樹脂等が挙げられる。オレフィン系樹脂は数平均分量(Mn)が1000〜10000、特に2000〜6000の範囲にあるものがよい。オレフィン系樹脂としては、ポリプロピレン、ポリエチレン、プロピレン−エチレン共重合体が使用されるが、ポリプロピレンが特に好適である。   Examples of the release agent contained in the binder resin include various waxes and low molecular weight olefin resins. The olefin resin preferably has a number average quantity (Mn) in the range of 1000 to 10000, particularly 2000 to 6000. As the olefin resin, polypropylene, polyethylene, and propylene-ethylene copolymer are used, and polypropylene is particularly preferable.

電荷制御剤としては、一般に使用されている電荷制御剤が使用される。正帯電性の電荷制御剤としては、例えばニグロシン染料、脂肪酸変性ニグロシン染料、カルボキシル基含有脂肪酸変性ニグロシン染料、四級アンモニウム塩、アミン系化合物、有機金属化合物等を使用でき、負帯電性の電荷制御剤としては、例えば金属錯塩染料やサリチル酸誘導体などを使用できる。   As the charge control agent, a commonly used charge control agent is used. Examples of positively chargeable charge control agents include nigrosine dyes, fatty acid-modified nigrosine dyes, carboxyl group-containing fatty acid-modified nigrosine dyes, quaternary ammonium salts, amine compounds, and organometallic compounds. Examples of the agent that can be used include metal complex dyes and salicylic acid derivatives.

本発明で使用するトナーは、粉砕分級法、溶融造粒法、スプレー造粒法、重合法等のそれ自体公知の方法で製造し得るが、粉砕分級法が一般的である。粉砕分級法について説明すると、上記結着樹脂と、着色剤、電荷制御剤、離型剤などのトナー成分とを、ヘンシェルミキサー等の混合機で前混合したのち、二軸押出機等の混練装置を用いて混練し、この混練組成物を冷却した後、粉砕し、必要により分級してトナーとする。   The toner used in the present invention can be produced by a method known per se such as a pulverization classification method, a melt granulation method, a spray granulation method, a polymerization method, etc., but the pulverization classification method is general. The pulverization classification method will be described. The binder resin and toner components such as a colorant, a charge control agent, and a release agent are premixed with a mixer such as a Henschel mixer, and then a kneading apparatus such as a twin screw extruder. The kneaded composition is cooled and then pulverized and classified as necessary to obtain a toner.

トナーの粒径は、一般にコールターカウンターによる体積平均粒子径が5μm〜15μm、特に7μm〜12μmの範囲内にあるのがよい。   As for the particle diameter of the toner, it is generally preferable that the volume average particle diameter measured by a Coulter counter is in the range of 5 μm to 15 μm, particularly 7 μm to 12 μm.

トナー粒子の表面には、必要により改質剤を添加することができる。改質剤としては、例えば、シリカ、酸化アルミニウム、酸化亜鉛、酸化チタン、酸化マグネシウム、炭酸カルシウム、ポリメチルメタクリレート等が挙げられる。これらの1種又は2種以上を組み合わせて使用することができる。   If necessary, a modifier can be added to the surface of the toner particles. Examples of the modifier include silica, aluminum oxide, zinc oxide, titanium oxide, magnesium oxide, calcium carbonate, polymethyl methacrylate, and the like. These 1 type (s) or 2 or more types can be used in combination.

キャリアとトナーとの混合は、従来公知の混合装置を用いることができる。例えばヘンシェルミキサー、V型混合機、タンブラーミキサー、ハイブリタイザー等を用いることができる。   A known mixing device can be used for mixing the carrier and the toner. For example, a Henschel mixer, a V-type mixer, a tumbler mixer, a hybridizer, or the like can be used.

以下、本発明を実施例によりさらに詳しく説明するが本発明はこれらの実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples at all.

(実施例1)
原料として、Fe(平均粒径:0.6μm)7.053kg、Mn(平均粒径:0.9μm)2.352kg、MgO(0.5μm)0.526kgを純水4.3kg中に分散し、還元剤としてカーボンブラックを30g、分散剤としてポリカルボン酸アンモニウム系分散剤を30g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約130℃の熱風中に噴霧し、粒径10μm〜75μmの乾燥造粒物を得た。この造粒物から粒径25μm以下の微小な粒子は篩を用いて除去した。
この造粒物を電気炉に投入し1200℃まで4.5時間かけて昇温した。その後1200℃で3時間保持することにより第1焼成を行った。その後8時間かけて室温まで冷却した。昇温、保持時及び冷却時のは酸素濃度は5000ppmとした。
得られた第1焼成物をハンマーミルで解粒した後に振動ふるいを用いて分級することにより平均粒径35.0μmのフェライト粒子(芯粒子)を得た。
次いで、得られたフェライト粒子4.933kgとLiCO(平均粒径:25μm)0.165kgをV型混合機を用いて300分間混合処理を行った。得られた混合物を電気炉に投入し1200℃まで4.5時間かけて昇温した。その後1200℃で3時間保持することにより第2焼成を行った。その後8時間かけて室温まで冷却した。昇温、保持時及び冷却時の電気炉内の酸素濃度は5000ppmとした。
得られた第2焼成物をハンマーミルで解粒した後に振動ふるいを用いて分級することにより平均粒径34.0μmのキャリア芯材を得た。図1に、得られたキャリア芯材の粉末X線回折(XRD)パターンを示す。また、得られたキャリア芯材のXRDパターンのピーク強度値割合B/(A+B)、磁気特性、電気抵抗値、帯電量を後述する方法で測定した。表1に測定結果をまとめて示す。
Example 1
As raw materials, Fe 2 O 3 (average particle size: 0.6 μm) 7.053 kg, Mn 3 O 4 (average particle size: 0.9 μm) 2.352 kg, MgO (0.5 μm) 0.526 kg were added to pure water 4 The mixture was dispersed in 3 kg, and 30 g of carbon black as a reducing agent and 30 g of an ammonium polycarboxylate dispersant as a dispersing agent were added to obtain a mixture. This mixture was pulverized by a wet ball mill (media diameter 2 mm) to obtain a mixed slurry.
This mixed slurry was sprayed into hot air of about 130 ° C. with a spray dryer to obtain a dry granulated product having a particle size of 10 μm to 75 μm. Fine particles having a particle size of 25 μm or less were removed from the granulated product using a sieve.
This granulated product was put into an electric furnace and heated to 1200 ° C. over 4.5 hours. Thereafter, the first baking was performed by maintaining at 1200 ° C. for 3 hours. Thereafter, it was cooled to room temperature over 8 hours. The oxygen concentration was set to 5000 ppm at the time of heating, holding and cooling.
The obtained first fired product was pulverized with a hammer mill and then classified using a vibration sieve to obtain ferrite particles (core particles) having an average particle size of 35.0 μm.
Next, 4.933 kg of the obtained ferrite particles and 0.165 kg of Li 2 CO 3 (average particle size: 25 μm) were mixed for 300 minutes using a V-type mixer. The obtained mixture was put into an electric furnace and heated to 1200 ° C. over 4.5 hours. Then, the second baking was performed by maintaining at 1200 ° C. for 3 hours. Thereafter, it was cooled to room temperature over 8 hours. The oxygen concentration in the electric furnace at the time of heating, holding and cooling was set to 5000 ppm.
The obtained second fired product was pulverized with a hammer mill and then classified using a vibration sieve to obtain a carrier core material having an average particle size of 34.0 μm. FIG. 1 shows a powder X-ray diffraction (XRD) pattern of the obtained carrier core material. Further, the peak intensity value ratio B / (A + B), magnetic characteristics, electric resistance value, and charge amount of the XRD pattern of the obtained carrier core material were measured by the methods described later. Table 1 summarizes the measurement results.

また、このようにして得られたキャリア芯材の表面を樹脂で被覆してキャリアを作製した。具体的には、シリコーン樹脂450重量部と、(2−アミノエチル)アミノプロピルトリメトキシシラン9重量部とを、溶媒としてのトルエン450重量部に溶解してコート溶液を作製した。このコート溶液を、流動床型コーティング装置を用いてキャリア芯材50000重量部に塗布し、温度300℃の電気炉で加熱してキャリアを得た。以下の実施例、比較例についても同様にしてキャリアを得た。   The carrier core material thus obtained was coated with a resin to prepare a carrier. Specifically, 450 parts by weight of a silicone resin and 9 parts by weight of (2-aminoethyl) aminopropyltrimethoxysilane were dissolved in 450 parts by weight of toluene as a solvent to prepare a coating solution. This coating solution was applied to 50000 parts by weight of a carrier core material using a fluid bed type coating apparatus and heated in an electric furnace at a temperature of 300 ° C. to obtain a carrier. Carriers were obtained in the same manner for the following examples and comparative examples.

得られたキャリアと平均粒径5.0μm程度のトナーとを、ポットミルを用いて所定時間混合し、二成分系の電子写真現像剤を得た。この場合、キャリアとトナーとをトナーの重量/(トナーおよびキャリアの重量)=5/100となるように調整した。以下、全ての比較例についても同様にして現像剤を得た。得られた現像剤について後述の画像評価を行った。評価結果を表1に合わせて示す。   The obtained carrier and a toner having an average particle diameter of about 5.0 μm were mixed for a predetermined time using a pot mill to obtain a two-component electrophotographic developer. In this case, the carrier and the toner were adjusted so that the weight of toner / (weight of toner and carrier) = 5/100. Hereinafter, the developer was obtained in the same manner for all the comparative examples. The obtained developer was subjected to image evaluation described later. The evaluation results are shown in Table 1.

(実施例2)
原料として、Fe(平均粒径:0.6μm)7.377kg、Mn(平均粒径:0.9μm)1.480kg、MgO(0.5μm)1.074kgを用いた以外は実施例1と同様にしてキャリア芯材を得た。得られたキャリア芯材のピーク強度値割合B/(A+B)、磁気特性、電気抵抗値、帯電量及び画像評価を実施例1と同様にして測定した。表1に測定結果をまとめて示す。
(Example 2)
Other than using as raw materials Fe 2 O 3 (average particle size: 0.6 μm) 7.377 kg, Mn 3 O 4 (average particle size: 0.9 μm) 1.480 kg, MgO (0.5 μm) 1.074 kg Obtained a carrier core material in the same manner as in Example 1. The peak intensity value ratio B / (A + B), magnetic properties, electrical resistance value, charge amount and image evaluation of the obtained carrier core material were measured in the same manner as in Example 1. Table 1 summarizes the measurement results.

(実施例3)
原料として、Fe(平均粒径:0.6μm)7.524kg、Mn(平均粒径:0.9μm)1.081kg、MgO(0.5μm)1.325kgを用いた以外は実施例1と同様にしてキャリア芯材を得た。得られたキャリア芯材のピーク強度値割合B/(A+B)、磁気特性、電気抵抗値、帯電量及び画像評価を実施例1と同様にして測定した。表1に測定結果をまとめて示す。
Example 3
As raw materials, Fe 2 O 3 (average particle size: 0.6 μm) 7.524 kg, Mn 3 O 4 (average particle size: 0.9 μm) 1.081 kg, MgO (0.5 μm) 1.325 kg were used. Obtained a carrier core material in the same manner as in Example 1. The peak intensity value ratio B / (A + B), magnetic properties, electrical resistance value, charge amount and image evaluation of the obtained carrier core material were measured in the same manner as in Example 1. Table 1 summarizes the measurement results.

(実施例4)
原料として、Fe(平均粒径:0.6μm)7.176kg、Mn(平均粒径:0.9μm)2.755kgを用いた以外は実施例1と同様にしてキャリア芯材を得た。得られたキャリア芯材のピーク強度値割合B/(A+B)、磁気特性、電気抵抗値、帯電量及び画像評価を実施例1と同様にして測定した。表1に測定結果をまとめて示す。
Example 4
Carrier core in the same manner as in Example 1, except that 7.176 kg of Fe 2 O 3 (average particle size: 0.6 μm) and 2.755 kg of Mn 3 O 4 (average particle size: 0.9 μm) were used as raw materials. The material was obtained. The peak intensity value ratio B / (A + B), magnetic properties, electrical resistance value, charge amount and image evaluation of the obtained carrier core material were measured in the same manner as in Example 1. Table 1 summarizes the measurement results.

(実施例5)
実施例1と同様にして得たフェライト粒子(芯粒子)4.839kgとLiCO(平均粒径:25μm)0.399kgとをV型混合機を用いて300分間混合処理を行った以外は実施例1と同様にしてキャリア芯材を得た。得られたキャリア芯材のピーク強度値割合B/(A+B)、磁気特性、電気抵抗値、帯電量及び画像評価を実施例1と同様にして測定した。表1に測定結果をまとめて示す。
(Example 5)
4.839 kg of ferrite particles (core particles) obtained in the same manner as in Example 1 and 0.399 kg of Li 2 CO 3 (average particle diameter: 25 μm) were mixed for 300 minutes using a V-type mixer. Obtained a carrier core material in the same manner as in Example 1. The peak intensity value ratio B / (A + B), magnetic properties, electrical resistance value, charge amount and image evaluation of the obtained carrier core material were measured in the same manner as in Example 1. Table 1 summarizes the measurement results.

(実施例6)
実施例1と同様にして得たフェライト粒子(芯粒子)4.984kgとLiCO(平均粒径:25μm)0.040kgとをV型混合機を用いて300分間混合処理したこと及び焼成温度を600℃にしたこと以外は実施例1と同様にしてキャリア芯材を得た。得られたキャリア芯材のピーク強度値割合B/(A+B)、磁気特性、電気抵抗値、帯電量及び画像評価を実施例1と同様にして測定した。表1に測定結果をまとめて示す。
(Example 6)
Ferrite particles (core particles) 4.984 kg obtained in the same manner as in Example 1 and Li 2 CO 3 (average particle size: 25 μm) 0.040 kg were mixed for 300 minutes using a V-type mixer and fired. A carrier core material was obtained in the same manner as in Example 1 except that the temperature was 600 ° C. The peak intensity value ratio B / (A + B), magnetic properties, electrical resistance value, charge amount and image evaluation of the obtained carrier core material were measured in the same manner as in Example 1. Table 1 summarizes the measurement results.

(比較例1)
原料として、LiCO(平均粒径:25μm)0.316kg、Fe(平均粒径:0.6μm)6.825kg、Mn(平均粒径:0.9μm)2.280kg、MgO(0.5μm)0.509kgを純水中に分散して混合物とし、実施例1と同様にしてフェライト粒子(キャリア芯材)を得た。図1に、得られたキャリア芯材の粉末X線回折(XRD)パターンを示す。また、得られたキャリア芯材のピーク強度値割合B/(A+B)、磁気特性、電気抵抗値、帯電量及び画像評価を実施例1と同様にして測定した。表1に測定結果をまとめて示す。
(Comparative Example 1)
As raw materials, Li 2 CO 3 (average particle size: 25 μm) 0.316 kg, Fe 2 O 3 (average particle size: 0.6 μm) 6.825 kg, Mn 3 O 4 (average particle size: 0.9 μm) 2. 280 kg and 0.509 kg of MgO (0.5 μm) were dispersed in pure water to obtain a mixture, and ferrite particles (carrier core material) were obtained in the same manner as in Example 1. FIG. 1 shows a powder X-ray diffraction (XRD) pattern of the obtained carrier core material. Further, the peak intensity value ratio B / (A + B), magnetic characteristics, electrical resistance value, charge amount and image evaluation of the obtained carrier core material were measured in the same manner as in Example 1. Table 1 summarizes the measurement results.

(比較例2)
原料として、Fe(平均粒径:0.6μm)6.722kg、Mn(平均粒径:0.9μm)3.209kgを用い、実施例1と同様にして、フェライト粒子(芯粒子)を得た。
次いで、実施例1と同様にしてLiを添加したキャリア芯材を得た。得られたキャリア芯材のピーク強度値割合B/(A+B)、磁気特性、電気抵抗値、帯電量及び画像評価を実施例1と同様にして測定した。表1に測定結果をまとめて示す。
(Comparative Example 2)
As raw materials, Fe 2 O 3 (average particle size: 0.6 μm) 6.722 kg and Mn 3 O 4 (average particle size: 0.9 μm) 3.209 kg were used in the same manner as in Example 1 to obtain ferrite particles ( Core particles) were obtained.
Next, a carrier core material to which Li was added was obtained in the same manner as in Example 1. The peak intensity value ratio B / (A + B), magnetic properties, electrical resistance value, charge amount and image evaluation of the obtained carrier core material were measured in the same manner as in Example 1. Table 1 summarizes the measurement results.

(比較例3)
原料として、Fe(平均粒径:0.6μm)9.212kg、MgO(0.5μm)0.719kgを用い、実施例1と同様にして、フェライト粒子(芯粒子)を得た。
次いで、実施例1と同様にしてLiを添加したキャリア芯材を得た。得られたキャリア芯材のピーク強度値割合B/(A+B)、磁気特性、電気抵抗値、帯電量及び画像評価を実施例1と同様にして測定した。表1に測定結果をまとめて示す。
(Comparative Example 3)
As raw materials, Fe 2 O 3 (average particle size: 0.6 μm) 9.212 kg and MgO (0.5 μm) 0.719 kg were used, and ferrite particles (core particles) were obtained in the same manner as in Example 1.
Next, a carrier core material to which Li was added was obtained in the same manner as in Example 1. The peak intensity value ratio B / (A + B), magnetic properties, electrical resistance value, charge amount and image evaluation of the obtained carrier core material were measured in the same manner as in Example 1. Table 1 summarizes the measurement results.

(比較例4)
LiCOを添加しなかった以外は比較例1と同様にしてフェライト粒子(キャリア芯材)を得た。図1に、得られたキャリア芯材の粉末X線回折(XRD)パターンを示す。また、得られたキャリア芯材のピーク強度値割合B/(A+B)、磁気特性、電気抵抗値、帯電量及び画像評価を実施例1と同様にして測定した。表1に測定結果をまとめて示す。
(Comparative Example 4)
Ferrite particles (carrier core material) were obtained in the same manner as in Comparative Example 1 except that Li 2 CO 3 was not added. FIG. 1 shows a powder X-ray diffraction (XRD) pattern of the obtained carrier core material. Further, the peak intensity value ratio B / (A + B), magnetic characteristics, electrical resistance value, charge amount and image evaluation of the obtained carrier core material were measured in the same manner as in Example 1. Table 1 summarizes the measurement results.

(比較例5)
LiCOを添加しなかった以外は実施例1と同様にしてフェライト粒子(キャリア芯材)を得た。得られたキャリア芯材のピーク強度値割合B/(A+B)、磁気特性、電気抵抗値、帯電量及び画像評価を実施例1と同様にして測定した。表1に測定結果をまとめて示す。
(Comparative Example 5)
Ferrite particles (carrier core material) were obtained in the same manner as in Example 1 except that Li 2 CO 3 was not added. The peak intensity value ratio B / (A + B), magnetic properties, electrical resistance value, charge amount and image evaluation of the obtained carrier core material were measured in the same manner as in Example 1. Table 1 summarizes the measurement results.

(比較例6)
原料として、LiCO(平均粒径:25μm)0.078kg、Fe(平均粒径:0.6μm)6.988kg、Mn(平均粒径:0.9μm)2.334kg、MgO(0.5μm)0.532kgを用いた以外は比較例1と同様にしてフェライト粒子(キャリア芯材)を得た。得られたキャリア芯材のピーク強度値割合B/(A+B)、磁気特性、電気抵抗値、帯電量及び画像評価を実施例1と同様にして測定した。表1に測定結果をまとめて示す。
(Comparative Example 6)
As raw materials, Li 2 CO 3 (average particle size: 25 μm) 0.078 kg, Fe 2 O 3 (average particle size: 0.6 μm) 6.988 kg, Mn 3 O 4 (average particle size: 0.9 μm) Ferrite particles (carrier core material) were obtained in the same manner as in Comparative Example 1 except that 334 kg and MgO (0.5 μm) 0.532 kg were used. The peak intensity value ratio B / (A + B), magnetic properties, electrical resistance value, charge amount and image evaluation of the obtained carrier core material were measured in the same manner as in Example 1. Table 1 summarizes the measurement results.

(比較例7)
実施例1と同様にしてフェライト粒子(芯粒子)を得た。次いで、得られたフェライト粒子4.672kgとLiCO(平均粒径:25μm)0.812kgとをV型混合機を用いて300分間混合処理を行った以外は実施例1と同様にしてキャリア芯材を得た。得られたキャリア芯材のピーク強度値割合B/(A+B)、磁気特性、電気抵抗値、帯電量及び画像評価を実施例1と同様にして測定した。表1に測定結果をまとめて示す。
(Comparative Example 7)
Ferrite particles (core particles) were obtained in the same manner as in Example 1. Next, the same procedure as in Example 1 was performed except that 4.672 kg of the obtained ferrite particles and 0.812 kg of Li 2 CO 3 (average particle size: 25 μm) were mixed for 300 minutes using a V-type mixer. A carrier core was obtained. The peak intensity value ratio B / (A + B), magnetic properties, electrical resistance value, charge amount and image evaluation of the obtained carrier core material were measured in the same manner as in Example 1. Table 1 summarizes the measurement results.

(組成分析)
下記に示す方法で、キャリア芯材の組成を分析した。
(Feの分析)
鉄元素を含むキャリア芯材を秤量し、塩酸と硝酸の混酸水に溶解させた。この溶液を蒸発乾固させた後、硫酸水を添加して再溶解し過剰な塩酸と硝酸とを揮発させる。この溶液に固体Alを添加して液中のFe3+を全てFe2+に還元する。続いて、この溶液中のFe2+イオンの量を過マンガン酸カリウム溶液で電位差滴定することにより定量分析し、Fe(Fe2+)の滴定量を求めた。
(Mnの分析)
キャリア芯材のMn含有量は、JIS G1311−1987記載のフェロマンガン分析方法(電位差滴定法)に準拠して定量分析を行った。本発明に記載したキャリア芯材のMn含有量は、このフェロマンガン分析方法(電位差滴定法)で定量分析し得られたMn量である。
(Mgの分析)
キャリア芯材のMg含有量は、以下の方法で分析を行った。キャリア芯材を酸溶液中で溶解し、ICPにて定量分析を行った。本発明に記載したキャリア芯材のMg含有量は、このICPによる定量分析で得られたMg量である。
(Liの分析)
キャリア芯材を酸溶液中で溶解し、ICPにて定量分析を行った。本発明に記載したキャリア芯材のLi含有量は、当該ICPによる定量分析で得られたLi量である。
(Composition analysis)
The composition of the carrier core material was analyzed by the method shown below.
(Analysis of Fe)
The carrier core material containing iron element was weighed and dissolved in a mixed acid water of hydrochloric acid and nitric acid. After evaporating this solution to dryness, sulfuric acid water is added and redissolved to volatilize excess hydrochloric acid and nitric acid. Solid Al is added to this solution to reduce all Fe 3+ in the solution to Fe 2+ . Subsequently, the amount of Fe 2+ ions in the solution was quantitatively analyzed by potentiometric titration with a potassium permanganate solution to obtain a titer of Fe (Fe 2+ ).
(Analysis of Mn)
The Mn content of the carrier core material was quantitatively analyzed according to the ferromanganese analysis method (potentiometric titration method) described in JIS G1311-1987. The Mn content of the carrier core material described in the present invention is the amount of Mn obtained by quantitative analysis by this ferromanganese analysis method (potentiometric titration method).
(Analysis of Mg)
The Mg content of the carrier core material was analyzed by the following method. The carrier core material was dissolved in an acid solution, and quantitative analysis was performed by ICP. The Mg content of the carrier core material described in the present invention is the amount of Mg obtained by this quantitative analysis by ICP.
(Analysis of Li)
The carrier core material was dissolved in an acid solution, and quantitative analysis was performed by ICP. The Li content of the carrier core material described in the present invention is the Li amount obtained by quantitative analysis by the ICP.

(粉末X線回折パターンの測定)
粉末X線回折パターンは、粉末X線回折装置(リガク社製、RINT2000)を用いて測定した。X線源をCu、加速電圧を40kV、電流を40mA、発散スリット開口角を1°、散乱スリット開口角を1°、受光スリット幅を0.3mm、走査モードをステップスキャン、ステップ幅を0.0200°、係数時間を1.0秒、積算回数を1回とした。そして、得られたX線回折パターンからメインピーク強度値A、Liフェライトのピーク強度値Bを求め、B/(A+B)の値を算出した。
(Measurement of powder X-ray diffraction pattern)
The powder X-ray diffraction pattern was measured using a powder X-ray diffraction apparatus (RINT2000, manufactured by Rigaku Corporation). X-ray source is Cu, acceleration voltage is 40 kV, current is 40 mA, divergence slit opening angle is 1 °, scattering slit opening angle is 1 °, receiving slit width is 0.3 mm, scanning mode is step scanning, step width is 0. 0200 °, the coefficient time was 1.0 second, and the number of integrations was 1. And the main peak intensity value A and the peak intensity value B of Li ferrite were calculated | required from the obtained X-ray-diffraction pattern, and the value of B / (A + B) was computed.

(磁力の測定)
磁気的特性を示す磁化の測定については、VSM(東英工業株式会社製、VSM−P7)を用いて飽和磁化σsを測定した。
(Measurement of magnetic force)
About the measurement of the magnetization which shows a magnetic characteristic, saturation magnetization (sigma) s was measured using VSM (the Toei industry Co., Ltd. make, VSM-P7).

(電気抵抗値測定)
表面を電解研磨した厚さ2mmの電極としての真鍮板2枚を、距離2mm離して対向するように配置した。電極間にキャリア芯材200mgを装入した後、それぞれの電極の背後に、断面積240mmの磁石(表面磁束密度が1500ガウスのフェライト磁石)を配置して、電極間にキャリア芯材のブリッジを形成させた。そして、100V,250V,500V,750V,1000Vの直流電圧を電極間に印加し、キャリア芯材に流れる電流値を測定し、キャリア芯材の電気抵抗値をそれぞれ算出した。また、ブレークダウン電圧(BD)を測定した。
(Electrical resistance measurement)
Two brass plates as electrodes having a thickness of 2 mm whose surfaces were electropolished were arranged to face each other with a distance of 2 mm. After inserting 200 mg of the carrier core material between the electrodes, a magnet having a cross-sectional area of 240 mm 2 (ferrite magnet having a surface magnetic flux density of 1500 gauss) is arranged behind each electrode, and the carrier core material bridge is provided between the electrodes. Formed. And the direct-current voltage of 100V, 250V, 500V, 750V, and 1000V was applied between electrodes, the value of the electric current which flows into a carrier core material was measured, and the electrical resistance value of the carrier core material was calculated, respectively. In addition, breakdown voltage (BD) was measured.

(帯電量)
得られたキャリア芯材4.75gと、体積平均粒子径5.0μmの市販のフルカラー機のトナー0.25gとを、温度25℃、相対湿度50%の環境下で24時間調湿した後、50ml共栓試験管に投入し、振とう機(ヤヨイ社製「YS−LD」)で振とうした後のキャリア芯材の帯電量をブローオフ法で測定した。
(Charge amount)
After conditioning the obtained carrier core material 4.75 g and toner 0.25 g of a commercially available full color machine having a volume average particle size of 5.0 μm in an environment of a temperature of 25 ° C. and a relative humidity of 50% for 24 hours, The charge amount of the carrier core material after being put into a 50 ml stoppered test tube and shaken with a shaker (“YS-LD” manufactured by Yayoi Co., Ltd.) was measured by a blow-off method.

(画像特性評価)
現像装置(現像ローラの周速度Vs:406mm/sec,感光体ドラムの周速度Vp:205mm/sec,感光体ドラム−現像ローラ間距離:0.3mm)に、作製した二成分現像剤を投入し、画像形成を1000枚行った後、キャリア飛散およびキャリア現像を下記基準で評価した。
画像部にて発見された黒点の数をα、背景部にて発見された黒点の数をβとし、下記基準でキャリア飛散及びキャリア現像を評価した。
キャリア飛散
「○」:0≦α+β≦6個
「×」:7≦α+β
キャリア現像
「○」:0≦α−β≦3
「×」:4≦α−β
(Image characteristic evaluation)
The prepared two-component developer is put into a developing device (developing roller peripheral speed Vs: 406 mm / sec, photosensitive drum peripheral speed Vp: 205 mm / sec, photosensitive drum-developing roller distance: 0.3 mm). After 1000 images were formed, carrier scattering and carrier development were evaluated according to the following criteria.
The number of black spots found in the image area was α, the number of black spots found in the background area was β, and carrier scattering and carrier development were evaluated according to the following criteria.
Carrier scattering “O”: 0 ≦ α + β ≦ 6 “×”: 7 ≦ α + β
Carrier development “◯”: 0 ≦ α−β ≦ 3
“×”: 4 ≦ α−β

表1から明らかなように、粉末X線回折におけるメインピーク強度値Aと、Liフェライトのピーク強度値Bとが、B/(A+B)>0.15であると、キャリア芯材の絶縁破壊抵抗及び帯電性が高くなり、キャリア現像に対して好適な結果が得られることがわかる。また、Li含有量が3.05質量%より少ないと磁力が高く、キャリア飛散に対して好適な結果が得られることがわかる。   As is clear from Table 1, when the main peak intensity value A in powder X-ray diffraction and the peak intensity value B of Li ferrite are B / (A + B)> 0.15, the dielectric breakdown resistance of the carrier core material In addition, it can be seen that the chargeability is increased and a favorable result is obtained for carrier development. Moreover, when Li content is less than 3.05 mass%, magnetic force is high and it turns out that a suitable result is obtained with respect to carrier scattering.

本発明のキャリア芯材によれば、高磁力で高い抵抗及び高い帯電性が得られ有用である。   According to the carrier core material of the present invention, high magnetic force, high resistance and high chargeability are obtained, which is useful.

本発明によれば、Mnを含むフェライト粒子から構成されLiを含有するキャリア芯材であって、Liの含有量が0.15質量%〜0.62質量%であり、粉末X線回折におけるフェライトのメインピーク強度値Aと、Liフェライトのピーク強度値Bとが下記式(1)を満足することを特徴とするキャリア芯材が提供される。
0.16≦B/(A+B) ・・・・・・(1)
(ただし、フェライトのメインピーク強度値AはLiフェライトのピーク強度値以外のメインピーク強度値という。)
According to the present invention, a carrier core material composed of ferrite particles containing Mn and containing Li, the content of Li being 0.15% by mass to 0.62% by mass , and ferrite in powder X-ray diffraction The carrier core material is characterized in that the main peak intensity value A and the peak intensity value B of Li ferrite satisfy the following formula (1).
0.16 ≦ B / (A + B) (1)
(However, the main peak intensity value A of ferrite is referred to as a main peak intensity value other than the peak intensity value of Li ferrite.)

従来のようなLi成分原料をFe成分原料などの他原料成分と共に混合し焼成して作製されたキャリア芯材においても、Li含有量を多くすれば芯材粒子表面に存在するLiフェライトも多くなり、B/(A+B)の値が0.16以上になることはあり得るが、前述のように、Li含有量が0.62質量%を超えるとキャリア芯材の磁気特性が急激に低下しキャリア飛散が生じる。したがって、Li含有量を0.62質量%以下に抑えることも本発明のもう一つの大きな特徴である。 Even in the carrier core material produced by mixing and firing the conventional Li component raw material together with other raw material components such as the Fe component raw material, if the Li content is increased, the amount of Li ferrite existing on the surface of the core material particles also increases. , B / (A + B) may be 0.16 or more, but as described above, when the Li content exceeds 0.62% by mass , the magnetic properties of the carrier core material drastically decrease and the carrier Spattering occurs. Therefore, suppressing the Li content to 0.62% by mass or less is another major feature of the present invention.

(実施例
実施例1と同様にして得たフェライト粒子(芯粒子)4.984kgとLiCO(平均粒径:25μm)0.040kgとをV型混合機を用いて300分間混合処理したこと及び焼成温度を600℃にしたこと以外は実施例1と同様にしてキャリア芯材を得た。得られたキャリア芯材のピーク強度値割合B/(A+B)、磁気特性、電気抵抗値、帯電量及び画像評価を実施例1と同様にして測定した。表1に測定結果をまとめて示す。
(Example 5 )
Ferrite particles (core particles) 4.984 kg obtained in the same manner as in Example 1 and Li 2 CO 3 (average particle size: 25 μm) 0.040 kg were mixed for 300 minutes using a V-type mixer and fired. A carrier core material was obtained in the same manner as in Example 1 except that the temperature was 600 ° C. The peak intensity value ratio B / (A + B), magnetic properties, electrical resistance value, charge amount and image evaluation of the obtained carrier core material were measured in the same manner as in Example 1. Table 1 summarizes the measurement results.

Claims (11)

フェライト粒子から構成されLiを含有するキャリア芯材であって、
Liの含有量が3.0質量%以下であり、
粉末X線回折におけるメインピーク強度値Aと、Liフェライトのピーク強度値Bとが下記式(1)を満足することを特徴とするキャリア芯材。
0.16≦B/(A+B) ・・・・・・(1)
A carrier core material composed of ferrite particles and containing Li,
Li content is 3.0 mass% or less,
A carrier core material characterized in that a main peak intensity value A in powder X-ray diffraction and a peak intensity value B of Li ferrite satisfy the following formula (1).
0.16 ≦ B / (A + B) (1)
前記メインピーク強度値AがMnフェライトのメインピーク強度値である請求項1記載のキャリア芯材。   The carrier core material according to claim 1, wherein the main peak intensity value A is a main peak intensity value of Mn ferrite. Mnの含有量が20.2質量%以下である請求項2記載のキャリア芯材。   The carrier core material according to claim 2, wherein the Mn content is 20.2 mass% or less. 前記メインピーク強度値AがMnMgフェライトのメインピーク強度値である請求項1記載のキャリア芯材。   The carrier core material according to claim 1, wherein the main peak intensity value A is a main peak intensity value of MnMg ferrite. Mg含有量が8.0質量%以下である請求項4記載のキャリア芯材。   The carrier core material according to claim 4, wherein the Mg content is 8.0 mass% or less. 体積平均粒径が25μm以上50μm未満である請求項1〜5のいずれかに記載のキャリア芯材。   The carrier core material according to claim 1, which has a volume average particle size of 25 μm or more and less than 50 μm. 請求項1〜6のいずれかに記載のキャリア芯材の表面を樹脂で被覆したことを特徴とする電子写真現像用キャリア。   A carrier for electrophotographic development, wherein the surface of the carrier core material according to any one of claims 1 to 6 is coated with a resin. 請求項7記載の電子写真現像用キャリアとトナーとを含む電子写真用現像剤。   An electrophotographic developer comprising the carrier for electrophotographic development according to claim 7 and a toner. 請求項1〜6のいずれかに記載のキャリア芯材の製造方法であって、
フェライト粒子から構成される芯粒子の表面にLi成分原料粉体を付着させる工程と、
Li成分原料粉体が付着させた粒子を加熱処理する工程と
を含むことを特徴とするキャリア芯材の製造方法。
It is a manufacturing method of the carrier core material according to any one of claims 1 to 6,
A step of attaching Li component raw material powder to the surface of the core particles composed of ferrite particles;
And a step of heat-treating the particles to which the Li component raw material powder is adhered.
請求項1〜6のいずれかに記載のキャリア芯材の製造方法であって、
フェライト粒子から構成される芯粒子の表面にLi成分原料を溶解させた溶液を塗布する工程と、
Li成分原料溶液が塗布された粒子を加熱処理する工程と
を含むことを特徴とするキャリア芯材の製造方法。
It is a manufacturing method of the carrier core material according to any one of claims 1 to 6,
Applying a solution in which the Li component raw material is dissolved on the surface of the core particles composed of ferrite particles;
And a step of heat-treating the particles coated with the Li component raw material solution.
前記加熱処理の条件が、加熱温度500℃以上1300℃以下の範囲、酸素濃度100ppm以上20%以下の範囲である請求項9又は10記載の製造方法。   The manufacturing method according to claim 9 or 10, wherein the heat treatment conditions are a heating temperature range of 500 ° C to 1300 ° C and an oxygen concentration range of 100 ppm to 20%.
JP2015104093A 2015-05-22 2015-05-22 Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same Active JP5812508B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015104093A JP5812508B1 (en) 2015-05-22 2015-05-22 Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015104093A JP5812508B1 (en) 2015-05-22 2015-05-22 Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same

Publications (2)

Publication Number Publication Date
JP5812508B1 JP5812508B1 (en) 2015-11-17
JP2016218295A true JP2016218295A (en) 2016-12-22

Family

ID=54595834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015104093A Active JP5812508B1 (en) 2015-05-22 2015-05-22 Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same

Country Status (1)

Country Link
JP (1) JP5812508B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556381A (en) * 1978-06-29 1980-01-17 Kanto Denka Kogyo Kk Coated carrier for electrophotography
JPH10116716A (en) * 1996-10-14 1998-05-06 Fuji Elelctrochem Co Ltd Oxide magnetic material and carrier using the same
JP2003533743A (en) * 2000-05-17 2003-11-11 ハイデルベルグ・ディジタル・エル・エル・シー Magnetic carrier particles
JP2005181944A (en) * 2003-03-13 2005-07-07 Ricoh Co Ltd Electrostatic latent image developing carrier, developer, developer container, image forming method, and processing cartridge
JP2008203623A (en) * 2007-02-21 2008-09-04 Fuji Xerox Co Ltd Carrier for electrostatic charge image development, electrostatic charge image developer, process cartridge and image forming apparatus
JP2009244571A (en) * 2008-03-31 2009-10-22 Mitsui Mining & Smelting Co Ltd Carrier core material for electrophotographic developer, carrier, and electrophotographic developer using carrier
JP2011053491A (en) * 2009-09-02 2011-03-17 Dowa Electronics Materials Co Ltd Carrier core material for electrophotographic developer, method of manufacturing the same, carrier for electrophotographic developer, and electrophotographic developer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556381A (en) * 1978-06-29 1980-01-17 Kanto Denka Kogyo Kk Coated carrier for electrophotography
JPH10116716A (en) * 1996-10-14 1998-05-06 Fuji Elelctrochem Co Ltd Oxide magnetic material and carrier using the same
JP2003533743A (en) * 2000-05-17 2003-11-11 ハイデルベルグ・ディジタル・エル・エル・シー Magnetic carrier particles
JP2005181944A (en) * 2003-03-13 2005-07-07 Ricoh Co Ltd Electrostatic latent image developing carrier, developer, developer container, image forming method, and processing cartridge
JP2008203623A (en) * 2007-02-21 2008-09-04 Fuji Xerox Co Ltd Carrier for electrostatic charge image development, electrostatic charge image developer, process cartridge and image forming apparatus
JP2009244571A (en) * 2008-03-31 2009-10-22 Mitsui Mining & Smelting Co Ltd Carrier core material for electrophotographic developer, carrier, and electrophotographic developer using carrier
JP2011053491A (en) * 2009-09-02 2011-03-17 Dowa Electronics Materials Co Ltd Carrier core material for electrophotographic developer, method of manufacturing the same, carrier for electrophotographic developer, and electrophotographic developer

Also Published As

Publication number Publication date
JP5812508B1 (en) 2015-11-17

Similar Documents

Publication Publication Date Title
US8535867B2 (en) Ferrite core material and ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier
JP5348588B2 (en) Carrier core material for electrophotographic developer, carrier, production method thereof, and electrophotographic developer using the carrier
KR101711590B1 (en) Ferrite carrier core material for electrophotographic developers, ferrite carrier, and manufacturing processes for both, and electrophotographic developers using the ferrite carrier
JP2011227452A (en) Ferrite carrier core material for electrophotographic developer and ferrite carrier, method for producing the same and electrophotographic developer containing the same
JP5822415B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
CN113474294B (en) Ferrite particles, carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
US8592123B2 (en) Carrier core material for electrophotographic developer, and manufacturing method of the same, carrier for electrophotographic developer, and electrophotographic developer
JP5736078B1 (en) Ferrite particles, electrophotographic carrier and electrophotographic developer using the same
JP6494453B2 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP5737795B1 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
US20120052435A1 (en) Tin-zinc complex oxide powder, method for producing the same, electrophotographic carrier, and electrophotographic developer
CN110476128B (en) Carrier core material, carrier for developing electronic photograph using same, and developer for electronic photograph
JP5904684B1 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP5812508B1 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
US20230144641A1 (en) Ferrite particles, electrophotographic developer carrier core material, electrophotographic developer carrier, and electrophotographic developer
JP2016200669A (en) Carrier core material and method for forming the material
JP2022036390A (en) Ferrite particle, carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
US10775711B2 (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier for electrophotographic developer, electrophotographic developer, and method for manufacturing ferrite carrier core material for electrophotographic developer
JP6637330B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP2017181903A (en) Carrier core material, electrophotographic development carrier using the same, and electrophotographic developer
JP5635784B2 (en) Ferrite particles and production method thereof, carrier for electrophotographic development using ferrite particles, developer for electrophotography
JP7075913B2 (en) Carrier core material
WO2022244573A1 (en) Carrier core material, and carrier for electrophotographic development and electrophotographic developer employing same
WO2021200171A1 (en) Ferrite particles, electrophotographic developer carrier core material, electrophotographic developer carrier, and electrophotographic developer
JP2024127182A (en) Carrier core material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150911

R150 Certificate of patent or registration of utility model

Ref document number: 5812508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250