JPH10116717A - Oxide magnetic material and carrier using the same - Google Patents
Oxide magnetic material and carrier using the sameInfo
- Publication number
- JPH10116717A JPH10116717A JP27041796A JP27041796A JPH10116717A JP H10116717 A JPH10116717 A JP H10116717A JP 27041796 A JP27041796 A JP 27041796A JP 27041796 A JP27041796 A JP 27041796A JP H10116717 A JPH10116717 A JP H10116717A
- Authority
- JP
- Japan
- Prior art keywords
- magnetization
- compound
- magnetic material
- oxide magnetic
- coercive force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Developing Agents For Electrophotography (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、酸化物磁性材料お
よびそれを用いたキャリアに関するものである。複写機
やプリンタ等に用いられるトナー担体であるキャリアに
使用する酸化物磁性材料は、特に近年の環境汚染の懸念
などの問題から重金属を含まないクリーンキャリアで十
分な磁化や抵抗率特性などを有するものが望まれてい
る。TECHNICAL FIELD The present invention relates to an oxide magnetic material and a carrier using the same. The oxide magnetic material used for the carrier, which is a toner carrier used in copiers, printers, etc., has sufficient magnetization and resistivity characteristics in a clean carrier containing no heavy metal due to problems such as concerns about environmental pollution in recent years. Things are desired.
【0002】[0002]
【従来の技術】酸化物磁性材料は、プリンタなどの現像
剤として使用する場合、実用磁界下においてある程度以
上の磁化が必要とされると共に、ある程度の抵抗率特性
を有する必要がある。2. Description of the Related Art When used as a developer for a printer or the like, an oxide magnetic material needs to have a certain degree of magnetization under a practical magnetic field and to have a certain degree of resistivity characteristics.
【0003】[0003]
【発明が解決しようとする課題】従来、酸化物磁性材料
を現像剤としてプリンタなどに用いる場合、一般的に実
用磁界下における磁化が低いとキャリアの感光体への付
着などの原因になっていた。Conventionally, when an oxide magnetic material is used as a developer in a printer or the like, a low magnetization under a practical magnetic field generally causes the carrier to adhere to a photosensitive member. .
【0004】また、磁化という特性は雰囲気に対して非
常に敏感であり抵抗調製などの処理の際に、酸素濃度あ
るいは空気導入温度に影響されてしまい、磁化低下など
の問題を生じていた。Further, the characteristic of magnetization is very sensitive to the atmosphere, and is affected by the oxygen concentration or the air introduction temperature during processing such as resistance adjustment, causing problems such as a decrease in magnetization.
【0005】更に、クリーンキャリアと呼ばれるキャリ
アでは、コア自体の高磁化および高抵抗率特性を同時に
満足するものがなかった。また、Mg系やCa系のキャ
リアは、抵抗、保磁力、磁化の特性から装置によって使
えないという場合があった。これは、特に保磁力の問題
から生じ、コア自体の高抵抗化が目的で雰囲気焼結ある
いは抵抗処理を行った場合にCa系で顕著に生じてい
た。Further, there is no carrier called a clean carrier that simultaneously satisfies the high magnetization and high resistivity characteristics of the core itself. In some cases, Mg-based or Ca-based carriers cannot be used depending on the device due to resistance, coercive force, and magnetization characteristics. This is particularly caused by the problem of coercive force, and has been remarkably caused in the Ca-based material when atmosphere sintering or resistance treatment is performed for the purpose of increasing the resistance of the core itself.
【0006】本発明は、これらの問題を解決するため、
Mn化合物などをヘマタイトに混入して低酸素あるいは
空気中で焼成し、磁化、抵抗率特性および保磁力が良好
な酸化物磁性材料およびこれを使用したキャリアの製造
を実現することを目的としている。[0006] The present invention solves these problems,
It is an object of the present invention to realize an oxide magnetic material having good magnetization, resistivity characteristics and coercive force and a carrier using the same by mixing a Mn compound or the like into hematite and firing in low oxygen or air.
【0007】[0007]
【課題を解決するための手段】図1を参照して課題を解
決するための手段を説明する。図1において、配合工程
1は、Mn化合物50ないし65モル%、Ca化合物を
Ca換算で0以上2.0wt%以下、Si化合物をSi
換算で0以上3.0wt%以下、および残部としてヘマ
タイトを配合する工程である。Means for solving the problem will be described with reference to FIG. In FIG. 1, the blending step 1 comprises 50 to 65 mol% of a Mn compound, 0 to 2.0 wt% of Ca compound in terms of Ca,
In this step, hematite is blended in an amount of 0 to 3.0 wt% in terms of conversion, and hematite as the balance.
【0008】造粒工程4は、混合した粉体を造粒する工
程である。焼成工程5は、造粒物を例えば1300°C
において低酸素中あるいは空気中で焼成する工程であ
る。The granulating step 4 is a step of granulating the mixed powder. In the firing step 5, the granulated material is heated to, for example, 1300 ° C.
And firing in low oxygen or air.
【0009】コーティング工程7は、酸化物磁性材料を
樹脂でコーティングしてキャリアを生成する工程であ
る。次に、製造方法を説明する。The coating step 7 is a step of coating the oxide magnetic material with a resin to generate a carrier. Next, a manufacturing method will be described.
【0010】配合工程1でMn化合物50ないし65モ
ル%、Ca化合物をCa換算で0以上2.0wt%以
下、Si化合物をSi換算で0以上3.0wt%以下お
よび残部としてヘマタイトを配合し、造粒工程4で配合
・混合された粉体を造粒し、焼成工程5で造粒物を低酸
素中あるいは空気中において例えば1300°Cで焼成
し、酸化物磁性材料を製造するようにしている。In the blending step 1, 50 to 65 mol% of a Mn compound, 0 to 2.0 wt% of a Ca compound in terms of Ca, 0 to 3.0 wt% of a Si compound in terms of Si, and hematite as a balance, The powder mixed and mixed in the granulating step 4 is granulated, and the granulated material is calcined in low oxygen or air at, for example, 1300 ° C. in the calcining step 5 to produce an oxide magnetic material. I have.
【0011】そして、コーティング工程7で酸化物磁性
材料を樹脂でコーティングし、キャリアを製造するよう
にしている。従って、Mn化合物、更にCa化合物とS
i化合物をヘマタイトに混入して低酸素あるいは空気中
で焼成し、磁化、抵抗率特性および保磁力が良好な酸化
物磁性材料およびこれを使用したキャリアを製造するこ
とが可能となる。In the coating step 7, the oxide magnetic material is coated with a resin to manufacture a carrier. Therefore, a Mn compound, further a Ca compound and S
The i-compound is mixed with hematite and calcined in low oxygen or air to produce an oxide magnetic material having good magnetization, resistivity characteristics and coercive force, and a carrier using the same.
【0012】[0012]
【発明の実施の形態】次に、図1から図5を用いて本発
明の実施の形態および動作を順次詳細に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment and operation of the present invention will be described in detail with reference to FIGS.
【0013】図1は、本発明の1実施例構成図を示す。
図1において、配合工程1は、Mn化合物50ないし6
5モル%、Ca化合物をCa換算で0以上2.0wt
%、Si化合物をSi換算で0以上3.0wt%、およ
び残部としてヘマタイトを配合する工程である。FIG. 1 is a block diagram showing an embodiment of the present invention.
In FIG. 1, the blending step 1 is performed in the Mn compounds 50 to 6
5 mol%, Ca compound is 0 to 2.0 wt% in terms of Ca
%, The Si compound is 0 to 3.0 wt% in terms of Si, and hematite as the balance.
【0014】混合工程2は、配合工程1によって配合さ
れたMn化合物、更にCa化合物とSi化合物、および
ヘマタイトを混ぜた混合粉に、−C−C−あるいは−C
=C−を分子中に有する液状物質あるいは粉末物質を
0.1〜4.0wt%混合する工程である。In the mixing step 2, the mixed powder obtained by mixing the Mn compound, the Ca compound and the Si compound, and the hematite mixed in the mixing step 1 is mixed with -CC- or -C.
This is a step of mixing 0.1 to 4.0 wt% of a liquid substance or a powder substance having = C- in the molecule.
【0015】粉砕工程3は、混合工程2によって混合し
たものを、アトリションミルで湿式粉砕して混合粉の濃
度約50wt%のスラリーを作成する工程である。造粒
工程4は、球状顆粒を生成する工程である。ここでは、
スラリーをアトライターで1時間撹拌後、スプレードラ
イヤーで熱風乾燥して球状顆粒化する。The pulverizing step 3 is a step of wet-pulverizing the mixture obtained in the mixing step 2 with an attrition mill to prepare a slurry having a mixed powder concentration of about 50% by weight. The granulation step 4 is a step for producing spherical granules. here,
After the slurry is stirred for 1 hour with an attritor, it is dried with hot air using a spray dryer to form spherical granules.
【0016】焼成工程5は、造粒工程4で得られた顆粒
を低酸素中あるいは空気中で例えば1300°Cの温度
で2時間加熱処理し、スピネル構造をもつ磁性相と非磁
性相が混在した粉末を形成する工程である。In the calcination step 5, the granules obtained in the granulation step 4 are heat-treated in low oxygen or air at a temperature of, for example, 1300 ° C. for 2 hours, and a magnetic phase having a spinel structure and a non-magnetic phase are mixed. This is a step of forming a powder.
【0017】篩別工程6は、焼成して整粒した粉末を所
定の篩で篩別するものである。ここでは、例えば30〜
100μmの篩で篩別した粉末を酸化物磁性材料の製品
としている。In the sieving step 6, the baked and sized powder is sieved with a predetermined sieve. Here, for example,
The powder sieved with a 100 μm sieve is used as a product of the oxide magnetic material.
【0018】コーティング工程7は、篩別工程6で篩別
された酸化物磁性材料に樹脂をコーティングする工程で
ある。ここでは、フッ素アクリル系樹脂をトルエン溶剤
に溶解させ、流動層を用いてキャリアを芯材に対して
1.0wt%コーティングし100°Cで2時間加熱乾
燥させコートキャリアを得た。The coating step 7 is a step of coating the oxide magnetic material sieved in the sieving step 6 with a resin. Here, a fluoroacrylic resin was dissolved in a toluene solvent, the carrier was coated on the core material at 1.0 wt% using a fluidized bed, and dried by heating at 100 ° C. for 2 hours to obtain a coated carrier.
【0019】以上のように、主組成である酸化鉄および
Mn化合物そしてCa化合物とSi化合物を所定の組成
にて造粒し、焼成を始めから空気中(あるいは低酸素)
雰囲気下で行うことで、実用磁界下における磁化が35
emu/g以上の酸化物磁性材料であり、かつ抵抗率の
電界特性が5000V/cmでも絶縁破壊しない酸化物
磁性材料を製造することができた。また、その時の保磁
力についても10Oe以下であり、従来のMg系やCa
系(約20〜50Oe程度)においても実現することが
困難であった値(10Oe以下)が得られた。As described above, the iron oxide and the Mn compound, which are the main components, and the Ca compound and the Si compound are granulated in a predetermined composition, and are fired in the air (or low oxygen) from the beginning.
By performing in an atmosphere, the magnetization under a practical magnetic field can be 35.
An oxide magnetic material that was an emu / g or more oxide magnetic material and did not cause dielectric breakdown even when the electric field characteristic of resistivity was 5000 V / cm could be produced. Further, the coercive force at that time is also 10 Oe or less, and the conventional Mg-based or Ca
A value (10 Oe or less) which was difficult to realize even in the system (about 20 to 50 Oe) was obtained.
【0020】図2は、本発明の実験例(その1)を示
す。これは、主成分としてMnをMnO換算で25〜8
0モル%、残りFe2O3で、同時添加としてCaCO3
をCa換算で0〜5.0wt%、SiO2をSi換算で
0〜10.0wt%を出発原料としてそれらを混合した
後、ポリビニルアルコール2.0wt%を添加し、水と
混合して粉体濃度50wt%のスラリーとし、アトライ
ターで1時間撹拌後、スプレードライヤーで造粒した。
その後、酸素濃度(21%O2で一定な酸素濃度)を制
御しながら電気炉にて約1300°Cで2時間焼成して
酸化物磁性材料を得た。図5の(a)に加熱のパターン
を示す。製造した酸化物磁性材料を直径6mmのサンプ
ル樹脂ホルダに埋め込みVSM(振動型磁力計)にて1
kOeの磁気特性(最大磁化σs)の測定を行った(図
5の(c)参照)。また、静的抵抗率などを後述する図
5の(b)に示すような治具を用いて測定した。電極サ
イズは円形で直径5mmである。FIG. 2 shows an experimental example (part 1) of the present invention. This is because Mn as a main component is 25 to 8 in terms of MnO.
0 mol%, the remaining Fe 2 O 3 , and CaCO 3
0~5.0Wt% with Ca terms, after mixing them 0~10.0Wt% of SiO 2 in terms of Si as the starting material, polyvinyl alcohol is added to 2.0 wt%, it was mixed with water to powder A slurry having a concentration of 50 wt% was prepared, stirred for 1 hour with an attritor, and then granulated with a spray drier.
Thereafter, the mixture was calcined at about 1300 ° C. for 2 hours in an electric furnace while controlling the oxygen concentration (constant oxygen concentration at 21% O 2 ) to obtain an oxide magnetic material. FIG. 5A shows a heating pattern. The manufactured oxide magnetic material is embedded in a sample resin holder having a diameter of 6 mm, and is embedded in a VSM (vibrating magnetometer).
The magnetic properties of kOe (maximum magnetization σs) were measured (see FIG. 5C). In addition, the static resistivity and the like were measured using a jig as shown in FIG. The electrode size is circular and 5 mm in diameter.
【0021】次に、図2および図3の実験例について説
明する。図2の(a)は、1300°C、1,0%O2
の実験例である。 ・実施例1ないし実施例3は、磁化、保磁力、および抵
抗率特性がともに良好な実験例を示す。ここで、がF
e2O3の上限50モル%であり、がFe2O3の下限3
5モル%である。この、のときに、磁化の最小値は
43.5emu/g、保磁力の最大値は8.5Oe、抵
抗率特性の最小値は5000V/cmとなり、いずれも
磁気特性が良好と判断する目安の磁化35emu/g、
保磁力10Oe以下、抵抗率特性5000V/cm以上
に該当し、良好な磁気特性を持つと判断される。Next, the experimental examples shown in FIGS. 2 and 3 will be described. FIG. 2A shows 1300 ° C. and 1,0% O 2.
This is an experimental example. -Examples 1 to 3 show experimental examples in which the magnetization, coercive force, and resistivity characteristics are all good. Where F
The upper limit of e 2 O 3 is 50 mol%, but the lower limit of Fe 2 O 3 is 3%.
5 mol%. In this case, the minimum value of the magnetization is 43.5 emu / g, the maximum value of the coercive force is 8.5 Oe, and the minimum value of the resistivity characteristic is 5000 V / cm. Magnetization 35 emu / g,
This corresponds to a coercive force of 10 Oe or less and a resistivity characteristic of 5000 V / cm or more, and is determined to have good magnetic characteristics.
【0022】がMnOの上限65モル%であり、が
MnOの下限50モル%である。この、のときに、
磁化の最小値は43.5emu/g、保磁力の最大値は
8.5Oe、抵抗率特性の最小値は5000V/cmと
なり、いずれも磁気特性が良好と判断する目安の磁化3
5emu/g、保磁力10Oe以下、抵抗率特性500
0V/cm以上に該当し、良好な磁気特性を持つと判断
される。The upper limit of MnO is 65 mol%, and the lower limit of MnO is 50 mol%. At this time,
The minimum value of the magnetization is 43.5 emu / g, the maximum value of the coercive force is 8.5 Oe, and the minimum value of the resistivity characteristic is 5000 V / cm.
5 emu / g, coercive force 10 Oe or less, resistivity characteristic 500
It corresponds to 0 V / cm or more and is judged to have good magnetic properties.
【0023】図2の(b)は、1300°C、21.0
%O2(空気中)の実験例である。これは、図2の
(a)の1300°C、1.0%O2を1300°C、
空気中(21.0%O2)にしたものである。FIG. 2 (b) shows a temperature of 1300 ° C., 21.0 ° C.
This is an experimental example of% O 2 (in air). This is because 1300 ° C. of 1.0% O 2 of FIG.
It was in air (21.0% O 2 ).
【0024】・実施例1ないし実施例3は、磁化、保磁
力、および抵抗率特性がともに良好な実験例を示す。こ
こで、’がFe2O3の上限50モル%であり、’が
Fe2O3の下限35モル%である。この’、’のと
きに、磁化の最小値は38.0emu、保磁力の最大値
は9.5Oe、抵抗率特性の最小値は5000V/cm
となり、いずれも磁気特性が良好と判断する目安の磁化
35emu/g、保磁力10Oe以下、抵抗率特性50
00V/cm以上に該当し、良好な磁気特性を持つと判
断される。Examples 1 to 3 show experimental examples in which the magnetization, coercive force, and resistivity characteristics are all good. Here, 'is the upper limit 50 mol% of Fe 2 O 3,' is lower 35 mole% of Fe 2 O 3. In these cases, the minimum value of the magnetization is 38.0 emu, the maximum value of the coercive force is 9.5 Oe, and the minimum value of the resistivity characteristic is 5000 V / cm.
In each case, the magnetization is 35 emu / g, the coercive force is 10 Oe or less, and the resistivity characteristic is 50.
It corresponds to 00 V / cm or more, and is judged to have good magnetic properties.
【0025】’がMnOの上限65モル%であり、
’がMnOの下限50モル%である。この’、’
のときに、磁化の最小値は38.0emu、保磁力の最
大値は9.5Oe、抵抗率特性の最小値は5000V/
cmとなり、いずれも磁気特性が良好と判断する目安の
磁化35emu/g、保磁力10Oe以下、抵抗率特性
5000V/cm以上に該当し、良好な磁気特性を持つ
と判断される。Is an upper limit of 65 mol% of MnO;
'Is the lower limit of 50 mol% of MnO. this','
, The minimum value of the magnetization is 38.0 emu, the maximum value of the coercive force is 9.5 Oe, and the minimum value of the resistivity characteristic is 5000 V /
cm, which correspond to a magnetization of 35 emu / g, a coercive force of 10 Oe or less, and a resistivity characteristic of 5000 V / cm or more, all of which are considered to be good magnetic characteristics, and are judged to have good magnetic characteristics.
【0026】図2の(c)は、1300°C、21.0
%O2(空気中)の実験例である。これは、Fe2O3を
42モル%、MnOを58モル%、CaCO3をCa換
算で0.00wt%および0.20wt%と一定とし、
SiO2をSi換算で0.00wt%から10wt%ま
で変化させたときの実験例を示す。FIG. 2C shows a graph at 1300 ° C. and 21.0 ° C.
This is an experimental example of% O 2 (in air). This is because Fe 2 O 3 is constant at 42 mol%, MnO is 58 mol%, CaCO 3 is constant at 0.00 wt% and 0.20 wt% in terms of Ca,
An experimental example when SiO 2 is changed from 0.00 wt% to 10 wt% in terms of Si will be described.
【0027】・実施例1ないし実施例6、磁化、保磁
力、および抵抗率特性がともに良好な実験例を示す。こ
こで、が磁化41emu/gとなり、SiO2をSi
換算で上限3.00wt%となる。が磁化40.0e
mu/gとなり、SiO2をSi換算で下限0.00w
t%となる。Examples 1 to 6 show experimental examples in which the magnetization, coercive force and resistivity characteristics are all good. Here, is 41 emu / g of magnetization, and SiO 2 is converted to Si
The upper limit is 3.00 wt% in conversion. Is magnetization 40.0e
mu / g, and the lower limit of SiO 2 is 0.00w in terms of Si.
t%.
【0028】図2の(d)は、1300°C、21.0
%O2(空気中)の実験例である。これは、Fe2O3を
42モル%、MnOを58モル%、SiO2をSi換算
で0.00wt%および0.01wt%と一定とし、C
aCO3をCa換算で0.00wt%から5wt%まで
変化させたときの実験例を示す。FIG. 2 (d) shows 1300 ° C., 21.0 ° C.
This is an experimental example of% O 2 (in air). This is because Fe 2 O 3 is constant at 42 mol%, MnO is 58 mol%, SiO 2 is constant at 0.00 wt% and 0.01 wt% in terms of Si, and C
An experimental example when aCO 3 is changed from 0.00 wt% to 5 wt% in terms of Ca is shown.
【0029】・実施例1ないし実施例6、磁化、保磁
力、および抵抗率特性がともに良好な実験例を示す。こ
こで、が磁化40.5emu/gとなり、CaCO3
をCa換算で上限2.00wt%となる。が磁化4
0.0emu/gとなり、CaCO3をCa換算で下限
0.00wt%となる。Examples 1 to 6 show experimental examples in which the magnetization, coercive force and resistivity characteristics are all good. Here, the magnetization becomes 40.5 emu / g, and CaCO 3
Becomes 2.00 wt% in terms of Ca. Is magnetization 4
0.0 emu / g, and the lower limit of CaCO 3 is 0.00 wt% in terms of Ca.
【0030】図3の(e)は、1300°C、21.0
%O2(空気中)の実験例である。これは、SiO2をS
i換算で0.01wt%、CaCO3をCa換算で0.
20wt%と一定とし、Fe2O3およびMnOを変化さ
せたときの実験例を示す。FIG. 3 (e) shows a temperature of 1300 ° C., 21.0 ° C.
This is an experimental example of% O 2 (in air). This is because SiO 2
0.01 wt% in terms of i, CaCO 3 is 0.1% in terms of Ca.
An experimental example is shown in which Fe 2 O 3 and MnO are changed while keeping constant at 20 wt%.
【0031】・実施例1ないし実施例3、磁化、保磁
力、および抵抗率特性がともに良好な実験例を示す。こ
こで、が磁化49.0emu/gとなり、MnOが上
限65モル%となる。’が磁化54.5emu/gと
なり、下限50モル%となる。Examples 1 to 3 show experimental examples in which the magnetization, coercive force and resistivity characteristics are all good. Here, the magnetization becomes 49.0 emu / g, and the upper limit of MnO is 65 mol%. 'Becomes 54.5 emu / g of magnetization, and the lower limit is 50 mol%.
【0032】以上の図2の(a)ないし図3の(e)の
実験例により、 Mn化合物50〜65モル% Ca化合物がCa換算で0〜2.0wt% Si化合物がSi換算で0〜3.0wt% Fe2O3が残部 となることが判明した。According to the experimental examples shown in FIGS. 2A to 3E, 50 to 65 mol% of the Mn compound is 0 to 2.0 wt% in terms of Ca. 3.0 wt% Fe 2 O 3 was found to be the balance.
【0033】図4は、本発明の実験例(その3)を示
す。図4の(a)は、CaCO3をCa換算で0.2w
t%と一定にしたときの実験例(図2の(c))を折線
グラフで表現したものである。ここで、横軸はSiO2
の添加量(wt%)を表し、縦軸は磁化(emu/g)
を表す。ここで、磁化(emu/g)は、35emu/
g以上が良である。FIG. 4 shows an experimental example (part 3) of the present invention. (A) of FIG. 4 shows that CaCO 3 is 0.2 w
An experiment example ((c) in FIG. 2) when the constant is set to t% is represented by a line graph. Here, the horizontal axis is SiO 2
Represents the added amount (wt%) of the sample, and the vertical axis represents the magnetization (emu / g).
Represents Here, the magnetization (emu / g) is 35 emu / g
g or more is good.
【0034】図4の(b)は、SiO2をSi換算で
0.01wt%と一定にしたときの実験例(図2の
(d))を折線グラフで表現したものである。ここで、
横軸はCaCO3の添加量(wt%)を表し、縦軸は磁
化(emu/g)を表す。ここで、磁化(emu/g)
は、35emu/g以上が良である。FIG. 4 (b) is a line graph showing an experimental example (FIG. 2 (d)) when SiO 2 is fixed at 0.01 wt% in terms of Si. here,
The horizontal axis represents the amount of CaCO 3 added (wt%), and the vertical axis represents the magnetization (emu / g). Here, magnetization (emu / g)
Is preferably 35 emu / g or more.
【0035】図5は、本発明の説明図を示す。図5の
(a)は、焼結時の加熱温度特性を示す。これは、焼成
時に200°C/Hの温度上昇速度で加熱し、焼成温度
のここでは例えば1300°Cとなってから2時間その
ままの温度を保持し、次に200°C/Hの温度降下速
度で冷却し、所定温度となったときに雰囲気制御を停止
する。ここでは、図示のように雰囲気制御は21%O2
(空気)を供給している。FIG. 5 shows an explanatory diagram of the present invention. FIG. 5A shows a heating temperature characteristic during sintering. In this method, heating is performed at a temperature rising rate of 200 ° C./H during firing, and the temperature is maintained for 2 hours after the firing temperature reaches, for example, 1300 ° C., and then a temperature drop of 200 ° C./H is performed. At that time, the atmosphere control is stopped when a predetermined temperature is reached. Here, the atmosphere control is 21% O 2 as shown in the figure.
(Air).
【0036】図5の(b)は、静的抵抗率を測定する様
子を模式的に示す。電極と電極との間に電圧を印加し、
そのときに流れる電流を測定して図示の式から抵抗率R
(Ω・cm)を算出する。また、B.D.電界強度は、
電極と電極との間に印加する電圧を徐々に高めたときに
急激に電流が増加するブレークダウン(B.D.)して
しまう電界強度を測定し、そのときの値(V/cm)で
表す。尚、この例では、電極サイズが円形で直径5mm
の容器に試料(酸化物磁性材料)を入れ、両側の電極の
間に定電圧Vを印加し、そのときに流れる電流Iを測定
し図示の式に代入して抵抗率を求めている。FIG. 5B schematically shows how the static resistivity is measured. Applying a voltage between the electrodes,
The current flowing at that time is measured, and the resistivity R
(Ω · cm) is calculated. B. D. The electric field strength is
When the voltage applied between the electrodes is gradually increased, the electric current suddenly increases, and the electric field strength which causes a breakdown (BD) is measured, and the value (V / cm) at that time is measured. Represent. In this example, the electrode size is circular and the diameter is 5 mm.
The sample (oxide magnetic material) is placed in the container (1), a constant voltage V is applied between the electrodes on both sides, the current I flowing at that time is measured, and the measured value is substituted into the formula shown in the figure to determine the resistivity.
【0037】以上のようにして求めた酸化物磁性材料の
B.D.は、図3の(e)の右欄の抵抗率特性(B.
D.)となる。図5の(c)は、本発明の磁化(飽和磁
化)の説明図を示す。これは、図2および図3の磁化を
測定するときの説明図である。横軸は印加する磁界の強
さHOeを表し、縦軸はそのときの磁化の強さM em
uを表す。振動型磁界計は、図示のように例えば1kO
eの磁界を印加した状態で、そのときの磁性相と非磁性
相が混在した粉体の磁化の強さMs emuを測定す
る。そして、飽和磁化は、図示の下記の式 δs=Ms/(粉体の重量) [emu/g] (1) によって求める。この式(1)によって求めたものが図
2および図3の磁化emu/gである。The oxide magnetic material B. D. Is the resistivity characteristic (B.
D. ). FIG. 5C is an explanatory diagram of the magnetization (saturated magnetization) of the present invention. This is an explanatory diagram when measuring the magnetization in FIGS. 2 and 3. The horizontal axis represents the intensity HOe of the applied magnetic field, and the vertical axis represents the magnetization intensity M em at that time.
u. The vibrating magnetometer is, for example, 1 kO
In the state where the magnetic field e is applied, the magnetization intensity Msemu of the powder in which the magnetic phase and the nonmagnetic phase are mixed at that time is measured. Then, the saturation magnetization is determined by the following equation: δs = Ms / (weight of powder) [emu / g] (1) The value obtained by the equation (1) is the magnetization emu / g in FIGS.
【0038】[0038]
【発明の効果】以上説明したように、本発明によれば、
Mn化合物、更にCa化合物とSi化合物をヘマタイト
に混入して低酸素あるいは空気中で焼成し、磁化、抵抗
率特性および保磁力が良好な酸化物磁性材料およびこれ
を使用したキャリアを製造できるようになった。これら
により、主組成である酸化鉄およびMn化合物に添加物
Ca化合物とSi化合物を同時添加し、焼成を始めから
空気中(あるいは低酸素中)で行うことで所定の磁化、
保磁力および抵抗率特性を得ることができる。As described above, according to the present invention,
An Mn compound, and further a Ca compound and a Si compound are mixed into hematite and calcined in low oxygen or air to produce an oxide magnetic material having good magnetization, resistivity characteristics and coercive force, and a carrier using the same. became. Thus, the additive Ca compound and the Si compound are simultaneously added to the iron oxide and Mn compounds, which are the main components, and the calcination is performed in the air (or in low oxygen) from the beginning to obtain a predetermined magnetization,
Coercive force and resistivity characteristics can be obtained.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の1実施例構成図である。FIG. 1 is a configuration diagram of one embodiment of the present invention.
【図2】本発明の実験例(その1)である。FIG. 2 is an experimental example (part 1) of the present invention.
【図3】本発明の実験例(その2)である。FIG. 3 is an experimental example (part 2) of the present invention.
【図4】本発明の実験例(その3)である。FIG. 4 is an experimental example (3) of the present invention.
【図5】本発明の説明図である。FIG. 5 is an explanatory diagram of the present invention.
1:配合工程 2:混合工程 3:粉砕工程 4:造粒工程 5:焼成工程 6:篩別工程 7:コーティング工程 1: compounding step 2: mixing step 3: pulverizing step 4: granulating step 5: firing step 6: sieving step 7: coating step
Claims (4)
イトに混合して造粒し、造粒物を焼成することにより磁
化35emu以上、保磁力10Oe以下、かつ抵抗率特
性5000V/cm以上にしたことを特徴とする酸化物
磁性材料。1. A method in which 50 to 65 mol% of a Mn compound is mixed with hematite and granulated, and the granulated material is fired to have a magnetization of 35 emu or more, a coercive force of 10 Oe or less, and a resistivity characteristic of 5000 V / cm or more. An oxide magnetic material characterized by the following.
えてCa化合物をCa換算で0以上2.0wt%以下と
Si化合物をSi換算で0以上3.0wt%以下をヘマ
タイトに混合したことを特徴とする請求項1記載の酸化
物磁性材料。2. The method according to claim 1, wherein in addition to 50 to 65 mol% of the Mn compound, 0 to 2.0 wt% of Ca compound in Ca conversion and 0 to 3.0 wt% of Si compound in Si conversion are mixed with hematite. The oxide magnetic material according to claim 1, wherein:
ことを特徴とする請求項1あるいは請求項2記載の酸化
物磁性材料。3. The oxide magnetic material according to claim 1, wherein the firing is performed in low oxygen or in air.
化物磁性材料をコーティングしたことを特徴とするキャ
リア。4. A carrier coated with the oxide magnetic material produced according to any one of claims 1 to 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27041796A JPH10116717A (en) | 1996-10-14 | 1996-10-14 | Oxide magnetic material and carrier using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27041796A JPH10116717A (en) | 1996-10-14 | 1996-10-14 | Oxide magnetic material and carrier using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10116717A true JPH10116717A (en) | 1998-05-06 |
Family
ID=17485985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27041796A Pending JPH10116717A (en) | 1996-10-14 | 1996-10-14 | Oxide magnetic material and carrier using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10116717A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010085761A (en) * | 2008-09-30 | 2010-04-15 | Dowa Electronics Materials Co Ltd | Carrier core material for electrophotographic developer, method of manufacturing the same, carrier for electrophotographic developer and electrophotographic developer |
WO2014033875A1 (en) * | 2012-08-30 | 2014-03-06 | Dowaエレクトロニクス株式会社 | Method for producing carrier core material for electrophotographic developer, carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer |
JP2016191880A (en) * | 2015-03-31 | 2016-11-10 | 戸田工業株式会社 | Magnetic carrier for electrophotography and method for manufacturing the same |
JP2021173911A (en) * | 2020-04-28 | 2021-11-01 | Dowaエレクトロニクス株式会社 | Ferrite carrier core material, carrier for electrophotographic development using the same, and developer for electrophotography |
-
1996
- 1996-10-14 JP JP27041796A patent/JPH10116717A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010085761A (en) * | 2008-09-30 | 2010-04-15 | Dowa Electronics Materials Co Ltd | Carrier core material for electrophotographic developer, method of manufacturing the same, carrier for electrophotographic developer and electrophotographic developer |
WO2014033875A1 (en) * | 2012-08-30 | 2014-03-06 | Dowaエレクトロニクス株式会社 | Method for producing carrier core material for electrophotographic developer, carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer |
CN104603694A (en) * | 2012-08-30 | 2015-05-06 | 同和电子科技有限公司 | Method for producing carrier core material for electrophotographic developer, carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer |
US9651886B2 (en) | 2012-08-30 | 2017-05-16 | Dowa Electronics Materials Co., Ltd. | Carrier core particles for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer |
JP2016191880A (en) * | 2015-03-31 | 2016-11-10 | 戸田工業株式会社 | Magnetic carrier for electrophotography and method for manufacturing the same |
JP2021173911A (en) * | 2020-04-28 | 2021-11-01 | Dowaエレクトロニクス株式会社 | Ferrite carrier core material, carrier for electrophotographic development using the same, and developer for electrophotography |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7476482B2 (en) | Mg-based ferrite, an electrophotographic development carrier containing the ferrite, and developer containing the carrier | |
KR101519318B1 (en) | Method for producing carrier core for electrophotographic developer, carrier core for electrophotographic developer, carrier for electrophotographic carrier, and electrophotographic developer | |
US7470498B2 (en) | Mg-based ferrite, an electrophotographic development carrier containing the ferrite, and a developer containing the carrier | |
US20190079422A1 (en) | Ferrite carrier core material for electrophotographic developer, ferrite carrier for electrophotographic developer, electrophotographic developer, and method for manufacturing ferrite carrier core material for electrophotographic developer | |
JP2006259294A (en) | Carrier core material for electrophotographic developer, carrier powder for electrophotographic developer, and method for manufacturing the same | |
KR20120121412A (en) | Carrier core material for electrophotography developer, carrier for electrophotography developer, and electrophotography developer | |
JPWO2020175336A1 (en) | Ferrite particles, carrier core material for electrophotographic developer, carrier for electrophotographic developer and electrophotographic developer | |
JPS58123549A (en) | Electrophotographic developing carrier | |
JPH10116717A (en) | Oxide magnetic material and carrier using the same | |
JPS58123550A (en) | Electrophotographic developing carrier | |
CN100557726C (en) | Mg-based ferrite, the developer that contains this ferritic electrophotographic development carrier and contain this carrier | |
JPS6148430A (en) | Manufacture of ferrite carrier for electrostatic copying | |
JPH10116716A (en) | Oxide magnetic material and carrier using the same | |
CN110476128A (en) | Carrier core material and electronic photo developing carrier and electronic photo developer using it | |
KR100327646B1 (en) | Oxide magnetic material and manufacturing method | |
EP2891925B1 (en) | Carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer | |
JPH0715598B2 (en) | Ferrite carrier for electrophotographic development | |
US10775711B2 (en) | Ferrite carrier core material for electrophotographic developer, ferrite carrier for electrophotographic developer, electrophotographic developer, and method for manufacturing ferrite carrier core material for electrophotographic developer | |
JP2000172017A (en) | Production of ferrite carrier core for electrophotographic development | |
JP3106413B2 (en) | Oxide magnetic material and method for producing the same | |
JPH1140407A (en) | Magnetic oxide material | |
JP2005504345A (en) | Electrophotographic carrier core magnetite powder | |
JP3178788B2 (en) | Oxide magnetic material and manufacturing method | |
JP2860929B2 (en) | Manufacturing method of oxide magnetic material | |
JPH1138682A (en) | Production of oxide magnetic material |