JPH10116631A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH10116631A
JPH10116631A JP8272575A JP27257596A JPH10116631A JP H10116631 A JPH10116631 A JP H10116631A JP 8272575 A JP8272575 A JP 8272575A JP 27257596 A JP27257596 A JP 27257596A JP H10116631 A JPH10116631 A JP H10116631A
Authority
JP
Japan
Prior art keywords
secondary battery
less
volume
aqueous electrolyte
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8272575A
Other languages
Japanese (ja)
Other versions
JP4066465B2 (en
Inventor
Mitsutoshi Tanaka
光利 田中
Koichi Kondo
浩一 近藤
Hiroshi Ishizuka
弘 石塚
Mikihiko Kato
三紀彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJI FILM SELLTEC KK
Fujifilm Holdings Corp
Original Assignee
FUJI FILM SELLTEC KK
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJI FILM SELLTEC KK, Fuji Photo Film Co Ltd filed Critical FUJI FILM SELLTEC KK
Priority to JP27257596A priority Critical patent/JP4066465B2/en
Publication of JPH10116631A publication Critical patent/JPH10116631A/en
Application granted granted Critical
Publication of JP4066465B2 publication Critical patent/JP4066465B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having high capacity and an excellent charge and discharge cycle characteristic. SOLUTION: In a nonaqueous electrolyte secondary battery comprising a positive electrode 5 and a negative electrode 4 containing material capable of reversibly storing and discharging lithium, nonaqueous electrolyte 6 containing lithium salt, and a separator 3, the nonaqueous electrolyte 6 contains cyclic carbonate, chain carbonate, and cyclic ether of 0.1% by volume or more and 7% by volume or less, moisture content is 1ppm or more and 50ppm or less, and free acid portion as HF is 2ppm or more and 100ppm or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、充放電サイクル特
性に優れた高容量非水電解質二次電池に関し、特に充放
電サイクル性に優れた電解液と、放電容量の大きな負極
材料を用いた非水電解質二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-capacity non-aqueous electrolyte secondary battery having excellent charge-discharge cycle characteristics, and more particularly, to a non-aqueous electrolyte using an electrolyte solution having excellent charge-discharge cycle characteristics and a negative electrode material having a large discharge capacity. The present invention relates to a water electrolyte secondary battery.

【0002】[0002]

【従来の技術】従来、リチウムイオン二次電池等の非水
電解質二次電池の充放電サイクル安定性に非水電解液の
組成が大きく影響することが知られており、例えば、特
開平8−64240号公報では、特定量範囲の環状炭酸
エステルと鎖状炭酸エステルとエーテルからなる混合溶
媒にリチウム塩としてトリフルオロメタンスルホン酸リ
チウムを用いたものが提案されている。
2. Description of the Related Art It has been known that the composition of a non-aqueous electrolyte greatly affects the charge / discharge cycle stability of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. Japanese Patent No. 64240 proposes a method using lithium trifluoromethanesulfonate as a lithium salt in a mixed solvent consisting of a cyclic carbonate, a chain carbonate and an ether in a specific amount range.

【0003】また、特開平8−130036号公報で
は、負極に高放電容量の金属の複合酸化物を用い、非水
電解質にエチレンカーボネートと鎖状炭酸エステル等の
混合溶媒を用いることが提案されている。
In Japanese Patent Application Laid-Open No. Hei 8-130036, it is proposed to use a composite oxide of a metal having a high discharge capacity for a negative electrode and use a mixed solvent of ethylene carbonate and a chain carbonate for a non-aqueous electrolyte. I have.

【0004】これらの提案は有る程度の改良効果は示す
ものの、サイクル安定性を確保するために、電極材料が
本来有している放電容量を目減りさせる状況を大きくは
改良していない。
[0004] Although these proposals show a certain improvement effect, they do not greatly improve the situation of reducing the discharge capacity inherent in the electrode material in order to secure the cycle stability.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、高放
電容量と充放電サイクル安定性の両立をはかり、高容量
かつサイクル安定性の優れた非水二次電池を提供するこ
とである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a non-aqueous secondary battery which achieves both high discharge capacity and charge / discharge cycle stability, and has high capacity and excellent cycle stability.

【0006】[0006]

【課題を解決するための手段】本発明者らは、非水電解
液の特定の溶媒組成、特に環状エーテル類の存在と含水
率及び遊離酸分の制御が上記課題の解決に著しい効果の
あることを発見し本発明に至った。
The present inventors have found that the specific solvent composition of the non-aqueous electrolyte, particularly the presence of cyclic ethers and the control of water content and free acid content, have a remarkable effect on solving the above problems. This has led to the present invention.

【0007】本発明の課題は、リチウムを可逆的に吸蔵
放出可能な材料を含む正極及び負極、リチウム塩を含む
非水電解質、セパレーターから成る非水電解質二次電池
に於いて、該非水電解質が環状炭酸エステルと鎖状炭酸
エステルと0.1体積%以上7体積%以下の環状エーテル
を含み、含水率が0.5 ppm以上50ppm以下かつ遊離酸分が
HFとして2ppm以上100ppm以下であることを特徴とす
る非水電解質二次電池により解決された。
An object of the present invention is to provide a non-aqueous electrolyte secondary battery comprising a positive electrode and a negative electrode containing a material capable of reversibly inserting and extracting lithium, a non-aqueous electrolyte containing a lithium salt, and a separator. A non-cyclic carbonate comprising a cyclic carbonate, a chain carbonate and 0.1% to 7% by volume of a cyclic ether, a water content of 0.5 ppm to 50 ppm, and a free acid content of 2 ppm to 100 ppm as HF. The problem was solved by a water electrolyte secondary battery.

【0008】[0008]

【発明の実施の形態】本発明においては、以下の形態を
用いることができるが、本発明はこれらに限定されるも
のではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the following forms can be used, but the present invention is not limited to these.

【0009】(1)リチウムを可逆的に吸蔵放出可能な
材料を含む正極及び負極、リチウム塩を含む非水電解
質、セパレーターから成る非水電解質二次電池に於い
て、該非水電解質が環状炭酸エステルと鎖状炭酸エステ
ルと0.1体積%以上7体積%以下の環状エーテルを含
み、含水率が0.5 ppm以上50ppm以下かつ遊離酸分がHF
として2ppm以上100ppm以下であることを特徴とする非
水電解質二次電池。
(1) In a nonaqueous electrolyte secondary battery comprising a positive electrode and a negative electrode containing a material capable of reversibly inserting and extracting lithium, a nonaqueous electrolyte containing a lithium salt, and a separator, the nonaqueous electrolyte is a cyclic carbonate And a chain carbonate and 0.1% to 7% by volume of a cyclic ether, having a water content of 0.5 ppm to 50 ppm and a free acid content of HF
A non-aqueous electrolyte secondary battery characterized by being at least 2 ppm and at most 100 ppm.

【0010】(2)該非水電解質の含有するリチウム塩
がLiPF6及びLiBF4を含むことを特徴とする項1に記載の
非水電解質二次電池。
(2) The non-aqueous electrolyte secondary battery according to item 1, wherein the lithium salt contained in the non-aqueous electrolyte contains LiPF 6 and LiBF 4 .

【0011】(3)該環状エーテルが、下記一般式
(1)で表されることを特徴とする項1又は2に記載の
非水電解質二次電池。
(3) The non-aqueous electrolyte secondary battery according to item 1 or 2, wherein the cyclic ether is represented by the following general formula (1).

【0012】[0012]

【化2】 式中R1、R2はそれぞれ同一であっても異なってもよ
く、水素原子または炭素数8以下のアルキル基を表す。
Embedded image In the formula, R 1 and R 2 may be the same or different and each represent a hydrogen atom or an alkyl group having 8 or less carbon atoms.

【0013】(4)該環状エーテルのR1 、R2が水素
原子又は炭素数4以下のアルキル基であることを特徴と
する項3に記載の非水電解質二次電池。
(4) The nonaqueous electrolyte secondary battery according to item 3, wherein R 1 and R 2 of the cyclic ether are a hydrogen atom or an alkyl group having 4 or less carbon atoms.

【0014】(5)該電解液中の環状炭酸エステルの含
有量が5体積%以上30体積%以下、鎖状炭酸エステルの
含有量が60体積%以上90体積%以下であることを特徴と
する項1〜4のいずれか1項に記載の非水電解質二次電
池。
(5) The electrolyte is characterized in that the content of the cyclic carbonate is 5% by volume or more and 30% by volume or less, and the content of the chain carbonate is 60% by volume or more and 90% by volume or less. Item 5. The non-aqueous electrolyte secondary battery according to any one of Items 1 to 4.

【0015】(6)該電解液中の環状炭酸エステルの含
有量が15体積%以上26体積%以下、鎖状炭酸エステ
ルの含有量が71体積%以上85体積%以下、環状エーテル
の含有量が0.3体積%以上5体積%以下であることを特
徴とする項1〜4のいずれか1項に記載の非水電解質二
次電池。
(6) The electrolytic solution has a cyclic carbonate content of 15 vol% to 26 vol%, a chain carbonate content of 71 vol% to 85 vol%, and a cyclic ether content of Item 5. The non-aqueous electrolyte secondary battery according to any one of Items 1 to 4, wherein the content is 0.3% by volume or more and 5% by volume or less.

【0016】(7)該負極材料の少なくとも一種が、一
般式(2)で示されることを特徴とする項1〜6のいず
れか1項に記載の非水電解質二次電池。
(7) The non-aqueous electrolyte secondary battery according to any one of items 1 to 6, wherein at least one kind of the negative electrode material is represented by the following general formula (2).

【0017】 M1 2 p4 q6 r 一般式(2) (式中、M1 、M2 は相異なりSi、Ge、Sn、P
b、P、B、Al、Sbから選ばれる少なくとも一種、
4 はLi,Na,K,Rb,Cs,Mg,Ca,S
r,Baから選ばれる少なくとも一種、M6 はO、S、
Teから選ばれる少なくとも一種、p 、q は各々0.0
01〜10、r は1.00〜50の数字を表す。)
M 1 M 2 p M 4 q M 6 r General formula (2) (where M 1 and M 2 are different from each other, Si, Ge, Sn, P
at least one selected from b, P, B, Al, and Sb;
M 4 is Li, Na, K, Rb, Cs, Mg, Ca, S
at least one selected from r and Ba, M 6 is O, S,
At least one selected from Te, p and q are each 0.0
01 to 10, r represents a number of 1.00 to 50. )

【0018】以下、本発明の一実施形態による非水二次
電池の構成について、詳細に説明する。
Hereinafter, the configuration of the nonaqueous secondary battery according to one embodiment of the present invention will be described in detail.

【0019】本発明の非水二次電池に用いる非水電解液
は、環状炭酸エステルと鎖状炭酸エステルと0.1体積%
以上7体積%以下の環状エーテルを含み、含水率が0.5
ppm以上50ppm以下かつ遊離酸分がHFとして2ppm以上1
00ppm以下であることを特徴としている。電解液溶媒の
環状炭酸エステル、鎖状炭酸エステル及び環状エーテル
は、それぞれを単独に用いる場合も、組み合わせて用い
る場合も従来より知られている。また、一般に電解液中
の含水量や遊離酸性分を減らすことが二次電池の充放電
安定性を改良することも知られている。しかしながら、
0.1体積%以上7体積%以下の環状エーテルを含み、含
水率が0.5 ppm以上50ppm以下かつ遊離酸分がHFとして
2ppm以上100ppm以下に制御することが著しいサイクル
安定化効果を有し、特に後に述べる負極材料を用いたと
きには高容量とサイクル安定性の両立がはかれることは
新しい発見である。
The non-aqueous electrolyte used in the non-aqueous secondary battery of the present invention contains 0.1% by volume of cyclic carbonate and chain carbonate.
Not less than 7% by volume and a water content of 0.5% or less.
ppm to 50 ppm and free acid content is 2 ppm to 1 as HF
It is characterized by being at most 00 ppm. The cyclic carbonates, chain carbonates and cyclic ethers of the electrolyte solvent have been conventionally known both when used alone and when used in combination. Also, it is generally known that reducing the water content and free acid content in the electrolyte improves the charge / discharge stability of the secondary battery. However,
Controlling the water content from 0.5 ppm to 50 ppm and the free acid content to 2 ppm to 100 ppm in terms of HF has a remarkable cycle stabilizing effect. It is a new finding that high capacity and cycle stability are compatible when using a negative electrode material.

【0020】本発明で用いることのできる環状炭酸エス
テルとしては、例えばエチレンカーボネート、プロピレ
ンカーボネート、1、2 −ブチレンカーボネート、2、3−
ブチレンカーボネート、1、2−ペンテンカーボネート、
2、3−ペンテンカーボネートを挙げることができる。こ
れらの中でエチレンカーボネートが特に好ましい。
The cyclic carbonate which can be used in the present invention includes, for example, ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-
Butylene carbonate, 1,2-pentene carbonate,
2,3-pentene carbonate can be mentioned. Of these, ethylene carbonate is particularly preferred.

【0021】鎖状炭酸エステルとしては、炭素数が3〜
8である鎖状の炭酸エステルを用いることができる。こ
れらの中で、ジメチルカーボネート、ジエチルカーボネ
ート、ジプロピルカーボネート、メチルエチルカーボネ
ート、メチルプロピルカーボネート、エチルプロピルカ
ーボネートが好ましい。特に好ましいのは、ジメチルカ
ーボネート、ジエチルカーボネートである。ジメチルカ
ーボネートとジエチルカーボネートは併用してもよい。
The chain carbonate ester has 3 to 3 carbon atoms.
8 can be used. Among these, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, and ethyl propyl carbonate are preferred. Particularly preferred are dimethyl carbonate and diethyl carbonate. Dimethyl carbonate and diethyl carbonate may be used in combination.

【0022】本発明において用いることのできる環状エ
ーテルとしては、例えばテトラヒドロフラン、2−メチ
ルテトラヒドロフラン、1、3−ジオキソラン、1、3−ジオ
キサン、1、4−ジオキサン、トリオキサン及びこれらの
誘導体を挙げることができる。より好ましくは1、3−ジ
オキソラン、1、3−ジオキサン、1、4−ジオキサン及びこ
れらの誘導体、最も好ましくは、次の一般式(1)で表
される1、3−ジオキソラン及びその誘導体である。
Examples of the cyclic ether which can be used in the present invention include tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolan, 1,3-dioxane, 1,4-dioxane, trioxane and derivatives thereof. it can. More preferred are 1,3-dioxolane, 1,3-dioxane, 1,4-dioxane and derivatives thereof, and most preferred are 1,3-dioxolane represented by the following general formula (1) and derivatives thereof. .

【0023】[0023]

【化3】 Embedded image

【0024】式中R1、R2はそれぞれ同一であっても異
なってもよく、水素原子または炭素数8以下のアルキル
基を表す。より好ましくは水素原子又は炭素数4以下の
アルキル基、特に好ましくは水素原子、メチル基または
エチル基である。例えば、1、3−ジオキソラン、2−メチ
ル−1、3−ジオキソラン、2、2−ジメチル−1、3−ジオキ
ソラン、4−メチル−1、3−ジオキソラン、2−エチル−
1、3−ジオキソラン、4−エチル−1、3−ジオキソラン、2
−メチル−4−エチル−1、3−ジオキソラン、等を挙げる
ことができる。
In the formula, R 1 and R 2 may be the same or different and each represents a hydrogen atom or an alkyl group having 8 or less carbon atoms. More preferably, they are a hydrogen atom or an alkyl group having 4 or less carbon atoms, and particularly preferably a hydrogen atom, a methyl group or an ethyl group. For example, 1,3-dioxolan, 2-methyl-1,3-dioxolan, 2,2-dimethyl-1,3-dioxolan, 4-methyl-1,3-dioxolan, 2-ethyl-
1,3-dioxolane, 4-ethyl-1,3-dioxolane, 2
-Methyl-4-ethyl-1, 3-dioxolan, and the like.

【0025】本発明の非水電解質での各溶媒の混合比率
は、環状炭酸エステルが5〜30体積%、鎖状炭酸エス
テルが60〜90体積%、環状エーテルが0.1〜7体
積%である場合が好ましい。より好ましくは環状炭酸エ
ステルが10〜28体積%、鎖状炭酸エステルが67〜
88体積%、環状エーテルが0.2〜6体積%の混合比
率である。特に好ましくは環状炭酸エステルが15〜2
6体積%、鎖状炭酸エステルが71〜85体積%、環状
エーテルが0.3〜5体積%の場合である。
The mixing ratio of each solvent in the non-aqueous electrolyte of the present invention is such that cyclic carbonate is 5 to 30% by volume, chain carbonate is 60 to 90% by volume, and cyclic ether is 0.1 to 7% by volume. Certain cases are preferred. More preferably, the cyclic carbonate is 10 to 28% by volume, and the chain carbonate is 67 to
The mixing ratio is 88% by volume and the cyclic ether is 0.2 to 6% by volume. Particularly preferably, the cyclic carbonate is 15 to 2
6% by volume, 71 to 85% by volume of chain carbonate, and 0.3 to 5% by volume of cyclic ether.

【0026】本発明の非水電解質には、他にγ−ブチロ
ラクトン、ギ酸メチル、酢酸メチル、1、2−ジメトキシ
エタン、ジメチルスルホキシド、ホルムアミド、ジメチ
ルホルムアミド、アセトニトリル、ニトロメタン、エチ
ルモノグライム、リン酸トリエステル、トリメトキシエ
タン、スルホラン、3−メチル−2−オキサゾリジノン、
エチルエーテル、1、3−プロパンサルトン等の非プロト
ン性の有機溶媒を加えることができる。
The non-aqueous electrolyte of the present invention further includes γ-butyrolactone, methyl formate, methyl acetate, 1,2-dimethoxyethane, dimethyl sulfoxide, formamide, dimethylformamide, acetonitrile, nitromethane, ethyl monoglyme, triphosphate Esters, trimethoxyethane, sulfolane, 3-methyl-2-oxazolidinone,
An aprotic organic solvent such as ethyl ether, 1,3-propane sultone can be added.

【0027】本発明の非水電解質に使用できる支持塩と
しては、例えば、LiClO4、LiBF4、LiP
6、LiCF3SO3、LiCF3CO2、LiAsF6
LiSbF6、LiB10Cl10、低級脂肪族カルボン酸
リチウム、LiAlCl4 、LiCl、LiBr、Li
I、クロロボランリチウム、四フェニルホウ酸リチウム
などのLi塩を挙げることが出来、これらの一種または
二種以上を混合して使用することができる。なかでもL
iBF4またはLiPF6の使用が好ましい。更にはLi
BF4とLiPF6を組み合わせて用いるのが好ましい。
The supporting salt which can be used in the non-aqueous electrolyte of the present invention includes, for example, LiClO 4 , LiBF 4 , LiP
F 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 ,
LiSbF 6 , LiB 10 Cl 10 , lithium lower aliphatic carboxylate, LiAlCl 4 , LiCl, LiBr, Li
Li salts such as I, lithium chloroborane, lithium tetraphenylborate and the like can be mentioned, and one kind or a mixture of two or more kinds can be used. Above all, L
The use of iBF 4 or LiPF 6 is preferred. Furthermore, Li
It is preferable to use BF 4 and LiPF 6 in combination.

【0028】支持塩の濃度は、特に限定されないが、電
解液1リットル当たり0.2〜3モルが好ましい。これ
らの電解質を電池内に添加する量は、特に限定されない
が、電極材料の量や電池のサイズにより適宜きめること
ができる。
The concentration of the supporting salt is not particularly limited, but is preferably 0.2 to 3 mol per liter of the electrolytic solution. The amount of these electrolytes to be added to the battery is not particularly limited, but can be determined as appropriate depending on the amount of the electrode material and the size of the battery.

【0029】本発明の電解質が含有する水分量はできる
だけ少ないのが望ましい。含水量が50ppm以下が好ま
しく、40ppm以下がより好ましく、30ppm以下が特に
好ましい。水分量の下限は低い方が望ましいが0.5 ppm
以下に制御するのは困難である。含水量を少なくするに
は、電解質を作製するときに用いる有機溶媒や支持電解
質を予め充分に脱水しておくとともに、作製時の雰囲気
を低湿度の状態に保つことが必要である。電解質作製時
の雰囲気は、露点をマイナス40℃以下、より好ましく
はマイナス50℃以下に設定するのがよい。作製した電
解質は同じ低湿度の雰囲気下で保存するのが好ましい。
水分量は通常のカールフィッシャー水分測定装置で測定
することができる。
It is desirable that the amount of water contained in the electrolyte of the present invention is as small as possible. The water content is preferably 50 ppm or less, more preferably 40 ppm or less, and particularly preferably 30 ppm or less. It is desirable that the lower limit of water content is lower, but 0.5 ppm
It is difficult to control below. In order to reduce the water content, it is necessary to sufficiently dehydrate the organic solvent and the supporting electrolyte used when preparing the electrolyte and to keep the atmosphere during the preparation at a low humidity. The atmosphere at the time of preparing the electrolyte is preferably set to have a dew point of −40 ° C. or lower, more preferably −50 ° C. or lower. The prepared electrolyte is preferably stored under the same low humidity atmosphere.
The water content can be measured by a usual Karl Fischer water content measuring device.

【0030】本発明の遊離酸分は100ppm以下が好ま
しく、80ppm以下がより好ましく、60ppm以下が特に
好ましい。下限は低い方が好ましいが、2ppm以下にす
るのはコスト的に困難である。本発明においては遊離酸
分はHFである。HFは支持電解質の原料として未反応
分が持ち込まれる場合と、支持電解質が水分の存在下で
分解して生成される場合とがある。従って、支持塩の精
製と水分の除去が遊離酸分を減少させるのに効果的であ
る。遊離酸分は、ブロムチモールブルーを指示薬とし、
0.1規定NaOH水溶液を用いて中和滴定して測定す
る方法等により決めることができる。
The free acid content of the present invention is preferably 100 ppm or less, more preferably 80 ppm or less, and particularly preferably 60 ppm or less. The lower limit is preferably as low as possible, but it is difficult to reduce the content to 2 ppm or less in terms of cost. In the present invention, the free acid content is HF. HF may be unreacted as a raw material of the supporting electrolyte, or may be generated by decomposition of the supporting electrolyte in the presence of moisture. Therefore, purification of the supporting salt and removal of water are effective in reducing the free acid content. The free acid content is based on bromthymol blue,
It can be determined by, for example, a method of measuring by neutralization titration using a 0.1 N NaOH aqueous solution.

【0031】以下、本発明の非水電解質二次電池を作る
ための他の材料と製造方法について詳述する。本発明の
非水電解質二次電池に用いられる正・負極は、正極合剤
あるいは負極合剤を集電体上に塗設して作ることが出来
る。正極あるいは負極合剤には、それぞれ正極活物質あ
るいは負極材料のほか、それぞれに導電剤、結着剤、分
散剤、フィラー、イオン導電剤、圧力増強剤や各種添加
剤を含むことができる。
Hereinafter, other materials and a method for manufacturing the non-aqueous electrolyte secondary battery of the present invention will be described in detail. The positive and negative electrodes used in the nonaqueous electrolyte secondary battery of the present invention can be prepared by applying a positive electrode mixture or a negative electrode mixture on a current collector. The positive electrode or negative electrode mixture can contain a conductive agent, a binder, a dispersant, a filler, an ionic conductive agent, a pressure enhancer, and various additives, respectively, in addition to the positive electrode active material or the negative electrode material.

【0032】本発明で用いられる負極材料は、電池組み
込み時に主として非晶質であることが好ましい。ここで
言う主として非晶質とはCuKα線を用いたX線回折法
で2θ値で20°から40°に頂点を有するブロードな
散乱帯を有する物であり、結晶性の回折線を有してもよ
い。好ましくはCuKα線を用いたX線回折で2θ値で
40°以上70°以下に見られる結晶性の回折線の内最
も強い強度が、2θ値で20°以上40°以下に見られ
るブロードな散乱帯の頂点の回折線強度の500倍以下
であることが好ましく、さらに好ましくは100倍以下
であり、特に好ましくは5倍以下であり、最も好ましく
は 結晶性の回折線を有さないことである。
It is preferable that the negative electrode material used in the present invention is mainly amorphous when the battery is assembled. The term “amorphous” as used herein refers to a substance having a broad scattering band having a peak at 20 ° to 40 ° in 2θ value by X-ray diffraction using CuKα ray, and having a crystalline diffraction line. Is also good. Preferably, the strongest intensity among the crystalline diffraction lines observed at a 2θ value of 40 ° or more and 70 ° or less in X-ray diffraction using CuKα ray is broad scattering observed at a 2θ value of 20 ° or more and 40 ° or less. It is preferably not more than 500 times, more preferably not more than 100 times, particularly preferably not more than 5 times, and most preferably not having a crystalline diffraction line at the top of the band. .

【0033】本発明で用いられる負極材料は下記一般式
(2)で表されることが好ましい。 M1 2 p4 q6 r 一般式(2) 式中、M1 、M2 は相異なりSi、Ge、Sn、Pb、
P、B、Al、Sbから選ばれる少なくとも一種であ
り、好ましくはSi、Ge、Sn、P、B、Alであ
り、特に好ましくはSi、Sn、P、B、Alである。
4 はLi,Na,K,Rb,Cs,Mg,Ca,S
r,Baから選ばれる少なくとも一種であり、好ましく
はK,Cs,Mg,Caで、特に好ましくはCs,Mg
である。M6 はO、S、Teから選ばれる少なくとも一
種であり、好ましくはO、Sであり、特に好ましくはO
である。p 、q は各々0.001〜10であり、好まし
くは0.01〜5であり、特に好ましくは0.01〜2
である。rは1.00〜50であり、好ましくは1.0
0〜26であり、特に好ましくは1.02〜6である。
1 、M2 の価数は特に限定されることはなく、単独価
数であっても、各価数の混合物であっても良い。またM
1 、M2 、M4 の比はM2 およびM4 がM1 に対して
0.001〜10モル当量の範囲において連続的に変化
させることができ、それに応じM6 の量(一般式(2)
において、r の値)も連続的に変化する。
The negative electrode material used in the present invention has the following general formula:
It is preferable to be represented by (2). M1MTwo pMFour qM6 r General formula (2) where M1, MTwoAre different from Si, Ge, Sn, Pb,
At least one selected from P, B, Al, and Sb
And preferably Si, Ge, Sn, P, B, and Al.
And particularly preferably Si, Sn, P, B and Al.
MFourIs Li, Na, K, Rb, Cs, Mg, Ca, S
at least one selected from r and Ba, preferably
Is K, Cs, Mg, Ca, particularly preferably Cs, Mg
It is. M6Is at least one selected from O, S, and Te
Species, preferably O, S, particularly preferably O
It is. p and q are each 0.001 to 10, preferably
From 0.01 to 5, particularly preferably from 0.01 to 2
It is. r is 1.00 to 50, preferably 1.0
0 to 26, and particularly preferably 1.02 to 6.
M 1, MTwoThe valence of is not particularly limited.
It may be a number or a mixture of each valence. Also M
1, MTwo, MFourThe ratio is MTwoAnd MFourIs M1Against
Changes continuously within the range of 0.001 to 10 molar equivalents
And M6Quantity (general formula (2)
, The value of r) also changes continuously.

【0034】上記に挙げた化合物の中でも、本発明にお
いてはM1 がSnである場合が好ましく、一般式(3)
で表される。
Among the compounds mentioned above, in the present invention, the case where M 1 is Sn is preferable, and the compound represented by the general formula (3)
It is represented by

【0035】 SnM3 p5 q7 r 一般式(3) 式中、M3 はSi 、Ge 、Pb 、P、B、Alから選ば
れる少なくとも一種であり、好ましくはSi 、Ge 、
P、B、Alであり、特に好ましくはSi 、P、B、A
lである。M5 はLi,Na,K,Rb,Cs,Mg,
Ca,Sr,Baから選ばれる少なくとも一種であり、
好ましくはCs、Mgで、特に好ましくはMgである。
7 はO、Sから選ばれる少なくとも一種であり、好ま
しくはOである。p 、q は各々0.001〜10であ
り、好ましくは0.01〜5であり、さらに好ましくは
0.01〜1.5であり、特に好ましくは0.7〜1.
5である。r は1.00〜50であり、好ましくは1.
00〜26であり、特に好ましくは1.02〜6であ
る。
SnM 3 p M 5 q M 7 r General Formula (3) In the formula, M 3 is at least one selected from Si, Ge, Pb, P, B, and Al, preferably Si, Ge,
P, B, Al, particularly preferably Si, P, B, A
l. M 5 is Li, Na, K, Rb, Cs, Mg,
At least one selected from Ca, Sr, and Ba;
Preferably, it is Cs or Mg, particularly preferably Mg.
M 7 is at least one selected from O and S, and is preferably O. p and q are each 0.001 to 10, preferably 0.01 to 5, more preferably 0.01 to 1.5, and particularly preferably 0.7 to 1.0.
5 r is 1.00 to 50, preferably 1.r
00 to 26, particularly preferably 1.02 to 6.

【0036】本発明の負極材料の例を以下に示すが、本
発明はこれらに限定されるものではない。SnAl0.4
0.50.50.13.65、SnAl0.40.50.5
Na0.23.7 、SnAl0.40.30.5 Rb0.2
3.4 、SnAl0.40.50.5 Cs0.43.65、Sn
Al0.40.50.50.1 Ge0.053.85、SnAl
0.40.50.50.1 Mg0.1 Ge0.023.83、Sn
Al0.40.40.43.2 、SnAl0.30.5
0.22.7 、SnAl0.30.50.22.7 、SnA
0.40.50.3 Ba0.08Mg0.083.26、SnAl
0.40.40.4 Ba0.083.28、SnAl0.40.5
0.53.6 、SnAl0.40.50.5 Mg0.1
3.7
Examples of the negative electrode material of the present invention are shown below, but the present invention is not limited thereto. SnAl 0.4
B 0.5 P 0.5 K 0.1 O 3.65 , SnAl 0.4 B 0.5 P 0.5
Na 0.2 O 3.7 , SnAl 0.4 B 0.3 P 0.5 Rb 0.2 O
3.4 , SnAl 0.4 B 0.5 P 0.5 Cs 0.4 O 3.65 , Sn
Al 0.4 B 0.5 P 0.5 K 0.1 Ge 0.05 O 3.85 , SnAl
0.4 B 0.5 P 0.5 K 0.1 Mg 0.1 Ge 0.02 O 3.83 , Sn
Al 0.4 B 0.4 P 0.4 O 3.2 , SnAl 0.3 B 0.5 P
0.2 O 2.7 , SnAl 0.3 B 0.5 P 0.2 O 2.7 , SnA
l 0.4 B 0.5 P 0.3 Ba 0.08 Mg 0.08 O 3.26 , SnAl
0.4 B 0.4 P 0.4 Ba 0.08 O 3.28 , SnAl 0.4 B 0.5
P 0.5 O 3.6 , SnAl 0.4 B 0.5 P 0.5 Mg 0.1 O
3.7 ,

【0037】SnAl0.50.40.5 Mg0.10.2
3.65、SnB0.50.5 Li0.1 Mg0.10.2
3.05、SnB0.50.50.1 Mg0.10.23.05
SnB0.50.50.05Mg0.050.13.03、SnB
0.50.50.05Mg0.10.23.03、SnAl0.4
0.50.5 Cs0.1 Mg0.10.23.65、SnB
0.50.5 Cs0.05Mg0.050.13.03、SnB0.5
0.5 Mg0.10.13.05、SnB0.50.5 Mg
0.10.23 、SnB0.50.5 Mg0.10.06
3.07、SnB0.50.5 Mg0.10.143.03、SnP
Ba0.083.58、SnPK0.13.55、SnPK0.05
0.053.58、SnPCs0.13.55
SnAl 0.5 B 0.4 P 0.5 Mg 0.1 F 0.2
O 3.65 , SnB 0.5 P 0.5 Li 0.1 Mg 0.1 F 0.2 O
3.05, SnB 0.5 P 0.5 K 0.1 Mg 0.1 F 0.2 O 3.05,
SnB 0.5 P 0.5 K 0.05 Mg 0.05 F 0.1 O 3.03 , SnB
0.5 P 0.5 K 0.05 Mg 0.1 F 0.2 O 3.03 , SnAl 0.4
B 0.5 P 0.5 Cs 0.1 Mg 0.1 F 0.2 O 3.65, SnB
0.5 P 0.5 Cs 0.05 Mg 0.05 F 0.1 O 3.03 , SnB 0.5
P 0.5 Mg 0.1 F 0.1 O 3.05 , SnB 0.5 P 0.5 Mg
0.1 F 0.2 O 3 , SnB 0.5 P 0.5 Mg 0.1 F 0.06 O
3.07 , SnB 0.5 P 0.5 Mg 0.1 F 0.14 O 3.03 , SnP
Ba 0.08 O 3.58 , SnPK 0.1 O 3.55 , SnPK 0.05 M
g 0.05 O 3.58 , SnPCs 0.1 O 3.55 ,

【0038】SnPBa0.080.083.54、SnPK
0.1 Mg0.10.23.55、SnPK0.05Mg0.05
0.13.53、SnPCs0.1 Mg0.10.23.55、S
nPCs0.05Mg0.050.13.53、Sn1.1 Al0.4
0.20.6 Ba0.080.083.54、Sn1.1 Al0.4
0.20.6 Li0.10.1 Ba0.10.13.65、S
1.1 Al0.40.40.4 Ba0.083.34、Sn1.1
Al0.4 PCs0.054.23、Sn1.1 Al0.4 PK0.05
4.23、Sn1.4 Al0.50.30.4 Cs0.2
3.5 、Sn1.2 Al0.40.20.6 Ba0.083.68
Sn1.2 Al0.40.20.6 Ba0.080.083.64
Sn1.2 Al0.40.20.6 Mg0.04Ba
0.043.68、Sn1.2 Al0.40.30.5 Ba0.08
3.58
SnPBa 0.08 F 0.08 O 3.54 , SnPK
0.1 Mg 0.1 F 0.2 O 3.55 , SnPK 0.05 Mg 0.05 F
0.1 O 3.53 , SnPCs 0.1 Mg 0.1 F 0.2 O 3.55 , S
nPCs 0.05 Mg 0.05 F 0.1 O 3.53 , Sn 1.1 Al 0.4
B 0.2 P 0.6 Ba 0.08 F 0.08 O 3.54 , Sn 1.1 Al 0.4
B 0.2 P 0.6 Li 0.1 K 0.1 Ba 0.1 F 0.1 O 3.65 , S
n 1.1 Al 0.4 B 0.4 P 0.4 Ba 0.08 O 3.34 , Sn 1.1
Al 0.4 PCs 0.05 O 4.23 , Sn 1.1 Al 0.4 PK 0.05
O 4.23 , Sn 1.4 Al 0.5 B 0.3 P 0.4 Cs 0.2 O
3.5 , Sn 1.2 Al 0.4 B 0.2 P 0.6 Ba 0.08 O 3.68 ,
Sn 1.2 Al 0.4 B 0.2 P 0.6 Ba 0.08 F 0.08 O 3.64 ,
Sn 1.2 Al 0.4 B 0.2 P 0.6 Mg 0.04 Ba
0.04 O 3.68 , Sn 1.2 Al 0.4 B 0.3 P 0.5 Ba 0.08 O
3.58 ,

【0039】Sn1.3 Al0.30.30.4 Na0.2
3.3 、Sn1.3 Al0.20.40.4 Ca0.23.4
Sn1.3 Al0.40.40.4 Ba0.23.6 、Sn
1.4 Al0.4 PK0.24.6 、Sn1.4 Al0.2 Ba
0.1 PK0.24.45、Sn1.4 Al0.2 Ba0.2 PK
0.24.6 、Sn1.4 Al0.4 Ba0.2 PK0.2 Ba
0.10.24.9 、Sn1.4 Al0.4 PK0.34.65
Sn1.5 Al0.2 PK0.24.4 、Sn1.5 Al0.4
0.14.65、Sn1.5 Al0.4 PCs0.054.63、S
1.5 Al0.4 PCs0.05Mg0.10.24.63、Sn
Si0.5 Al0.10.20.1 Ca0.43.1 、SnS
0.4 Al0.20.42.7 、SnSi0.5 Al0.2
0.10.1 Mg0.12.8
Sn 1.3 Al 0.3 B 0.3 P 0.4 Na 0.2 O
3.3 , Sn 1.3 Al 0.2 B 0.4 P 0.4 Ca 0.2 O 3.4 ,
Sn 1.3 Al 0.4 B 0.4 P 0.4 Ba 0.2 O 3.6 , Sn
1.4 Al 0.4 PK 0.2 O 4.6 , Sn 1.4 Al 0.2 Ba
0.1 PK 0.2 O 4.45 , Sn 1.4 Al 0.2 Ba 0.2 PK
0.2 O 4.6 , Sn 1.4 Al 0.4 Ba 0.2 PK 0.2 Ba
0.1 F 0.2 O 4.9 , Sn 1.4 Al 0.4 PK 0.3 O 4.65 ,
Sn 1.5 Al 0.2 PK 0.2 O 4.4 , Sn 1.5 Al 0.4 P
K 0.1 O 4.65 , Sn 1.5 Al 0.4 PCs 0.05 O 4.63 , S
n 1.5 Al 0.4 PCs 0.05 Mg 0.1 F 0.2 O 4.63 , Sn
Si 0.5 Al 0.1 B 0.2 P 0.1 Ca 0.4 O 3.1 , SnS
i 0.4 Al 0.2 B 0.4 O 2.7 , SnSi 0.5 Al 0.2 B
0.1 P 0.1 Mg 0.1 O 2.8 ,

【0040】SnSi0.6 Al0.20.22.8 、Sn
Si0.5 Al0.30.40.23.55、SnSi0.5
0.30.40.54.30、SnSi0.6 Al0.1
0.10.33.25、SnSi0.6 Al0.10.10.1
Ba0.22.95、SnSi0.6 Al0.10.10.1
0.22.95、SnSi0.6 Al0.40.2 Mg0.1
3.2 、SnSi0.6 Al0.10.30.13.05、Sn
Si0.6 Al0.2 Mg0.22.7 、SnSi0.6 Al
0.2 Ca0.22.7 、SnSi0.6 Al0.20.2
3 、SnSi0.60.20.23 、SnSi0.8 Al
0.22.9 、SnSi0.8 Al0.30.20.2
3.85、SnSi0.80.22.9
SnSi 0.6 Al 0.2 B 0.2 O 2.8 , Sn
Si 0.5 Al 0.3 B 0.4 P 0.2 O 3.55 , SnSi 0.5 A
l 0.3 B 0.4 P 0.5 O 4.30 , SnSi 0.6 Al 0.1 B
0.1 P 0.3 O 3.25 , SnSi 0.6 Al 0.1 B 0.1 P 0.1
Ba 0.2 O 2.95, SnSi 0.6 Al 0.1 B 0.1 P 0.1 C
a 0.2 O 2.95 , SnSi 0.6 Al 0.4 B 0.2 Mg 0.1 O
3.2 , SnSi 0.6 Al 0.1 B 0.3 P 0.1 O 3.05 , Sn
Si 0.6 Al 0.2 Mg 0.2 O 2.7 , SnSi 0.6 Al
0.2 Ca 0.2 O 2.7 , SnSi 0.6 Al 0.2 P 0.2 O
3 , SnSi 0.6 B 0.2 P 0.2 O 3 , SnSi 0.8 Al
0.2 O 2.9 , SnSi 0.8 Al 0.3 B 0.2 P 0.2
O 3.85 , SnSi 0.8 B 0.2 O 2.9 ,

【0041】SnSi0.8 Ba0.22.8 、SnSi
0.8 Mg0.22.8 、SnSi0.8 Ca0.22.8 、S
nSi0.80.23.1 、Sn0.9 Mn0.30.4
0.4 Ca0.1 Rb0.12.95、Sn0.9 Fe0.30.4
0.4 Ca0.1 Rb0.12.95、Sn0.8 Pb0.2 Ca
0.10.93.35、Sn0.3 Ge0.7 Ba0.10.9
3.35、Sn0.9 Mn0.1 Mg0.10.93.35、Sn
0.2 Mn0.8 Mg0.10.93.35、Sn0.7 Pb0.3
Ca0.10.93.35、Sn0.2 Ge0.8 Ba0.1
0.93.35
SnSi 0.8 Ba 0.2 O 2.8 , SnSi
0.8 Mg 0.2 O 2.8 , SnSi 0.8 Ca 0.2 O 2.8 , S
nSi 0.8 P 0.2 O 3.1 , Sn 0.9 Mn 0.3 B 0.4 P
0.4 Ca 0.1 Rb 0.1 O 2.95 , Sn 0.9 Fe 0.3 B 0.4
P 0.4 Ca 0.1 Rb 0.1 O 2.95 , Sn 0.8 Pb 0.2 Ca
0.1 P 0.9 O 3.35 , Sn 0.3 Ge 0.7 Ba 0.1 P 0.9 O
3.35 , Sn 0.9 Mn 0.1 Mg 0.1 P 0.9 O 3.35 , Sn
0.2 Mn 0.8 Mg 0.1 P 0.9 O 3.35 , Sn 0.7 Pb 0.3
Ca 0.1 P 0.9 O 3.35 , Sn 0.2 Ge 0.8 Ba 0.1 P
0.9 O 3.35

【0042】負極材料は、例えば焼成されて得られる。
上記焼成されて得られた化合物の化学式は、測定方法と
して誘導結合プラズマ(ICP)発光分光分析法、簡便
法として、焼成前後の粉体の重量差から算出できる。
The negative electrode material is obtained, for example, by firing.
The chemical formula of the compound obtained by calcining can be calculated from inductively coupled plasma (ICP) emission spectroscopy as a measuring method, and from the weight difference of powder before and after calcining as a simple method.

【0043】本発明の負極材料への軽金属挿入量は、そ
の軽金属の析出電位に近似するまででよいが、例えば、
負極材料当たり50〜700モル%が好ましいが、特
に、100〜600モル%が好ましい。その放出量は挿
入量に対して多いほど好ましい。軽金属の挿入方法は、
電気化学的、化学的、熱的方法が好ましい。電気化学的
方法は、正極活物質に含まれる軽金属を電気化学的に挿
入する方法や軽金属あるいはその合金から直接電気化学
的に挿入する方法が好ましい。化学的方法は、軽金属と
の混合、接触あるいは、有機金属、例えば、ブチルリチ
ウム等と反応させる方法がある。電気化学的方法、化学
的方法が好ましい。該軽金属はリチウムあるいはリチウ
ムイオンが特に好ましい。
The amount of light metal to be inserted into the negative electrode material of the present invention may be up to approximating the deposition potential of the light metal.
The amount is preferably from 50 to 700 mol%, more preferably from 100 to 600 mol%, per negative electrode material. It is preferable that the release amount be larger than the insertion amount. How to insert light metal
Electrochemical, chemical and thermal methods are preferred. As the electrochemical method, a method of electrochemically inserting a light metal contained in the positive electrode active material or a method of directly electrochemically inserting a light metal or an alloy thereof from a light metal is preferable. As a chemical method, there is a method of mixing or contacting with a light metal or a method of reacting with an organic metal such as butyllithium. Electrochemical and chemical methods are preferred. The light metal is particularly preferably lithium or lithium ion.

【0044】本発明においては、以上示したような一般
式(2)、(3)で示される化合物を主として負極材料
として用いることにより、より充放電サイクル特性の優
れた、かつ高い放電電圧、高容量で安全性が高く,電流
特性が優れた非水電解質二次電池を得ることができる。
本発明において、特に優れた効果を得ることができるの
はSnを含有し且つSnの価数が2価で存在する化合物
を負極材料として用いることである。Snの価数は化学
滴定操作によって求めることができる。例えばPhysics
and Chemistry of Glasses Vol.8 No.4 (1967)の165
頁に記載の方法で分析することができる。また、Snの
固体核磁気共鳴(NMR)測定によるナイトシフトから
決定することも可能である。例えば、幅広測定において
金属Sn(0価のSn)はSn(CH34 に対して7
000ppm付近と極端に低磁場にピークが出現するの
に対し、SnO(=2価)では100ppm付近、Sn
2 (=4価)では−600ppm付近に出現する。こ
のように同じ配位子を有する場合ナイトシフトが中心金
属であるSnの価数に大きく依存するので、119 Sn−
NMR測定で求められたピーク位置で価数の決定が可能
となる。
In the present invention, the general
Compounds represented by formulas (2) and (3) are mainly used as a negative electrode material.
By using as
And high discharge voltage, high capacity, high safety, current
A nonaqueous electrolyte secondary battery having excellent characteristics can be obtained.
In the present invention, particularly excellent effects can be obtained.
Is a compound containing Sn and having a valence of Sn of 2
Is used as a negative electrode material. The valence of Sn is chemical
It can be determined by a titration operation. For example, Physics
165 of Chemistry of Glasses Vol.8 No.4 (1967)
It can be analyzed by the method described on page. In addition, Sn
From night shift by solid state nuclear magnetic resonance (NMR) measurement
It is also possible to decide. For example, in wide measurement
Metal Sn (zero-valent Sn) is Sn (CHThree )Four 7 for
A peak appears in an extremely low magnetic field around 000 ppm
On the other hand, SnO (= divalent) is around 100 ppm,
O Two (= 4) appears around -600 ppm. This
Knight shift is the central gold when they have the same ligand as in
Since it largely depends on the valence of Sn, which is a genus, 119 Sn-
Valence can be determined from the peak position determined by NMR measurement
Becomes

【0045】本発明の負極材料に各種化合物を含ませる
ことができる。例えば、遷移金属(Sc、Ti、V、C
r、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、
Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、ラ
ンタノイド系金属、Hf、Ta、W、Re、Os、I
r、Pt、Au、Hg)や周期表17族元素(F、C
l)を含ませることができる。また電子伝導性をあげる
各種化合物(例えば、Sb、In、Nbの化合物)のド
ーパントを含んでもよい。添加する化合物の量は0〜2
0モル%が好ましい。
Various compounds can be included in the negative electrode material of the present invention. For example, transition metals (Sc, Ti, V, C
r, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr,
Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, lanthanoid metal, Hf, Ta, W, Re, Os, I
r, Pt, Au, Hg) and Group 17 elements of the periodic table (F, C
l) can be included. Further, it may contain dopants of various compounds (for example, compounds of Sb, In, and Nb) that increase electron conductivity. The amount of the compound to be added is 0 to 2
0 mol% is preferred.

【0046】本発明における一般式(2)、(3)で示
される酸化物を主体とする複合酸化物の合成法は焼成
法、溶液法いずれの方法も採用することができる。
In the present invention, any of the firing method and the solution method can be adopted as a method for synthesizing the composite oxide mainly composed of the oxides represented by the general formulas (2) and (3).

【0047】例えば焼成法について詳細に説明するとM
1 化合物、M2 化合物とM4 化合物(M1 、M2 は相異
なりSi、Ge、Sn、Pb、P、B、Al、Sb、M
4 はMg,Ca,Sr,Ba)を混合し、焼成せしめれ
ばよい。Sn化合物としてはたとえばSnO、SnO
2 、Sn23 、Sn34 、Sn713・H2 O、S
815、水酸化第一錫、オキシ水酸化第二錫、亜錫
酸、蓚酸第一錫、燐酸第一錫、オルト錫酸、メタ錫酸、
パラ錫酸、弗化第一錫、弗化第二錫、塩化第一錫、塩化
第二錫、ピロリン酸第一錫、リン化錫、硫化第一錫、硫
化第二錫、等を挙げることができる。
For example, the firing method will be described in detail.
1 compound, M 2 compound and M 4 compound (M 1 and M 2 are different from Si, Ge, Sn, Pb, P, B, Al, Sb, M
4 may be obtained by mixing Mg, Ca, Sr, and Ba) and firing them. Examples of the Sn compound include SnO, SnO
2 , Sn 2 O 3 , Sn 3 O 4 , Sn 7 O 13 .H 2 O, S
n 8 O 15 , stannous hydroxide, stannic oxyhydroxide, stannous acid, stannous oxalate, stannous phosphate, orthostannic acid, metastannic acid,
Parastannic acid, stannous fluoride, stannic fluoride, stannous chloride, stannic chloride, stannous pyrophosphate, tin phosphide, stannous sulfide, stannic sulfide, etc. Can be.

【0048】Si化合物としてはたとえばSiO2 、S
iO、テトラメチルシラン、テトラエチルシラン等の有
機珪素化合物、テトラメトキシシラン、テトラエトキシ
シラン等のアルコキシシラン化合物、トリクロロハイド
ロシラン等のハイドロシラン化合物を挙げることができ
る。
As the Si compound, for example, SiO 2 , S
Organic silicon compounds such as iO, tetramethylsilane and tetraethylsilane, alkoxysilane compounds such as tetramethoxysilane and tetraethoxysilane, and hydrosilane compounds such as trichlorohydrosilane can be exemplified.

【0049】Ge化合物としてはたとえばGeO2 、G
eO、ゲルマニウムテトラメトキシド、ゲルマニウムテ
トラエトキシド等のアルコキシゲルマニウム化合物等を
挙げることができる。
Examples of the Ge compound include GeO 2 , G
Examples thereof include alkoxy germanium compounds such as eO, germanium tetramethoxide, and germanium tetraethoxide.

【0050】Pb化合物としてはたとえばPbO2 、P
bO、Pb23 、Pb34 、硝酸鉛、炭酸鉛、蟻酸
鉛、酢酸鉛、四酢酸鉛、酒石酸鉛、鉛ジエトキシド、鉛
ジイソプロポキシド等を挙げることができる。
As the Pb compound, for example, PbO 2 , P
bO, Pb 2 O 3 , Pb 3 O 4 , lead nitrate, lead carbonate, lead formate, lead acetate, lead tetraacetate, lead tartrate, lead diethoxide, lead diisopropoxide and the like can be mentioned.

【0051】P化合物としてはたとえば五酸化リン、オ
キシ塩化リン、五塩化リン、三塩化リン、三臭化リン、
トリメチルリン酸、トリエチルリン酸、トリプロピルリ
ン酸、ピロリン酸第一錫、リン酸ホウ素等を挙げること
ができる。
Examples of the P compound include phosphorus pentoxide, phosphorus oxychloride, phosphorus pentachloride, phosphorus trichloride, phosphorus tribromide,
Examples include trimethyl phosphoric acid, triethyl phosphoric acid, tripropyl phosphoric acid, stannous pyrophosphate, and boron phosphate.

【0052】B化合物としてはたとえば三二酸化ホウ
素、三塩化ホウ素、三臭化ホウ素、炭化ホウ素、ほう
酸、ほう酸トリメチル、ほう酸トリエチル、ほう酸トリ
プロピル、ほう酸トリブチル、リン化ホウ素、リン酸ホ
ウ素等を挙げることができる。
Examples of the compound B include boron trioxide, boron trichloride, boron tribromide, boron carbide, boric acid, trimethyl borate, triethyl borate, tripropyl borate, tributyl borate, boron phosphide, boron phosphate and the like. Can be.

【0053】Al化合物としてはたとえば酸化アルミニ
ウム(α−アルミナ、β−アルミナ)、ケイ酸アルミニ
ウム、アルミニウムトリ−iso−プロポキシド、亜テ
ルル酸アルミニウム、塩化アルミニウム、ホウ化アルミ
ニウム、リン化アルミニウム、リン酸アルミニウム、乳
酸アルミニウム、ほう酸アルミニウム、硫化アルミニウ
ム、硫酸アルミニウム、ホウ化アルミニウム等を挙げる
ことができる。
Examples of the Al compound include aluminum oxide (α-alumina, β-alumina), aluminum silicate, aluminum tri-iso-propoxide, aluminum tellurite, aluminum chloride, aluminum boride, aluminum phosphide, and phosphoric acid Examples include aluminum, aluminum lactate, aluminum borate, aluminum sulfide, aluminum sulfate, and aluminum boride.

【0054】Sb化合物としてはたとえば三酸化二アン
チモン、トリフェニルアンチモン等を挙げることができ
る。
Examples of the Sb compound include diantimony trioxide, triphenylantimony and the like.

【0055】Mg,Ca,Sr,Ba化合物としては、
各々の酸化塩、水酸化塩、炭酸塩、リン酸塩、硫酸塩、
硝酸塩、アルミニウム化合物等を挙げることができる。
As the Mg, Ca, Sr and Ba compounds,
Each oxide, hydroxide, carbonate, phosphate, sulfate,
Nitrate, aluminum compound and the like can be mentioned.

【0056】焼成条件としては、昇温速度として昇温速
度毎分4℃以上2000℃以下であることが好ましく、
さらに好ましくは6℃以上2000℃以下である。特に
好ましくは10℃以上2000℃以下であり、かつ焼成
温度としては250℃以上1500℃以下であることが
好ましく、さらに好ましくは350℃以上1500℃以
下であり、特に好ましくは500℃以上1500℃以下
であり、かつ焼成時間としては0.01時間以上100
時間以下であることが好ましく、さらに好ましくは0.
5時間以上70時間以下であり、特に好ましくは1時間
以上20時間以下であり、かつ降温速度としては毎分2
℃以上107 ℃以下であることが好ましく、さらに好ま
しくは4℃以上107 ℃以下であり、特に好ましくは6
℃以上107 ℃以下であり、特に好ましくは10℃以上
107 ℃以下である。
The firing conditions are preferably a heating rate of 4 ° C. or more and 2000 ° C. or less per minute.
More preferably, it is 6 ° C. or more and 2000 ° C. or less. It is particularly preferably 10 ° C or more and 2000 ° C or less, and the firing temperature is preferably 250 ° C or more and 1500 ° C or less, more preferably 350 ° C or more and 1500 ° C or less, and particularly preferably 500 ° C or more and 1500 ° C or less. And the sintering time is 0.01 hour or more and 100
Hours or less, more preferably 0.1 hour or less.
5 hours or more and 70 hours or less, particularly preferably 1 hour or more and 20 hours or less.
Preferably ° C. at 10 7 ° C. or less or more, still more preferably at 4 ° C. or higher 10 7 ° C. or less, particularly preferably 6
° C. and at 10 7 ° C. or less or more, particularly preferably 10 7 ° C. 10 ° C. or more or less.

【0057】本発明における昇温速度とは「焼成温度
(℃表示)の50%」から「焼成温度(℃表示)の80
%」に達するまでの温度上昇の平均速度であり、本発明
における降温速度とは「焼成温度(℃表示)の80%」
から「焼成温度(℃表示)の50%」に達するまでの温
度降下の平均速度である。
In the present invention, the rate of temperature rise is from 50% of the firing temperature (expressed in ° C.) to 80% of the firing temperature (expressed in ° C.).
% ", Which is the average rate of temperature increase until the temperature reaches"% ", and the term" cooling rate "in the present invention refers to" 80% of the firing temperature (° C) ".
This is the average rate of temperature decrease from the point when the temperature reaches “50% of the firing temperature (expressed in ° C.)”.

【0058】降温は焼成炉中で冷却してもよくまた焼成
炉外に取り出して、例えば水中に投入して冷却してもよ
い。またセラミックスプロセッシング(技報堂出版 1
987)217頁記載のgun法・Hammer−An
vil法・slap法・ガスアトマイズ法・プラズマス
プレー法・遠心急冷法・melt drag法などの超
急冷法を用いることもできる。またニューガラスハンド
ブック(丸善 1991)172頁記載の単ローラー
法、双ローラ法を用いて冷却してもよい。焼成中に溶融
する材料の場合には、焼成中に原料を供給しつつ焼成物
を連続的に取り出してもよい。焼成中に溶融する材料の
場合には融液を攪拌することが好ましい。
The temperature may be cooled in a firing furnace, or may be taken out of the firing furnace and put into, for example, water to cool. In addition, ceramic processing (Gihodo Publishing 1
987) Gun method described on page 217, Hammer-An
A super quenching method such as a vil method, a slap method, a gas atomizing method, a plasma spray method, a centrifugal quenching method, and a melt drag method can also be used. Alternatively, cooling may be performed using a single roller method or a twin roller method described in page 172 of the New Glass Handbook (Maruzen 1991). In the case of a material that melts during firing, a fired product may be continuously taken out while supplying raw materials during firing. In the case of a material that melts during firing, it is preferable to stir the melt.

【0059】焼成ガス雰囲気は好ましくは酸素含有率が
5体積%以下の雰囲気であり、さらに好ましくは不活性
ガス雰囲気である。不活性ガスとしては例えば窒素、ア
ルゴン、ヘリウム、クリプトン、キセノン等が挙げられ
る。
The firing gas atmosphere is preferably an atmosphere having an oxygen content of 5% by volume or less, and more preferably an inert gas atmosphere. Examples of the inert gas include nitrogen, argon, helium, krypton, xenon, and the like.

【0060】本発明で用いられる一般式(2)、(3)
で示される化合物の平均粒子サイズは0.1〜60μm
が好ましく、1.0〜30μm が特に好ましく、2.0
〜20μm がさらに好ましい。所定の粒子サイズにする
には、良く知られた粉砕機や分級機が用いられる。例え
ば、乳鉢、ボールミル、サンドミル、振動ボールミル、
衛星ボールミル、遊星ボールミル、旋回気流型ジェット
ミルや篩などが用いられる。粉砕時には水、あるいはメ
タノール等の有機溶媒を共存させた湿式粉砕も必要に応
じて行うことが出来る。所望の粒径とするためには分級
を行うことが好ましい。分級方法としては特に限定はな
く、篩、風力分級機、水ひなどを必要に応じて用いるこ
とができる。分級は乾式、湿式ともに用いることができ
る。
Formulas (2) and (3) used in the present invention
The average particle size of the compound represented by 0.1 to 60 μm
Is preferably 1.0 to 30 μm, and more preferably 2.0 to 30 μm.
-20 μm is more preferred. In order to obtain a predetermined particle size, a well-known pulverizer or classifier is used. For example, mortar, ball mill, sand mill, vibrating ball mill,
A satellite ball mill, a planetary ball mill, a swirling air jet mill, a sieve, and the like are used. At the time of pulverization, wet pulverization in the presence of water or an organic solvent such as methanol can also be performed as necessary. Classification is preferably performed to obtain a desired particle size. The classification method is not particularly limited, and a sieve, an air classifier, a drainage, and the like can be used as necessary. Classification can be performed both in a dry type and a wet type.

【0061】本発明で用いられるより好ましいリチウム
含有遷移金属酸化物正極材料としては、リチウム化合物
/遷移金属化合物(ここで遷移金属とは、Ti、V、C
r、Mn、Fe、Co、Ni、Mo、Wから選ばれる少
なくとも1種)の合計のモル比が0.3〜2.2になる
ように混合して合成することが好ましい。本発明で用い
られるとくに好ましいリチウム含有遷移金属酸化物正極
材料としては、リチウム化合物/遷移金属化合物(ここ
で遷移金属とは、V、Cr、Mn、Fe、Co、Niか
ら選ばれる少なくとも1種)の合計のモル比が0.3〜
2.2になるように混合して合成することが好ましい。
More preferred lithium-containing transition metal oxide cathode materials used in the present invention include lithium compounds / transition metal compounds (where transition metals are Ti, V, C
It is preferable to mix and synthesize so that the total molar ratio of r, Mn, Fe, Co, Ni, Mo, and W) is 0.3 to 2.2. Particularly preferred lithium-containing transition metal oxide cathode materials used in the present invention include lithium compounds / transition metal compounds (where the transition metal is at least one selected from V, Cr, Mn, Fe, Co, and Ni). Is a total molar ratio of 0.3 to
It is preferable to synthesize them by mixing them to 2.2.

【0062】本発明で用いられるとくに好ましいリチウ
ム含有遷移金属酸化物正極材料とは、Lix QOy (こ
こでQは主として、その少なくとも一種がCo、Mn、
Ni、V、Feを含む遷移金属、x=0.2〜1.2、
y=1.4〜3)であることが好ましい。Qとしては遷
移金属以外にAl、Ga、In、Ge、Sn、Pb、S
b、Bi、Si、P、Bなどを混合してもよい。混合量
は遷移金属に対して0〜30モル%が好ましい。
A particularly preferred lithium-containing transition metal oxide cathode material used in the present invention is Li x QO y (where Q is mainly, at least one of which is Co, Mn,
Transition metal containing Ni, V, Fe, x = 0.2 to 1.2,
It is preferable that y = 1.4-3). Q is Al, Ga, In, Ge, Sn, Pb, or S in addition to the transition metal.
b, Bi, Si, P, B, etc. may be mixed. The mixing amount is preferably 0 to 30 mol% based on the transition metal.

【0063】本発明で用いられるさらに好ましいリチウ
ム含有金属酸化物正極材料としては、Lix CoO2
Lix NiO2 、Lix MnO2 、Lix Coa Ni
1-a 2 、Lix Cob 1-bz 、Lix Cob Fe
1-b2 、Lix Mn24 、Lix Mnc Co2-c
4 、Lix Mnc Ni2-c4 、Lix Mnc 2-c
4 、Lix Mnc Fe2-c4 (ここでx=0.02〜
1.2、a=0.1〜0.9、b=0.8〜0.98、
c=1.6〜1.96、z=2.01〜2.3)があげ
られる。
More preferred Lithium used in the present invention
Li-containing metal oxide cathode materials include LixCoOTwo ,
LixNiOTwo , LixMnOTwo , LixCoaNi
1-a O Two , LixCobV1-b Oz, LixCobFe
1-b OTwo , LixMnTwo OFour , LixMncCo2-c O
Four , LixMncNi2-c OFour , LixMncV2-c O
Four , LixMncFe2-c OFour (Where x = 0.02
1.2, a = 0.1-0.9, b = 0.8-0.98,
c = 1.6 to 1.96, z = 2.01 to 2.3).
Can be

【0064】本発明で用いられる最も好ましいリチウム
含有遷移金属酸化物正極材料としては、Lix CoO
2 、Lix NiO2 、Lix MnO2 、Lix Coa
1-a2 、Lix Mn24 、Lix Cob 1-b
z (ここでx=0.02〜1.2、a=0.1〜0.
9、b=0.9〜0.98、z=2.01〜2.3)が
あげられる。ここで、上記のx値は、充放電開始前の値
であり、充放電により増減する。
The most preferred lithium-containing transition metal oxide cathode material used in the present invention is Li x CoO
2, Li x NiO 2, Li x MnO 2, Li x Co a N
i 1-a O 2, Li x Mn 2 O 4, Li x Co b V 1-b O
z (where x = 0.02 to 1.2, a = 0.1 to 0.
9, b = 0.9 to 0.98, z = 2.01 to 2.3). Here, the above-mentioned x value is a value before the start of charge / discharge, and increases / decreases due to charge / discharge.

【0065】本発明で使用出来る導電性の炭素化合物と
しては、構成された電池において、化学変化を起こさな
い電子伝導性材料であれば何でもよい。具体例として
は、鱗状黒鉛、鱗片状黒鉛、土状黒鉛等の天然黒鉛、石
油コークス、石炭コークス、セルロース類、糖類、メソ
フェーズピッチ等の高温焼成体、気相成長黒鉛等の人工
黒鉛等のグラファイト類、アセチレンブラック、ファー
ネスブラック、ケッチェンブラック、チャンネルブラッ
ク、ランプブラック、サーマルブラック等のカーボンブ
ラック類、アスファルトピッチ、コールタール、活性
炭、メソフューズピッチ、ポリアセン等をあげることが
出来る。これらの中では、グラファイトやカーボンブラ
ックが好ましい。
The conductive carbon compound that can be used in the present invention is not particularly limited as long as it is an electron conductive material that does not cause a chemical change in the constructed battery. Specific examples include flake graphite, flake graphite, natural graphite such as earthy graphite, petroleum coke, coal coke, celluloses, sugars, high-temperature fired bodies such as mesophase pitch, and graphite such as artificial graphite such as vapor-grown graphite. Carbon blacks such as acetylene black, furnace black, ketjen black, channel black, lamp black and thermal black, asphalt pitch, coal tar, activated carbon, meso fuse pitch, polyacene and the like. Among these, graphite and carbon black are preferred.

【0066】炭素系以外の導電剤として、金属繊維等の
導電性繊維類、銅、ニッケル、アルミニウム、銀等の金
属粉類、酸化亜鉛、チタン酸カリウム等の導電性ウィス
カー類、酸化チタン等の導電性金属酸化物等を単独また
はこれらの混合物を必要に応じて含ませることが出来
る。
Examples of conductive agents other than carbon include conductive fibers such as metal fibers, metal powders such as copper, nickel, aluminum and silver; conductive whiskers such as zinc oxide and potassium titanate; and titanium oxide and the like. A conductive metal oxide or the like can be used alone or a mixture thereof can be included as needed.

【0067】導電剤の合剤層への添加量は、負極材料ま
たは正極材料に対し6〜50重量%であることが好まし
く、特に6〜30重量%であることが好ましい。カーボ
ンや黒鉛では、6〜20重量%であることがが特に好ま
しい。
The amount of the conductive agent added to the mixture layer is preferably from 6 to 50% by weight, particularly preferably from 6 to 30% by weight, based on the negative electrode material or the positive electrode material. In the case of carbon or graphite, the content is particularly preferably 6 to 20% by weight.

【0068】本発明で用いる電極合剤を保持するための
結着剤としては、多糖類、熱可塑性樹脂及びゴム弾性を
有するポリマーの一種またはこれらの混合物を用いるこ
とが出来る。好ましい結着剤としては、でんぷん、カル
ボキシメチルセルロース、セルロース、ジアセチルセル
ロース、メチルセルロース、ヒドロキシエチルセルロー
ス、ヒドロキシプロピルセルロース、アルギン酸Na、
ポリアクリル酸、ポリアクリル酸Na、ポリビニルフェ
ノール、ポリビニルメチルエーテル、ポリビニルアルコ
ール、ポリビニルピロリドン、ポリアクリルアミド、ポ
リヒドロキシ(メタ)アクリレート、スチレン−マレイ
ン酸共重合体等の水溶性ポリマー、ポリビニルクロリ
ド、ポリテトラフルロロエチレン、ポリフッ化ビニリデ
ン、テトラフロロエチレン−ヘキサフロロプロピレン共
重合体、ビニリデンフロライド−テトラフロロエチレン
−ヘキサフロロプロピレン共重合体、ポリエチレン、ポ
リプロピレン、エチレン−プロピレン−ジエンターポリ
マー(EPDM)、スルホン化EPDM、ポリビニルア
セタール樹脂、メチルメタアクリレート、2−エチルヘ
キシルアクリレート等の(メタ)アクリル酸エステルを
含有する(メタ)アクリル酸エステル共重合体、(メ
タ)アクリル酸エステル−アクリロニトリル共重合体、
ビニルアセテート等のビニルエステルを含有するポリビ
ニルエステル共重合体、スチレン−ブタジエン共重合
体、アクリロニトリル−ブタジエン共重合体、ポリブタ
ジエン、ネオプレンゴム、フッ素ゴム、ポリエチレンオ
キシド、ポリエステルポリウレタン樹脂、ポリエーテル
ポリウレタン樹脂、ポリカーボネートポリウレタン樹
脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂
等のエマルジョン(ラテックス)あるいはサスペンジョ
ンを挙げることが出来る。特にポリアクリル酸エステル
系のラテックス、カルボキシメチルセルロース、ポリテ
トラフルオロエチレン、ポリフッ化ビニリデンが好まし
い。
As the binder for holding the electrode mixture used in the present invention, one of polysaccharides, thermoplastic resins and polymers having rubber elasticity or a mixture thereof can be used. Preferred binders are starch, carboxymethylcellulose, cellulose, diacetylcellulose, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, sodium alginate,
Water-soluble polymers such as polyacrylic acid, sodium polyacrylate, polyvinylphenol, polyvinylmethylether, polyvinylalcohol, polyvinylpyrrolidone, polyacrylamide, polyhydroxy (meth) acrylate, styrene-maleic acid copolymer, polyvinyl chloride, polytetra Fluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfone (Meth) acrylates containing (meth) acrylic acid esters such as activated EPDM, polyvinyl acetal resin, methyl methacrylate, 2-ethylhexyl acrylate, etc. Acrylic acid ester copolymer, (meth) acrylic acid ester - acrylonitrile copolymer,
Polyvinyl ester copolymer containing vinyl ester such as vinyl acetate, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, polybutadiene, neoprene rubber, fluorine rubber, polyethylene oxide, polyester polyurethane resin, polyether polyurethane resin, polycarbonate Emulsions (latex) or suspensions of polyurethane resins, polyester resins, phenol resins, epoxy resins and the like can be given. In particular, polyacrylate latex, carboxymethyl cellulose, polytetrafluoroethylene, and polyvinylidene fluoride are preferred.

【0069】これらの結着剤は単独または混合して用い
ることが出来る。その結着剤の添加量は、少ないと電極
合剤の保持力・凝集力が弱くまたサイクル性が悪く、多
すぎると電極体積が増加し電極単位体積あるいは単位重
量あたりの容量が減少し、さらに導電性が低下し、容量
は減少する。結着剤の添加量は、特に限定されないが、
1〜30重量%が好ましく、特に2〜10重量%が好ま
しい。
These binders can be used alone or as a mixture. If the amount of the binder added is small, the holding power and cohesive force of the electrode mixture is weak and the cycleability is poor, and if too large, the electrode volume increases and the volume per electrode unit volume or unit weight decreases, and further, The conductivity decreases and the capacity decreases. The amount of the binder added is not particularly limited,
It is preferably from 1 to 30% by weight, particularly preferably from 2 to 10% by weight.

【0070】本発明の負極合剤または正極合剤ペースト
の調整は、水系で行うことが好ましい。
The preparation of the negative electrode mixture or the positive electrode mixture paste of the present invention is preferably carried out in an aqueous system.

【0071】合剤ペーストの調整は、まず活物質および
導電剤を混合し、結着剤(樹脂粉体のサスペンジョンま
たはエマルジョン(ラテックス)状のもの)および水を
加えて混練混合し、引続いて、ミキサー、ホモジナイザ
ー、ディゾルバー、プラネタリミキサー、ペイントシェ
イカー、サンドミル等の攪拌混合機、分散機で分散して
行うことが出来る。
For the preparation of the mixture paste, first, an active material and a conductive agent are mixed, a binder (resin powder suspension or emulsion (latex)) and water are added and kneaded and mixed. , A mixer, a homogenizer, a dissolver, a planetary mixer, a paint shaker, a sand mill or the like, and a dispersing machine can be used.

【0072】調整された正極活物質や負極活物質の合剤
ペーストは、集電体の上に塗布(コート)、乾燥、圧縮
されて、主に用いられる。塗布は種々の方法で行うこと
が出来るが、例えば、リバースロール法、ダイレクトロ
ール法、ブレード法、ナイフ法、エクストルージョン
法、カーテン法、グラビア法、バー法、ディップ法及び
スクイーズ法を挙げることが出来る。ブレード法、ナイ
フ法及びエクストルージョン法が好ましい。塗布は、
0.1〜100m/分の速度で実施されることが好まし
い。この際、合剤ペーストの液物性、乾燥性に合わせ
て、上記塗布方法を選定することにより、良好な塗布層
の表面状態を得ることが出来る。その塗布層の厚み、長
さや巾は、電池の大きさにより決められるが、塗布層の
厚みは、乾燥後圧縮された状態で、1〜2000μmが
特に好ましい。
The prepared mixture paste of the positive electrode active material and the negative electrode active material is mainly used after being coated (coated) on a current collector, dried and compressed. Coating can be performed by various methods, for example, a reverse roll method, a direct roll method, a blade method, a knife method, an extrusion method, a curtain method, a gravure method, a bar method, a dip method, and a squeeze method. I can do it. The blade method, the knife method and the extrusion method are preferred. Application is
It is preferably carried out at a speed of 0.1 to 100 m / min. At this time, by selecting the above-mentioned coating method in accordance with the liquid physical properties and drying properties of the mixture paste, a good surface state of the coating layer can be obtained. The thickness, length and width of the coating layer are determined depending on the size of the battery. The thickness of the coating layer is particularly preferably 1 to 2000 μm in a compressed state after drying.

【0073】ペレットやシートの水分除去のための乾燥
又は脱水方法としては、一般に採用されている方法を利
用することができ、熱風、真空、赤外線、遠赤外線、電
子線及び低湿風を単独あるいは組み合わせて用いること
が出来る。温度は80〜350℃の範囲が好ましく、特
に100〜250℃の範囲が好ましい。含水量は、電池
全体で2000ppm以下が好ましく、正極合剤、負極
合剤や電解質ではそれぞれ500ppm以下にすること
が充放電サイクル性の点で好ましい。
As a drying or dehydrating method for removing moisture from the pellets and sheets, generally employed methods can be used, and hot air, vacuum, infrared rays, far infrared rays, electron beams and low humidity air can be used alone or in combination. Can be used. The temperature is preferably in the range of 80 to 350C, particularly preferably in the range of 100 to 250C. The water content is preferably 2000 ppm or less in the whole battery, and is preferably 500 ppm or less in each of the positive electrode mixture, the negative electrode mixture and the electrolyte from the viewpoint of charge / discharge cycleability.

【0074】シート状の電極合剤の圧縮は、一般に採用
されているプレス方法を用いることが出来るが、特に金
型プレス法やカレンダープレス法が好ましい。プレス圧
は、特に限定されないが、10kg/cm2 〜3t/c
2 が好ましい。カレンダープレス法のプレス速度は、
0.1〜50m/分が好ましい。プレス温度は、室温〜
200℃が好ましい。
The compression of the sheet-shaped electrode mixture can be performed by a commonly used pressing method, but a die pressing method and a calender pressing method are particularly preferable. The pressing pressure is not particularly limited, but is 10 kg / cm 2 to 3 t / c.
m 2 is preferred. The press speed of the calendar press method is
0.1 to 50 m / min is preferred. Press temperature is from room temperature
200 ° C. is preferred.

【0075】本発明で使用できる正極及び負極の支持体
即ち集電体は、材質として、正極にはアルミニウム、ス
テンレス鋼、ニッケル、チタン、またはこれらの合金で
あり、負極には銅、ステンレス鋼、ニッケル、チタン、
またはこれらの合金であり、形態としては、箔、エキス
パンドメタル、パンチングメタル、金網である。特に、
正極にはアルミニウム箔、負極には銅箔が好ましい。
The support or current collector for the positive electrode and the negative electrode that can be used in the present invention is made of aluminum, stainless steel, nickel, titanium or an alloy thereof for the positive electrode, and copper, stainless steel, or the like for the negative electrode. Nickel, titanium,
Or, these are alloys, and are in the form of foil, expanded metal, punching metal, or wire mesh. Especially,
Aluminum foil is preferable for the positive electrode, and copper foil is preferable for the negative electrode.

【0076】本発明で使用できるセパレータは、イオン
透過度が大きく、所定の機械的強度を持ち、絶縁性の薄
膜であれば良く、材質として、オレフィン系ポリマー、
フッ素系ポリマー、セルロース系ポリマー、ポリイミ
ド、ナイロン、ガラス繊維、アルミナ繊維が用いられ、
形態として、不織布、織布、微孔性フィルムが用いられ
る。特に、材質として、ポリプロピレン、ポリエチレ
ン、ポリプロピレンとポリエチレンの混合体、ポリプロ
ピレンとテフロンの混合体、ポリエチレンとテフロンの
混合体が好ましく、形態として微孔性フィルムであるも
のが好ましい。特に、孔径が0.01〜1μm、厚みが
5〜50μmの微孔性フィルムが好ましい。
The separator which can be used in the present invention is not limited as long as it has a high ion permeability, a predetermined mechanical strength, and an insulating thin film.
Fluorine polymer, cellulose polymer, polyimide, nylon, glass fiber, alumina fiber is used,
As the form, a nonwoven fabric, a woven fabric, or a microporous film is used. In particular, the material is preferably polypropylene, polyethylene, a mixture of polypropylene and polyethylene, a mixture of polypropylene and Teflon, a mixture of polyethylene and Teflon, and the form is preferably a microporous film. In particular, a microporous film having a pore size of 0.01 to 1 μm and a thickness of 5 to 50 μm is preferable.

【0077】図1は、シリンダー型電池の一例を示す断
面図である。電池の形状はボタン、コイン、シート、シ
リンダー、角などのいずれにも適用できる。電池は、ペ
レット、シート状あるいはセパレーター3と共に巻回し
た電極シート4、5を電池缶2に挿入し、缶と電極を電
気的に接続し、電解液6を注入し封口して形成する。リ
ング11を備えた内部フタ体10がポリプロピレン製ガ
スケット1を介して電池缶2の上部口に嵌合し、正極端
子を兼ねる正極キャップ8を上部に露出させる。この
時、安全弁7(防爆弁体)を封口板として用いることが
できる。更に電池の安全性を保証するためにPTC素子
9を用いるのが好ましい。
FIG. 1 is a sectional view showing an example of a cylinder type battery. The shape of the battery can be applied to any of buttons, coins, sheets, cylinders, corners and the like. The battery is formed by inserting the electrode sheets 4 and 5 wound together with the pellets, sheets or the separator 3 into the battery can 2, electrically connecting the can and the electrodes, injecting the electrolyte 6 and sealing the battery. The inner lid body 10 provided with the ring 11 is fitted to the upper opening of the battery can 2 via the gasket 1 made of polypropylene, and the upper part of the positive electrode cap 8 also serving as the positive electrode terminal is exposed. At this time, the safety valve 7 (explosion-proof valve body) can be used as a sealing plate. Further, it is preferable to use the PTC element 9 in order to guarantee the safety of the battery.

【0078】本発明で使用できる有底電池外装缶は材質
としてニッケルメッキを施した鉄鋼板、ステンレス鋼板
(SUS304、SUS304L,SUS304N、S
US316、SUS316L、SUS430、SUS4
44等)、ニッケルメッキを施したステンレス鋼板(同
上)、アルミニウムまたはその合金、ニッケル、チタ
ン、銅であり、形状として、真円形筒状、楕円形筒状、
正方形筒状、長方形筒状である。特に、外装缶が負極端
子を兼ねる場合は、ステンレス鋼板、ニッケルメッキを
施した鉄鋼板が好ましく、外装缶が正極端子を兼ねる場
合は、ステンレス鋼板、アルミニウムまたはその合金が
好ましい。
The bottomed battery outer can that can be used in the present invention is made of nickel-plated iron steel plate or stainless steel plate (SUS304, SUS304L, SUS304N, S).
US316, SUS316L, SUS430, SUS4
44, etc.), a nickel-plated stainless steel plate (same as above), aluminum or its alloy, nickel, titanium, and copper.
It has a square tubular shape and a rectangular tubular shape. In particular, when the outer can also serves as the negative electrode terminal, a stainless steel plate or a nickel-plated iron steel plate is preferable, and when the outer can also serves as the positive electrode terminal, a stainless steel plate, aluminum or an alloy thereof is preferable.

【0079】該シート状の合剤電極は、巻いたり、折っ
たりして缶に挿入し、缶とシートを電気的に接続し、電
解質を注入し、封口板を用いて電池缶を形成する。この
とき、安全弁を封口板として用いることが出来る。安全
弁の他、従来から知られている種々の安全素子を備えつ
けても良い。例えば、過電流防止素子として、ヒュー
ズ、バイメタル、PTC(正温度係数)素子等が用いら
れる。また、安全弁のほかに電池缶の内圧上昇の対策と
して、電池缶に切込を入れる方法、ガスケット亀裂方法
あるいは封口板亀裂方法を利用することが出来る。ま
た、充電機に過充電や過放電対策を組み込んだ回路を具
備させても良い。
The sheet-shaped mixture electrode is wound or folded and inserted into a can, the can and the sheet are electrically connected, an electrolyte is injected, and a battery can is formed using a sealing plate. At this time, a safety valve can be used as a sealing plate. In addition to the safety valve, various conventionally known safety elements may be provided. For example, a fuse, a bimetal, a PTC (positive temperature coefficient) element, or the like is used as the overcurrent prevention element. In addition to the safety valve, as a countermeasure against an increase in the internal pressure of the battery can, a method of making a cut in the battery can, a gasket cracking method or a sealing plate cracking method can be used. Further, the charger may be provided with a circuit incorporating measures for overcharging and overdischarging.

【0080】電解質は、全量を1回で注入してもよい
が、2段階以上に分けて行うことが好ましい。2段階以
上に分けて注入する場合、それぞれの液は同じ組成で
も、違う組成(例えば、非水溶媒あるいは非水溶媒にリ
チウム塩を溶解した溶液を注入した後、前記溶媒より粘
度の高い非水溶媒あるいは非水溶媒にリチウム塩を溶解
した溶液を注入)でも良い。また、電解質の注入時間の
短縮等のために、電池缶を減圧(好ましくは500〜1
torr 、より好ましくは400〜10 torr )したり、
電池缶に遠心力や超音波をかけることを行ってもよい。
The entire amount of the electrolyte may be injected at one time, but it is preferable to perform the injection in two or more steps. In the case of injecting in two or more steps, each liquid may have the same composition but different compositions (for example, after injecting a non-aqueous solvent or a solution in which a lithium salt is dissolved in a non-aqueous solvent, a non-aqueous solution having a higher viscosity than the solvent) A solution in which a lithium salt is dissolved in a solvent or a non-aqueous solvent is injected). Also, in order to shorten the electrolyte injection time, the pressure of the battery can is reduced (preferably 500 to 1).
torr, more preferably 400 to 10 torr) or
Centrifugal force or ultrasonic waves may be applied to the battery can.

【0081】缶やリード板は、電気伝導性をもつ金属や
合金を用いることが出来る。例えば、鉄、ニッケル、チ
タン、クロム、モリブデン、銅、アルミニウム等の金属
あるいはそれらの合金が用いられる。キャップ、缶、シ
ート、リード板の溶接法は、公知の方法(例、直流又は
交流の電気溶接、レーザー溶接、超音波溶接)を用いる
ことが出来る。封口用シール剤は、アスファルト等の従
来から知られている化合物や混合物を用いることが出来
る。
For the can or the lead plate, a metal or an alloy having electrical conductivity can be used. For example, metals such as iron, nickel, titanium, chromium, molybdenum, copper, and aluminum or alloys thereof are used. As a method for welding the cap, the can, the sheet, and the lead plate, a known method (eg, DC or AC electric welding, laser welding, ultrasonic welding) can be used. A conventionally known compound or mixture such as asphalt can be used as the sealing agent for sealing.

【0082】本発明で使用できるガスケットは、材質と
して、オレフィン系ポリマー、フッ素系ポリマー、セル
ロース系ポリマー、ポリイミド、ポリアミドであり、耐
有機溶媒性及び低水分透過性から、オレフィン系ポリマ
ーが好ましく、特にプロピレン主体のポリマーが好まし
い。さらに、プロピレンとエチレンのブロック共重合ポ
リマーであることが好ましい。
The gaskets usable in the present invention are olefin polymers, fluorine polymers, cellulosic polymers, polyimides and polyamides, and olefin polymers are preferred in view of organic solvent resistance and low moisture permeability. Propylene-based polymers are preferred. Further, it is preferably a block copolymer of propylene and ethylene.

【0083】本発明の電池は必要に応じて外装材で被覆
される。外装材としては、熱収縮チューブ、粘着テー
プ、金属フィルム、紙、布、塗料、プラスチックケース
等がある。また、外装の少なくとも一部に熱で変色する
部分を設け、使用中の熱履歴がわかるようにしても良
い。
[0083] The battery of the present invention is covered with an exterior material as necessary. Examples of the exterior material include a heat-shrinkable tube, an adhesive tape, a metal film, paper, cloth, paint, a plastic case, and the like. Further, at least a part of the exterior may be provided with a portion that changes color by heat so that the heat history during use can be recognized.

【0084】本発明の電池は必要に応じて複数本を直列
及び/または並列に組み電池パックに収納される。電池
パックには正温度係数抵抗体、温度ヒューズ、ヒューズ
及び/または電流遮断素子等の安全素子の他、安全回路
(各電池及び/または組電池全体の電圧、温度、電流等
をモニターし、必要なら電流を遮断する機能を有す回
路)を設けても良い。また電池パックには、組電池全体
の正極及び負極端子以外に、各電池の正極及び負極端
子、組電池全体及び各電池の温度検出端子、組電池全体
の電流検出端子等を外部端子として設けることもでき
る。また電池パックには、電圧変換回路(DC−DCコ
ンバータ等)を内蔵しても良い。また各電池の接続は、
リード板を溶接することで固定しても良いし、ソケット
等で容易に着脱できるように固定しても良い。さらに
は、電池パックに電池残存容量、充電の有無、使用回数
等の表示機能を設けても良い。
The batteries of the present invention are assembled in series and / or in parallel as necessary and stored in a battery pack. In addition to safety elements such as positive temperature coefficient resistors, thermal fuses, fuses and / or current interrupting elements, battery packs have safety circuits (voltage, temperature, current, etc. of each battery and / or assembled battery as a whole, Then, a circuit having a function of interrupting the current may be provided. In addition to the positive and negative terminals of the whole battery pack, the positive and negative terminals of each battery, the temperature detection terminals of the whole battery pack and each battery, the current detection terminals of the whole battery pack, etc. shall be provided as external terminals on the battery pack. Can also. The battery pack may have a built-in voltage conversion circuit (such as a DC-DC converter). In addition, connection of each battery
The lead plate may be fixed by welding, or may be fixed with a socket or the like so as to be easily detachable. Further, the battery pack may be provided with a display function of the remaining battery capacity, the presence or absence of charging, the number of times of use, and the like.

【0085】本発明の電池は様々な機器に使用される。
特に、ビデオムービー、モニター内蔵携帯型ビデオデッ
キ、モニター内蔵ムービーカメラ、コンパクトカメラ、
一眼レフカメラ、レンズ付きフィルム、ノート型パソコ
ン、ノート型ワープロ、電子手帳、携帯電話、コードレ
ス電話、ヒゲソリ、電動工具、電動ミキサー、自動車等
に使用されることが好ましい。
The battery of the present invention is used for various devices.
In particular, video movies, portable VCRs with built-in monitors, movie cameras with built-in monitors, compact cameras,
It is preferably used for a single-lens reflex camera, a film with a lens, a notebook computer, a notebook word processor, an electronic organizer, a mobile phone, a cordless phone, a razor, a power tool, a power mixer, a car, and the like.

【0086】[0086]

【実施例】以下に具体例を挙げ、本発明をさらに詳しく
説明するが、発明の主旨を越えない限り、本発明は実施
例に限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to specific examples below, but the present invention is not limited to the examples unless it exceeds the gist of the invention.

【0087】〔正極合剤ペーストの作成〕正極活物質の
LiCoO2 を次のようにして作った。炭酸リチウムと
四酸化三コバルトとを3:2のモル比で混合したものを
アルミナるつぼにいれ、空気中、毎分2℃で750℃に
昇温し4時間仮焼した後、さらに毎分2℃の速度で90
0℃に昇温しその温度で8時間焼成し、その後粉砕して
LiCoO2 の粒子粉末を作成した。作成したLiCo
2 粒子は、中心粒子サイズが5μm、洗浄品50gを
100mlの水に分散した時の分散液の電導度は0.6
mS/m、pHは10.1、窒素吸着法による比表面積
は0.42m2 /gであった。このLiCoO2 粒子2
00gとアセチレンブラック10gとを、ホモジナイザ
ーで混合し、続いて結着剤として2−エチルヘキシルア
クリレートとアクリル酸とアクリロニトリルの共重合体
の水分散物(固形分濃度50重量%)8gと、濃度2重
量%のカルボキシメチルセルロース水溶液を60gを加
え混練混合し、さらに水50gを加え、ホモジナイザー
で攪拌混合し、正極合剤ペーストを作成した。
[Preparation of Positive Electrode Mixture Paste] LiCoO 2 as a positive electrode active material was prepared as follows. A mixture of lithium carbonate and tricobalt tetroxide in a molar ratio of 3: 2 was placed in an alumina crucible, heated in air at 2 ° C./min to 750 ° C., calcined for 4 hours, and further calcined at 2 min / min. 90 ° C
The temperature was raised to 0 ° C., calcined at that temperature for 8 hours, and then pulverized to prepare LiCoO 2 particle powder. LiCo created
The O 2 particles have a center particle size of 5 μm, and the conductivity of a dispersion obtained by dispersing 50 g of the washed product in 100 ml of water is 0.6.
mS / m, pH was 10.1, and specific surface area by nitrogen adsorption method was 0.42 m 2 / g. The LiCoO 2 particles 2
00 g and 10 g of acetylene black were mixed with a homogenizer, followed by 8 g of an aqueous dispersion of a copolymer of 2-ethylhexyl acrylate, acrylic acid and acrylonitrile (solids concentration: 50% by weight) as a binder, and 2% by weight. A 60% aqueous carboxymethylcellulose solution was added, kneaded and mixed, 50 g of water was further added, and the mixture was stirred and mixed with a homogenizer to prepare a positive electrode mixture paste.

【0088】〔負極合剤ペーストの作成〕SnGe0.1
0.50.58Mg0.10.13.35(一酸化錫6.7
g、ピロリン酸錫10.3g、三酸化二硼素1.7g、
炭酸カリウム0.7g、酸化マグネシウム0.4g、二
酸化ゲルマニウム1.0gを乾式混合し、アルミナ製る
つぼに入れ、アルゴン雰囲気下15℃/分で1100℃
まで昇温し、1100℃で12時間焼成した後、10℃
/分で室温にまで降温し焼成炉より取り出したものを集
め、ジェットミルで粉砕したもの(平均粒径4.5μm
、CuKα線を用いたX線回折法において2θ値で2
8°付近に頂点を有するブロードなピークを有する物で
あり、2θ値で40°以上70°以下には結晶性の回折
線は見られなかった。)200gと、導電剤(人造黒
鉛)30gとをホモジナイザーで混合し、さらに結着剤
として濃度2重量%のカルボキシメチルセルロース水溶
液50g、ポリフッ化ビニリデン10gとを加え混合し
たものとさらに水を30g加え混練混合し、負極合剤ペ
ーストF−1を作成した。ポリフッ化ビニリデンは約
0.1μmの微粒子を用いた。
[Preparation of Negative Electrode Mixture Paste] SnGe 0.1
B 0.5 P 0.58 Mg 0.1 K 0.1 O 3.35 (tin monoxide 6.7
g, tin pyrophosphate 10.3 g, diboron trioxide 1.7 g,
0.7 g of potassium carbonate, 0.4 g of magnesium oxide, and 1.0 g of germanium dioxide are dry-mixed, put into an alumina crucible, and heated to 1100 ° C. at 15 ° C./min in an argon atmosphere.
And fired at 1100 ° C for 12 hours, then 10 ° C
/ Min and cooled from room temperature to room temperature, collected from the baking furnace, collected and pulverized with a jet mill (average particle size of 4.5 μm
In the X-ray diffraction method using CuKα ray, 2θ value is 2
It had a broad peak with an apex around 8 °, and no crystalline diffraction line was observed at a 2θ value of 40 ° or more and 70 ° or less. ) 200 g and 30 g of a conductive agent (artificial graphite) were mixed with a homogenizer, and 50 g of a 2% by weight aqueous solution of carboxymethyl cellulose and 10 g of polyvinylidene fluoride were added and mixed as a binder, and 30 g of water were further added and kneaded. By mixing, negative electrode mixture paste F-1 was prepared. As polyvinylidene fluoride, fine particles of about 0.1 μm were used.

【0089】負極合剤ペーストF−2は、市販の石油コ
ークス(日本ペトロレーム社製、PC−R)を230g
用い、濃度2重量%のカルボキシメチルセルロース水溶
液50g、ポリフッ化ビニリデン10gとを加え混合し
たものと水を30g加えさらに混練混合して作った。
The negative electrode mixture paste F-2 was prepared from 230 g of commercially available petroleum coke (PC-R, manufactured by Nippon Petrolem Co., Ltd.).
It was prepared by adding and mixing 50 g of a 2% by weight aqueous solution of carboxymethylcellulose and 10 g of polyvinylidene fluoride and 30 g of water, and further kneading and mixing.

【0090】〔正極および負極電極シートの作成〕上記
で作成した正極合剤ペーストをブレードコーターで厚さ
30μmのアルミニウム箔集電体の両面に、塗布量40
0g/m2 、圧縮後のシートの厚みが280μmになる
ように塗布し、乾燥した後、ローラープレス機で圧縮成
型し所定の大きさに裁断し、帯状の正極シートを作成し
た。さらにドライボックス(露点;−50℃以下の乾燥
空気)中で遠赤外線ヒーターにて充分脱水乾燥し、正極
シートを作成した。
[Preparation of Positive and Negative Electrode Sheets] The positive electrode mixture paste prepared above was coated on both sides of a 30 μm-thick aluminum foil current collector with a blade coater in an amount of 40 μm.
The coated sheet was applied at 0 g / m 2 so that the thickness of the sheet after compression became 280 μm, dried, and then compression-molded by a roller press and cut into a predetermined size to prepare a belt-shaped positive electrode sheet. Further, in a dry box (dew point; dry air having a temperature of -50 ° C. or lower), dehydration and drying were sufficiently performed with a far-infrared heater to prepare a positive electrode sheet.

【0091】同様に、負極合剤ペーストF−1とF−2
を20μmの銅箔集電体に塗布し、上記正極シート作成
と同様の方法で、圧縮後のシートの厚みが90μmであ
る負極シートA、Bをそれぞれ作成した。
Similarly, the negative electrode mixture pastes F-1 and F-2
Was applied to a 20 μm copper foil current collector, and negative electrode sheets A and B each having a thickness of 90 μm after compression were prepared in the same manner as in the preparation of the positive electrode sheet.

【0092】〔電解質調整〕アルゴン雰囲気で、200
ccの細口のポリプロピレン容器に80mlの炭酸ジエ
チル(DEC)を入れ、これに液温が30℃を越えない
ように注意しながら、20mlの炭酸エチレン(EC)
を少量ずつ溶解した。次にこの混合溶媒に、支持塩とし
て0.469gのLiBF4 ,14.43gのLiPF
6 を液温が30℃を越えないように注意しながら、上記
の順番で、上記混合溶媒に少量ずつ溶解した。得られた
電解質は比重1.135で無色透明の液体であった。水
分は18ppm(京都電子製 商品名MKC−210型
カールフィシャー水分測定装置で測定)、遊離酸分は2
0ppm(ブロムチモールブルーを指示薬とし、0.1
規定NaOH水溶液を用いて中和滴定して測定)であっ
た。この電解質を比較用のC−1とする。
[Electrolyte Adjustment] In an argon atmosphere, 200
80 ml of diethyl carbonate (DEC) is placed in a cc narrow-neck polypropylene container, and 20 ml of ethylene carbonate (EC) is added thereto while taking care that the liquid temperature does not exceed 30 ° C.
Was dissolved in small portions. Next, as a supporting salt, 0.469 g of LiBF 4 and 14.43 g of LiPF were added to the mixed solvent.
6 was dissolved little by little in the above-mentioned mixed solvent in the above-mentioned order while taking care that the liquid temperature did not exceed 30 ° C. The obtained electrolyte was a colorless and transparent liquid having a specific gravity of 1.135. Moisture is 18 ppm (measured with a MKC-210 Karl Fischer moisture meter manufactured by Kyoto Electronics Co., Ltd.), and free acid content is 2
0 ppm (with bromthymol blue as an indicator, 0.1 ppm
(Measured by neutralization titration using a specified aqueous NaOH solution). This electrolyte is designated as C-1 for comparison.

【0093】更にDECとECの後にエーテル類を下表
1に従って混合する以外は電解質C−1と同様にして本
実施例による電解質Aを作った。尚、電解質の調整は、
十分に脱水した薬品及び容器を用い、ドライブース(露
点マイナス60℃の乾燥空気)内で行った。下表1にお
いて支持塩は電解質C−1と同じものは併用と記載、組
成の異なるものは表の下に記載した。
Further, an electrolyte A according to this example was prepared in the same manner as the electrolyte C-1, except that ethers were mixed according to the following Table 1 after DEC and EC. In addition, adjustment of the electrolyte
The test was carried out in dry sauce (dry air with a dew point minus 60 ° C.) using a sufficiently dehydrated chemical and container. In Table 1 below, the same supporting salt as electrolyte C-1 is described as a combination, and those having different compositions are described below the table.

【0094】[0094]

【表1】 電解質の組成 電解質 DEC量 EC量 添加溶媒種 添加量 支持塩 水分量 遊離酸分 の番号 ml ml ml ppm ppm C−1 80 20 なし 0 併用 8 20 C−2 80 20 1、3-ジオキソラン 0.01 併用 8 20 A−1 80 20 同上 0.1 併用 8 20 A−2 79.8 19.9 同上 0.3 併用 8 20 A−3 79.6 19.9 同上 0.5 併用 8 20 A−4 78 19.5 同上 2.5 併用 8 20 A−5 77.6 19.4 同上 3.0 併用 8 20 A−6 76 19 同上 5.0 併用 8 20 A−7 74.5 18.5 同上 7.0 併用 8 20 A−8 95 5 同上 0.1 併用 8 20 A−9 70 30 同上 0.1 併用 8 20 A−10 78 19.5 テトラヒドロフラン 2.5 併用 8 20 A−11 79.6 19.9 テトラヒドロピラン 0.5 併用 8 20 A−12 78 19.5 1、3-ジオキサン 2.5 併用 8 20 A−13 78 19.5 1、4-ジオキサン 2.5 併用 8 20 A−14 78 19.5 1、3-ジオキソラン 2.5 単独*1 8 20 C−3 78 19.5 同上 2.5 併用 60 120 C−4 72 18 同上 10 併用 8 20 C−5 80 20 なし 0 単独*1 8 20 C−6 80 20 1、3-ジオキソラン 0.01 単独*1 8 20 単独*1は、LiPF6 のみを15.19g用いた。[Table 1] Composition of electrolyte Electrolyte DEC amount EC amount Added solvent type Added amount Supporting salt Water content Free acid content No. ml ml ml ppm ppm C-1 80 20 None 0 Combined 8 20 C-2 80 20 1,3-Dioxolane 0.01 Combined 8 20 A-1 80 20 Same as above 0.1 Combined 8 20 A-2 79.8 19.9 Same as above 0.3 combined 8 20 A-3 79.6 19.9 Same as above 0.5 Use 8 20 A-4 78 19.5 Same as above 2.5 Use 8 20 A-5 77.6 19.4 Same as above 3.0 Use together 8 20 A-6 76 19 Same as above 5.0 Use 8 20 A-7 74.5 18.5 Same as above 7.0 Use 8 20 A-8 95 5 Same as above 0.1 combined use 8 20 A-9 70 30 Same as above 0.1 combined use 8 20 A-10 78 19.5 Tetrahydrofuran 2.5 combined use 8 20 A-11 79.6 19.9 Tetrahydropyran 0.5 combined use 8 20 A-12 78 19.5 1,3-dioxane 2.5 combined use 8 20 A -13 78 19.5 1,4-Dioxane 2.5 combined 820 A-14 78 19.5 1,3-Dioxolane 2.5 alone * 1 820 C-3 78 19.5 Same as above 2.5 combined 60 120 C-4 72 18 Same as above 10 combined 820 C -5 80 20 None 0 alone * 1 8 20 C-6 80 20 1,3-dioxolane 0.01 alone * 1 8 20 alone * 1 is LiPF6 Only 15.19 g was used.

【0095】〔シリンダー電池の作成〕図1に示すよう
に、正極シート5、微孔性ポリプロピレンフィルム製セ
パレーター、負極シートA(4)およびセパレーター3
の順に積層し、これを渦巻き状に巻回した。この巻回体
を負極端子を兼ねるニッケルメッキを施した鉄製の有底
円筒型電池缶2に収納した。さらに電解質6として表1
に記載の電解質を電池缶2内に注入した。正極端子を有
する電池蓋8、PTC素子9、防爆弁体7等を重ね、ガ
スケット1を介してかしめて円筒型電池を作成した。
[Preparation of Cylinder Battery] As shown in FIG. 1, a positive electrode sheet 5, a separator made of a microporous polypropylene film, a negative electrode sheet A (4) and a separator 3
, And this was spirally wound. The wound body was housed in a nickel-plated iron bottomed cylindrical battery can 2 also serving as a negative electrode terminal. Further, as electrolyte 6, Table 1
Was injected into the battery can 2. A battery cover 8 having a positive electrode terminal, a PTC element 9, an explosion-proof valve body 7, and the like were stacked and caulked via a gasket 1 to produce a cylindrical battery.

【0096】上記の方法で作成した電池について、電流
密度5mA/cm2 、充電終止電圧4.1V、放電終止
電圧2.8Vの条件で充放電し、放電容量およびサイク
ル寿命を求めた。
The battery prepared by the above method was charged and discharged under the conditions of a current density of 5 mA / cm 2 , a charge end voltage of 4.1 V, and a discharge end voltage of 2.8 V, and the discharge capacity and cycle life were determined.

【0097】それぞれの電池のサイクル性(充放電1回
目に対する300回目容量の割合)を表2に示す。放電
容量は、電池番号1と21を100としたときの相対値
として示す。
Table 2 shows the cycle performance (the ratio of the 300th capacity to the first charge / discharge) of each battery. The discharge capacity is shown as a relative value when battery numbers 1 and 21 are set to 100.

【0098】[0098]

【表2】電池番号 負極シート 電解質番号 放電容量 サイクル性 1 比較電池 A C−1 100 68 2 同上 A C−2 100 69 3 本実施例電池 A A−1 100 80 4 同上 A A−2 100 82 5 同上 A A−3 100 82 6 同上 A A−4 99 86 7 同上 A A−5 99 84 8 同上 A A−6 99 82 9 同上 A A−7 98 78 10 同上 A A−8 100 74 11 同上 A A−9 99 78 12 同上 A A−10 98 73 13 同上 A A−11 98 71 14 同上 A A−12 98 75 15 同上 A A−13 98 72 16 同上 A A−14 99 82 17 比較電池 A C−3 91 59 18 同上 A C−4 96 69 19 同上 A C−5 100 67 20 同上 A C−6 100 67 21 同上 B C−1 100 69 22 本実施例電池 B A−4 99 89 23 同上 B A−14 99 86 24 比較電池 B C−5 99 68Table 2 Battery No. Negative electrode sheet Electrolyte No. Discharge capacity Cycling property 1 Comparative battery AC-1 100 68 2 Same as above AC-2 100 69 3 Battery of this example A A-1 100 804 Same as above A A-2 100 82 5 Same as above A A-3 100 82 6 Same as above A A-49986 7 Same as above A A-59984 8 Same as above A A-699 829 9 Same as above A A-798 78 10 Same as above A A-8 100 74 11 Same as above A A-99997812 Same as above A A-10987313 Same as above AA-11987114 Same as above AA-12987515 Same as above AA-13987216 Same as above AA-14998217 Comparative battery A C-391 5918 Same as above AC-4966919 Same as above AC-5 100 6720 Same as above AC-6 100 6721 Same as above BC-1 100 6922 Example Battery B A-4 99 89 23 ditto B A-14 99 86 24 Comparative Battery B C-5 99 68

【0099】比較電池番号17は、電解質C−3の水分
量が60ppmであり、遊離酸分が120ppmであ
る。それに対し、本実施例では、水分量が8ppmであ
り、遊離酸分が20ppmである電解質を用いた電池を
作成した。電解質の水分量及び遊離酸分が少ない方が放
電容量及びサイクル性が大きく、良好な結果が得られ
た。電解質の水分量は50ppm以下が好ましく、遊離
酸分は100ppm以下が好ましい。ただし、水分量を
0.5ppm以下に制御することが困難であり、遊離酸
分を2ppm以下に制御することはコスト的に困難であ
る。従って、電解質は、水分量が0.5ppm以上50
ppm以下、かつ遊離酸分が2ppm以上100ppm
以下であることが好ましい。
In Comparative Battery No. 17, the water content of the electrolyte C-3 was 60 ppm, and the free acid content was 120 ppm. In contrast, in the present example, a battery using an electrolyte having a water content of 8 ppm and a free acid content of 20 ppm was prepared. The smaller the water content and the free acid content of the electrolyte, the larger the discharge capacity and cycleability, and good results were obtained. The water content of the electrolyte is preferably 50 ppm or less, and the free acid content is preferably 100 ppm or less. However, it is difficult to control the water content to 0.5 ppm or less, and it is difficult to control the free acid content to 2 ppm or less in terms of cost. Therefore, the electrolyte has a water content of 0.5 ppm or more and 50 ppm or more.
ppm or less, and the free acid content is 2 ppm or more and 100 ppm
The following is preferred.

【0100】比較電池番号1、2、19、20、21、
24は、全て電解質に環状エーテルが0.01体積%以
下しか入っていない。比較電池番号18は、電解質に環
状エーテルが10体積%入っている。それに対し、本実
施例による電池番号3〜16、22、23は、電解質に
環状エーテルが0.1〜7.0体積%入っている。本実
施例による電池は、サイクル性が大きく良好である。電
解質は、0.1体積%以上7体積%以下の環状エーテル
を含むことが好ましい。その場合、環状エーテルの他、
環状炭酸エステルが5〜30体積%、鎖状炭酸エステル
が60〜90体積%であることが好ましい。特に好まし
くは、環状炭酸エステルが15〜26体積%、鎖状炭酸
エステルが71〜85体積%、環状エーテルが0.3〜
5体積%の混合比率である。
Comparative battery numbers 1, 2, 19, 20, 21,
In No. 24, the electrolyte contained only 0.01% by volume or less of cyclic ether. Comparative Battery No. 18 contains 10% by volume of cyclic ether in the electrolyte. On the other hand, in battery numbers 3 to 16, 22, and 23 according to the present embodiment, the electrolyte contains 0.1 to 7.0% by volume of cyclic ether. The battery according to the present embodiment has good cyclability and is good. The electrolyte preferably contains 0.1% by volume or more and 7% by volume or less of a cyclic ether. In that case, besides the cyclic ether,
The cyclic carbonate is preferably 5 to 30% by volume and the chain carbonate is preferably 60 to 90% by volume. Particularly preferably, the cyclic carbonate is 15 to 26% by volume, the chain carbonate is 71 to 85% by volume, and the cyclic ether is 0.3 to
The mixing ratio is 5% by volume.

【0101】本実施例の電池番号16は、電解質A−1
4に指示塩としてLiPF6 のみを用いた。それに対
し、本実施例による電池番号6は、電解質A−4に支持
塩としてLiBF4 とLiPF6 を併用した。LiBF
4 とLiPF6 を併用した方が、サイクル性が大きくな
り良好である。電解質は、支持塩としてLiBF4 とL
iPF6 を含むことが好ましい。
The battery No. 16 of the present embodiment is the same as the battery of the electrolyte A-1.
In Example 4, only LiPF 6 was used as an indicator salt. On the other hand, in the battery No. 6 according to the present example, LiBF 4 and LiPF 6 were used in combination as the supporting salt in the electrolyte A-4. LiBF
The use of both LiPF 6 and LiPF 6 increases the cycleability and is better. The electrolyte is composed of LiBF 4 and L as supporting salts.
it is preferred to include a iPF 6.

【0102】[0102]

【発明の効果】本発明のように、環状炭酸エステルと鎖
状炭酸エステルと特定量の環状エーテルを用い、水分量
と遊離酸分を規定した電解液を用いると放電容量とサイ
クル性の両立した非水二次電池を作ることができる。特
にこの効果は、負極に所定の酸化物を用いると大きい。
As in the present invention, when the cyclic carbonate, the chain carbonate and the specific amount of the cyclic ether are used, and the electrolytic solution in which the water content and the free acid content are specified is used, the discharge capacity and the cyclability are compatible. Non-aqueous secondary batteries can be made. This effect is particularly great when a predetermined oxide is used for the negative electrode.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は実施例に使用したシリンダー型電池の断
面図を示す。
FIG. 1 is a sectional view of a cylinder type battery used in Examples.

【符号の説明】[Explanation of symbols]

1 ポリプロピレン製ガスケット 2 負極端子を兼ねる負極缶(電池缶) 3 セパレーター 4 負極シート 5 正極シート 6 非水電解液 7 防爆弁体 8 正極端子を兼ねる正極キャップ 10 内部フタ体 11 リング Reference Signs List 1 gasket made of polypropylene 2 negative electrode can (battery can) also serving as negative electrode terminal 3 separator 4 negative electrode sheet 5 positive electrode sheet 6 nonaqueous electrolyte solution 7 explosion-proof valve 8 positive electrode cap also serving as positive electrode terminal 10 internal lid 11 ring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石塚 弘 神奈川県南足柄市中沼210番地 富士写真 フイルム株式会社内 (72)発明者 加藤 三紀彦 神奈川県南足柄市中沼210番地 富士写真 フイルム株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroshi Ishizuka 210, Nakanuma, Minamiashigara-shi, Kanagawa Fuji Photo Film Co., Ltd. (72) Inventor Mikihiko Kato 210, Nakanuma, Minamiashigara-shi, Kanagawa Fuji Photo Film Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを可逆的に吸蔵放出可能な材料
を含む正極及び負極、リチウム塩を含む非水電解質、セ
パレーターから成る非水電解質二次電池に於いて、該非
水電解質が環状炭酸エステルと鎖状炭酸エステルと0.1
体積%以上7体積%以下の環状エーテルを含み、含水率
が0.5 ppm以上50ppm以下かつ遊離酸分がHFとして2pp
m以上100ppm以下であることを特徴とする非水電解質二
次電池。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode and a negative electrode containing a material capable of reversibly occluding and releasing lithium, a non-aqueous electrolyte containing a lithium salt, and a separator. Chain carbonate and 0.1
It contains a cyclic ether of not less than 7% by volume and a water content of 0.5 ppm to 50 ppm and a free acid content of 2 pp as HF.
A non-aqueous electrolyte secondary battery characterized in that the concentration is not less than m and not more than 100 ppm.
【請求項2】 該非水電解質の含有するリチウム塩がLi
PF6及びLiBF4を含むことを特徴とする請求項1に記載の
非水電解質二次電池。
2. The lithium salt contained in the non-aqueous electrolyte is Li
The non-aqueous electrolyte secondary battery according to claim 1, characterized in that it comprises a PF 6 and LiBF 4.
【請求項3】 該環状エーテルが、下記一般式(1)で
表されることを特徴とする請求項1又は2に記載の非水
電解質二次電池。 【化1】 式中R1、R2はそれぞれ同一であっても異なってもよ
く、水素原子または炭素数8以下のアルキル基を表す。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the cyclic ether is represented by the following general formula (1). Embedded image In the formula, R 1 and R 2 may be the same or different and each represent a hydrogen atom or an alkyl group having 8 or less carbon atoms.
【請求項4】 該環状エーテルのR1 、R2が水素原子
又は炭素数4以下のアルキル基であることを特徴とする
請求項3に記載の非水電解質二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 3, wherein R 1 and R 2 of the cyclic ether are a hydrogen atom or an alkyl group having 4 or less carbon atoms.
【請求項5】 該電解液中の環状炭酸エステルの含有量
が5体積%以上30体積%以下、鎖状炭酸エステルの含有
量が60体積%以上90体積%以下であることを特徴とする
請求項1〜4のいずれか1項に記載の非水電解質二次電
池。
5. The electrolyte according to claim 1, wherein the content of the cyclic carbonate is 5% by volume or more and 30% by volume or less, and the content of the chain carbonate is 60% by volume or more and 90% by volume or less. Item 5. The non-aqueous electrolyte secondary battery according to any one of Items 1 to 4.
【請求項6】 該電解液中の環状炭酸エステルの含有量
が15体積%以上26体積%以下、鎖状炭酸エステルの含有
量が71体積%以上85体積%以下、環状エーテルの含有量
が0.3体積%以上5体積%以下であることを特徴とする
請求項1〜4のいずれか1項に記載の非水電解質二次電
池。
6. The electrolyte solution has a cyclic carbonate content of 15 vol% to 26 vol%, a chain carbonate content of 71 vol% to 85 vol%, and a cyclic ether content of 0.3 vol% to 0.3 vol%. The non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the content is not less than 5% by volume and not more than 5% by volume.
【請求項7】 該負極材料の少なくとも一種が、一般式
(2)で示されることを特徴とする請求項1〜6のいず
れか1項に記載の非水電解質二次電池。 M1 2 p4 q6 r 一般式(2) (式中、M1 、M2 は相異なりSi、Ge、Sn、P
b、P、B、Al、Sbから選ばれる少なくとも一種、
4 はLi,Na,K,Rb,Cs,Mg,Ca,S
r,Baから選ばれる少なくとも一種、M6 はO、S、
Teから選ばれる少なくとも一種、p 、q は各々0.0
01〜10、r は1.00〜50の数字を表す。)
7. The non-aqueous electrolyte secondary battery according to claim 1, wherein at least one of the negative electrode materials is represented by the general formula (2). M 1 M 2 p M 4 q M 6 r General formula (2) (where M 1 and M 2 are different from Si, Ge, Sn, P
at least one selected from b, P, B, Al, and Sb;
M 4 is Li, Na, K, Rb, Cs, Mg, Ca, S
at least one selected from r and Ba, M 6 is O, S,
At least one selected from Te, p and q are each 0.0
01 to 10, r represents a number of 1.00 to 50. )
JP27257596A 1996-10-15 1996-10-15 Nonaqueous electrolyte secondary battery Expired - Lifetime JP4066465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27257596A JP4066465B2 (en) 1996-10-15 1996-10-15 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27257596A JP4066465B2 (en) 1996-10-15 1996-10-15 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH10116631A true JPH10116631A (en) 1998-05-06
JP4066465B2 JP4066465B2 (en) 2008-03-26

Family

ID=17515832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27257596A Expired - Lifetime JP4066465B2 (en) 1996-10-15 1996-10-15 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4066465B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294276A (en) * 1999-04-02 2000-10-20 Tomiyama Pure Chemical Industries Ltd Nonaqueous electrolyte for secondary battery
JP2001223022A (en) * 2000-02-08 2001-08-17 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte secondary battery
JP2001332298A (en) * 2000-05-19 2001-11-30 Sony Corp Electrolyte and secondary battery
JP2002324548A (en) * 2001-04-25 2002-11-08 Matsushita Electric Ind Co Ltd Manufacturing method for negative electrode for lithium ion battery
WO2003019713A1 (en) * 2001-08-24 2003-03-06 Sony Corporation Battery
JP2006139951A (en) * 2004-11-10 2006-06-01 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery and nonaqueous electrolyte liquid for the same
US7167353B2 (en) 2002-04-24 2007-01-23 Nisshinbo Industries, Inc. Ionic liquid, method of dehydration, electrical double layer capacitor, and secondary battery
JP2007027084A (en) * 2005-06-17 2007-02-01 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte solution secondary battery
JP2007258183A (en) * 2007-05-11 2007-10-04 Ube Ind Ltd Nonaqueous secondary battery
JP2008084705A (en) * 2006-09-28 2008-04-10 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
CN100466340C (en) * 2005-06-17 2009-03-04 松下电器产业株式会社 Non-aqueous electrolyte rechargeable battery
JP2010192165A (en) * 2009-02-16 2010-09-02 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP4646399B2 (en) * 1997-12-26 2011-03-09 三和油化工業株式会社 Electrolytic solution for lithium battery and method for producing the same
JP2011154949A (en) * 2010-01-28 2011-08-11 Sanyo Electric Co Ltd Nonaqueous secondary battery
US8007938B2 (en) 2004-04-20 2011-08-30 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and lithium secondary battery using same
US8053109B2 (en) * 2007-11-16 2011-11-08 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
JP2014049295A (en) * 2012-08-31 2014-03-17 Tdk Corp Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
US9153820B2 (en) 2010-06-30 2015-10-06 Zeon Corporation Binder composition for non-aqueous battery electrode, electrolyte solution composition for non-aqueous battery, and use thereof
JP2015195135A (en) * 2014-03-31 2015-11-05 三井化学株式会社 Nonaqueous electrolyte for battery and lithium secondary battery
CN106571487A (en) * 2015-10-13 2017-04-19 松下电器产业株式会社 Electrolytic solution for electrochemical devices and electrochemical device in which the electrolytic solution is used

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4646399B2 (en) * 1997-12-26 2011-03-09 三和油化工業株式会社 Electrolytic solution for lithium battery and method for producing the same
JP2000294276A (en) * 1999-04-02 2000-10-20 Tomiyama Pure Chemical Industries Ltd Nonaqueous electrolyte for secondary battery
JP4706807B2 (en) * 1999-04-02 2011-06-22 富山薬品工業株式会社 Non-aqueous electrolytic secondary battery
JP2001223022A (en) * 2000-02-08 2001-08-17 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte secondary battery
JP2001332298A (en) * 2000-05-19 2001-11-30 Sony Corp Electrolyte and secondary battery
JP2002324548A (en) * 2001-04-25 2002-11-08 Matsushita Electric Ind Co Ltd Manufacturing method for negative electrode for lithium ion battery
US7510803B2 (en) 2001-08-24 2009-03-31 Sony Corporation Battery
KR100946947B1 (en) * 2001-08-24 2010-03-15 소니 주식회사 Battery
WO2003019713A1 (en) * 2001-08-24 2003-03-06 Sony Corporation Battery
JP4963777B2 (en) * 2001-08-24 2012-06-27 ソニー株式会社 battery
JPWO2003019713A1 (en) * 2001-08-24 2004-12-16 ソニー株式会社 battery
CN100448095C (en) * 2001-08-24 2008-12-31 索尼株式会社 Battery
CN100446336C (en) * 2001-08-24 2008-12-24 索尼株式会社 Battery
US7167353B2 (en) 2002-04-24 2007-01-23 Nisshinbo Industries, Inc. Ionic liquid, method of dehydration, electrical double layer capacitor, and secondary battery
US9136560B2 (en) 2004-04-20 2015-09-15 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and lithium secondary battery using same
US8435681B2 (en) 2004-04-20 2013-05-07 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and lithium secondary battery using same
US9231274B2 (en) 2004-04-20 2016-01-05 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and lithium secondary battery using same
EP3249735A2 (en) 2004-04-20 2017-11-29 Mitsubishi Chemical Corporation Non-aqueous electrolyte solution and lithium secondary battery using the same
US8007938B2 (en) 2004-04-20 2011-08-30 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and lithium secondary battery using same
JP2006139951A (en) * 2004-11-10 2006-06-01 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery and nonaqueous electrolyte liquid for the same
JP2007027084A (en) * 2005-06-17 2007-02-01 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte solution secondary battery
KR100770502B1 (en) 2005-06-17 2007-10-25 마쯔시다덴기산교 가부시키가이샤 Non-aqueous electrolyte secondary battery
US8003253B2 (en) 2005-06-17 2011-08-23 Panasonic Corporation Non-aqueous electrolyte secondary battery
CN100466340C (en) * 2005-06-17 2009-03-04 松下电器产业株式会社 Non-aqueous electrolyte rechargeable battery
JP2008084705A (en) * 2006-09-28 2008-04-10 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP4702321B2 (en) * 2007-05-11 2011-06-15 宇部興産株式会社 Non-aqueous secondary battery
JP2007258183A (en) * 2007-05-11 2007-10-04 Ube Ind Ltd Nonaqueous secondary battery
US8053109B2 (en) * 2007-11-16 2011-11-08 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
JP2010192165A (en) * 2009-02-16 2010-09-02 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2011154949A (en) * 2010-01-28 2011-08-11 Sanyo Electric Co Ltd Nonaqueous secondary battery
US9153820B2 (en) 2010-06-30 2015-10-06 Zeon Corporation Binder composition for non-aqueous battery electrode, electrolyte solution composition for non-aqueous battery, and use thereof
JP2014049295A (en) * 2012-08-31 2014-03-17 Tdk Corp Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP2015195135A (en) * 2014-03-31 2015-11-05 三井化学株式会社 Nonaqueous electrolyte for battery and lithium secondary battery
CN106571487A (en) * 2015-10-13 2017-04-19 松下电器产业株式会社 Electrolytic solution for electrochemical devices and electrochemical device in which the electrolytic solution is used

Also Published As

Publication number Publication date
JP4066465B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
JP3756232B2 (en) Nonaqueous electrolyte secondary battery
JP4066465B2 (en) Nonaqueous electrolyte secondary battery
JPH11219730A (en) Nonaqueous electrolyte secondary battery
JPH113728A (en) Nonaqueous electrolyte secondary battery
JP4038826B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method
JP3661301B2 (en) Nonaqueous electrolyte for lithium secondary battery and nonaqueous electrolyte secondary battery
JPH09219217A (en) Nonaqueous electrolyte secondary battery
JP2008004557A (en) Nonaqueous electrolyte for lithium secondary battery
JP2005294274A (en) Electrolyte for nonaqueous secondary battery and nonaqueous electrolyte secondary battery
JPH09199168A (en) Nonaqueous electrolyte secondary battery
JPH09223516A (en) Nonaqueous electrolyte secondary battery
JP4096368B2 (en) Nonaqueous electrolyte secondary battery
JP4285407B2 (en) Non-aqueous electrolyte for lithium secondary battery and non-aqueous electrolyte secondary battery
JP4352469B2 (en) Non-aqueous electrolyte secondary battery
JPH09223517A (en) Nonaqueous electrolyte secondary battery
JP3666540B2 (en) Non-aqueous electrolyte secondary battery
JP4289324B2 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery
JP3641873B2 (en) Non-aqueous electrolyte secondary battery
JPH10144347A (en) Non-aqueous electrolyte secondary battery
JP2004006382A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery
JP3635884B2 (en) Non-aqueous electrolyte secondary battery
JP2005108862A (en) Nonaqueous electrolyte for lithium secondary battery and nonaqueous electrolyte secondary battery
JP4023484B2 (en) Non-aqueous electrolyte secondary battery
JP3663763B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP4218615B2 (en) Non-aqueous electrolyte for lithium secondary battery and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071231

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term