JPH09199168A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH09199168A
JPH09199168A JP8005484A JP548496A JPH09199168A JP H09199168 A JPH09199168 A JP H09199168A JP 8005484 A JP8005484 A JP 8005484A JP 548496 A JP548496 A JP 548496A JP H09199168 A JPH09199168 A JP H09199168A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
secondary battery
organic acid
acid
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8005484A
Other languages
Japanese (ja)
Inventor
Akihiro Matsufuji
明博 松藤
Hiroshi Ishizuka
弘 石塚
Masayuki Negoro
雅之 根来
Yukio Maekawa
幸雄 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP8005484A priority Critical patent/JPH09199168A/en
Publication of JPH09199168A publication Critical patent/JPH09199168A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-capacity nonaqueous electrolyte secondary battery having a high capacity and good charge/discharge cycle characteristics by using an oxide negative electrode and an electrolyte containing organic acid and/or organic acid salt in combination. SOLUTION: The positive electrode of this nonaqueous electrolyte secondary battery contains a material capable of reversibly storing/discharging lithium, and the negative electrode contains three or more kinds of atoms selected from 1, 2, 13, 14, 15 group atoms in the periodic table and is mainly made of an amorphous chalcogen compound and/or an amorphous oxide. A nonaqueous electrolyte contains lithium salt, and it contains at least one kind of organic acid and/or organic acid salt. The nonaqueous electrolyte secondary battery having a large capacity, excellent charge/discharge characteristics, and little deterioration of the discharge capacity by repeated charges/discharges is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、充放電サイクル特
性に優れた高容量非水電解質二次電池に関するものであ
り、負極材料が主として非晶質カルコゲン化合物及び、
または非晶質酸化物である放電容量の大きな非水電解質
二次電池の充放電サイクル寿命等の充放電特性の改良に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-capacity nonaqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics, wherein the negative electrode material is mainly composed of an amorphous chalcogen compound and
Also, the present invention relates to improvement of charge / discharge characteristics such as charge / discharge cycle life of a nonaqueous electrolyte secondary battery having a large discharge capacity, which is an amorphous oxide.

【0002】[0002]

【従来の技術】非水電解質二次電池用負極材料として
は、リチウム金属やリチウム合金が代表的であるが、そ
れらを用いると充放電中にリチウム金属が樹枝状に成長
したいわゆるデンドライトが発生し、内部ショートの原
因あるいはデンドライト自体の持つ高い活性のため、発
火などの危険をはらんでいた。これに対し、リチウムを
可逆的に挿入・放出可能な焼成炭素質材料が実用化され
るようになってきた。この炭素質材料の欠点は、それ自
体が導電性を持つので、過充電や急速充電の際に炭素質
材料の上にリチウム金属が析出する事があり、結局デン
ドライトを析出させてしまうことになる。これを避ける
ために、充電器を工夫したり、正極活物質を少なくして
過充電を防止する方法を採用したりしているが、後者の
方法では、活物質あたりの量が限定されるのでそのため
放電容量も限定されてしまう。また炭素質材料は密度が
比較的小さいため、体積当たりの容量が低いという二重
の意味で放電容量が制限されてしまうことになる。炭素
材料にリチウム箔を圧着もしくは積層して用いること
が、特開昭61−54165、特開平2−82447、
同2−215062、同3−122974、同3−27
2571、同5−144471、同5−144472、
同5−144473、同5−151995に開示されて
いるが、負極活物質として炭素材料を使用しているもの
であり、上記の問題を本質的に解決するものではなかっ
た。
2. Description of the Related Art As a negative electrode material for a non-aqueous electrolyte secondary battery, lithium metal and lithium alloy are typical, but when they are used, so-called dendrite in which lithium metal grows in a dendritic manner during charge and discharge is generated. However, dangers such as fire were caused due to the internal short circuit or the high activity of the dendrite itself. On the other hand, fired carbonaceous materials capable of reversibly inserting and releasing lithium have come into practical use. The disadvantage of this carbonaceous material is that it has conductivity in itself, so lithium metal may be deposited on the carbonaceous material during overcharging or rapid charging, resulting in the precipitation of dendrites. . In order to avoid this, we have devised a charger or adopted a method of reducing the positive electrode active material to prevent overcharging, but the latter method limits the amount per active material. Therefore, the discharge capacity is also limited. In addition, since the density of the carbonaceous material is relatively small, the discharge capacity is limited in the double sense that the capacity per volume is low. It is disclosed in JP-A-61-54165 and JP-A-2-82447 that a carbon material is used by pressure bonding or laminating a lithium foil.
2-215062, 3-122974, 3-27
2571, the same 5-144471, the same 5-144472,
Although disclosed in JP-A-5-144473 and JP-A-5-151995, the carbon material is used as the negative electrode active material, and the above problems are not essentially solved.

【0003】一方、リチウム金属,リチウム合金,炭素
質材料以外の負極材料としては、リチウムイオンを吸蔵
・放出する事ができるTiS2 、LiTiS2 (米国特
許第983476)、WO2 、FeO3 のリチウム化合
物(特開平3−112070)、Nb2 5 (特公昭6
2−59412、特開平2−82447)、酸化鉄、F
eO、Fe2 3 、Fe3 4 、酸化コバルト、Co
O、Co2 3 、Co34 (特開平3−29186
2)が知られている。これらの化合物はいづれも酸化還
元電位が低く、3V級の高放電電位を持つ非水電解質二
次電池を実現することができていない。また放電容量も
満足するものができていない。
On the other hand, as negative electrode materials other than lithium metal, lithium alloys, and carbonaceous materials, lithium of TiS 2 , LiTiS 2 (US Pat. No. 983476), WO 2 , FeO 3 capable of inserting and extracting lithium ions. Compound (JP-A-3-112070), Nb 2 O 5 (Japanese Patent Publication No.
2-59412, JP-A-2-82447), iron oxide, F
eO, Fe 2 O 3 , Fe 3 O 4 , cobalt oxide, Co
O, Co 2 O 3, Co 3 O 4 ( JP-A-3-29186
2) is known. None of these compounds has a low redox potential, and it has not been possible to realize a non-aqueous electrolyte secondary battery having a high discharge potential of 3 V class. Moreover, the discharge capacity is not satisfactory.

【0004】上記欠点を改良する目的で平均放電電圧が
3〜3.6V級の高放電電位を持つ非水電解質二次電池
を達成するものとして、負極材料にSn,V,Si,
B,Zrなどの酸化物、及び、それらの複合酸化物を用
いることが提案されている(特開平5−174818、
同6−60867、同6−275267、同6−325
765、同6−338324、EP−615296)。
これらSn,V,Si,B,Zrなどの酸化物、及び、
それらの複合酸化物は、ある種のリチウムを含む遷移金
属化合物の正極と組み合わせることにより、平均放電電
圧が3〜3.6V級で放電容量が大きく、又、実用領域
でのデンドライト発生がほとんどなく極めて安全性が高
い非水電解質二次電池を与えるが、充放電サイクル特性
が充分でないという問題があった。
For the purpose of improving the above-mentioned drawbacks, a non-aqueous electrolyte secondary battery having a high discharge potential with an average discharge voltage of 3 to 3.6 V is used as a negative electrode material containing Sn, V, Si,
It has been proposed to use oxides such as B and Zr, and composite oxides thereof (Japanese Patent Laid-Open No. 174818/1993).
6-60867, 6-275267, 6-325
765, 6-338324, EP-615296).
Oxides such as Sn, V, Si, B, and Zr, and
By combining these composite oxides with a positive electrode of a transition metal compound containing lithium of a certain kind, the average discharge voltage is 3 to 3.6 V class, the discharge capacity is large, and dendrite generation in the practical range is almost zero. Although a non-aqueous electrolyte secondary battery having extremely high safety is provided, there is a problem that the charge / discharge cycle characteristics are not sufficient.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、放電
容量の大きな非水電解質二次電池の充放電サイクル特性
を向上させることである。
An object of the present invention is to improve the charge / discharge cycle characteristics of a non-aqueous electrolyte secondary battery having a large discharge capacity.

【0006】[0006]

【課題を解決するための手段】本発明の課題は、リチウ
ムを可逆的に吸蔵放出可能な材料を含む正極及び負極、
リチウム塩を含む非水電解質、セパレーターから成る非
水電解質二次電池に於いて、該電解質が少なくとも1種
の有機酸を含有することを特徴とする非水電解質二次電
池によって達成された。
SUMMARY OF THE INVENTION An object of the present invention is to provide a positive electrode and a negative electrode containing a material capable of reversibly inserting and extracting lithium,
A non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte containing a lithium salt and a separator, the non-aqueous electrolyte secondary battery being characterized in that the electrolyte contains at least one organic acid.

【0007】[0007]

【発明の実施の形態】本発明においては、以下の形態を
用いることができるが、本発明はこれらに限定されるも
のではない。 (1)リチウムを可逆的に吸蔵放出可能な材料を含む正
極、周期率表1,2,13,14,15族原子から選ば
れる三種以上の原子を含む、主として非晶質カルコゲン
化合物及び/または非晶質酸化物からなる負極、リチウ
ム塩を含む非水電解質、セパレーターから成る非水電解
質二次電池に於いて、該非水電解質に少なくとも1種の
有機酸及び/または有機酸塩を含有することを特徴とす
る非水電解質二次電池。 (2)該非水電解質に含有する有機酸及び/または有機
酸塩が少なくとも1種のカルボン酸及び/またはカルボ
ン酸塩である項1に記載の非水電解質二次電池。 (3)該非水電解質に含有する有機酸及び/または有機
酸塩が少なくとも1種の多価カルボン酸及び/または多
価カルボン酸塩である項2に記載の非水電解質二次電
池。 (4)該非水電解質に含有する有機酸及び/または有機
酸塩の含有量が、電解質中の支持塩に対して0.001
重量%以上、10重量%以下であることを特徴とする項
1〜3のいずれか1項に記載の非水電解質二次電池。 (5)項4の支持塩がLiPF6 及び/またはLiBF
4 を含有することを特徴とする非水電解質二次電池。 (6)該負極材料の少なくとも一種が、一般式(1)で
示されることを特徴とする項1〜5のいずれか1項に記
載の非水電解質二次電池。 M1 2p4q6r 一般式(1) (式中、M1 、M2 は相異なりSi、Ge、Sn、P
b、P、B、Al、Sbから選ばれる少なくとも一種、
4 はLi,Na,K,Rb,Cs,Mg,Ca,S
r,Baから選ばれる少なくとも一種、M6 はO、S、
Teから選ばれる少なくとも一種、p 、q は各々0.0
01〜10、r は1.00〜50の数字を表す。) (7)該負極材料の少なくとも一種が、一般式(2)で
示されることを特徴とする項6に記載の非水電解質二次
電池。 SnM3p5q7r 一般式(2) (式中、M3 はSi、Ge、Pb、P、B、Alから選
ばれる少なくとも一種、M5 は、Li,Na,K,R
b,Cs,Mg,Ca,Sr,Baから選ばれる少なく
とも一種、M7 はO、Sから選ばれる少なくとも一種、
p 、q は各々0.001〜10、r は1.00〜50の
数字を表す。) (8)該正極材料の少なくとも1種が、Lix Co
2 、Lix NiO2 、Lix MnO2 、Lix Coa
Ni(1−a) O2 、Lix Cob V(1−b) Oz 、Li
x Cob Fe(1−b) O2 、Lix Mn2 4 、Lix
Mnc Co(2−c) O 4 、Lix Mnc Ni(2−c) O
4 、Lix Mnc V(2−c) O4 、Lix Mn c Fe(
2−c) O4 (式中、x=0.2〜1.2、a=0.1
〜0.9、b=0.8〜0.98、c=1.6〜1.9
6、z=2.01から2.3)であることをを特徴とす
る項1〜7のいずれか1項に記載の非水電解質二次電
池。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the following modes are provided.
However, the present invention is not limited thereto.
Not. (1) Positive electrode containing a material capable of reversibly inserting and extracting lithium
Pole, selected from the periodic table 1, 2, 13, 14, 15 atoms
Predominantly amorphous chalcogen containing three or more atoms
Negative electrode composed of compound and / or amorphous oxide, lithium
Non-aqueous electrolyte including a non-aqueous electrolyte and separator
Secondary battery, at least one nonaqueous electrolyte is used.
Characterized by containing an organic acid and / or an organic acid salt
Non-aqueous electrolyte secondary battery. (2) Organic acid and / or organic contained in the non-aqueous electrolyte
The acid salt is at least one carboxylic acid and / or carbohydrate.
Item 2. The non-aqueous electrolyte secondary battery according to item 1, which is a phosphate. (3) Organic acid and / or organic contained in the non-aqueous electrolyte
The acid salt is at least one polycarboxylic acid and / or polycarboxylic acid.
Item 3. The non-aqueous electrolyte secondary battery which is a carboxylic acid salt
pond. (4) Organic acid and / or organic contained in the non-aqueous electrolyte
The content of the acid salt is 0.001 with respect to the supporting salt in the electrolyte.
Item characterized by being at least 10% by weight
The non-aqueous electrolyte secondary battery according to any one of 1 to 3. (5) The supporting salt of Item 4 is LiPF6And / or LiBF
FourA non-aqueous electrolyte secondary battery comprising: (6) At least one of the negative electrode materials has the general formula (1)
In any one of items 1 to 5, characterized in that
Non-aqueous electrolyte secondary battery listed. M1M2pM4qM6r General formula (1) (wherein M1, MTwoAre different Si, Ge, Sn, P
at least one selected from b, P, B, Al and Sb,
MFourIs Li, Na, K, Rb, Cs, Mg, Ca, S
at least one selected from r and Ba, M6Is O, S,
At least one selected from Te, p and q are each 0.0
01-10 and r represent the number of 1.00-50. (7) At least one of the negative electrode materials has the general formula (2)
Item 7. The non-aqueous electrolyte secondary according to Item 6, characterized in that
battery. SnM3pM5qM7r General formula (2) (wherein MThreeIs selected from Si, Ge, Pb, P, B and Al.
At least one, MFiveIs Li, Na, K, R
b, Cs, Mg, Ca, Sr, Ba
Both kinds, M7Is at least one selected from O and S,
p and q are 0.001 to 10, and r is 1.00 to 50
Represents a number. (8) At least one of the positive electrode materials is Lix Co
OTwo, Lix NiOTwo, Lix MnOTwo, LixCoa
Ni (1-a) OTwo, LixCobV (1-b) Oz, Li
xCobFe (1-b) OTwo, LixMnTwoOFour, Lix
MncCo (2-c) O Four, LixMncNi (2-c) O
Four, LixMncV (2-c) OFour, LixMn cFe (
2-c) OFour(In the formula, x = 0.2 to 1.2, a = 0.1
~ 0.9, b = 0.8 ~ 0.98, c = 1.6 ~ 1.9
6, z = 2.01 to 2.3)
The non-aqueous electrolyte secondary battery according to any one of Items 1 to 7.
pond.

【0008】以下、本発明の構成について、詳細に説明
する。本発明においては、電解質に少なくとも1種の有
機酸を含有せしめることにより非水電解質二次電池の高
容量を損なうことなく充放電サイクル特性を向上させる
ことができる。本発明において用いることのできる有機
酸としては、例えば、分子中に少なくとも1個のカルボ
ン酸、スルフォン酸,スルフィン酸、スルフェン酸、リ
ン酸モノ(あるいはジ)エステル、ホスホン酸、ほう酸
モノ(あるいはジ)エステル、フェノールを含有してい
る有機化合物を挙げることができ、1分子中に同一また
は異なる酸官能基を複数含有している有機化合物も含ま
れる。好ましい酸官能基はカルボン酸、スルフォン酸、
ホスホン酸であり、特に好ましいものはカルボン酸であ
り、更に好ましいものジカルボン酸、トリカルボン酸等
である。また有機酸塩としては、前記の有機酸と、L
i、Na、K、Mg、Caなどのアルカリ金属あるいは
アルカリ土類金属、4級アンモニウムイオンなどとの塩
を挙げることが出来る。本発明の有機酸の例を以下に示
すが、本発明はこれらに限定されるものではない。有機
酸の例としては、酢酸、プロピオン酸、酪酸、パルミチ
ン酸、ステアリン酸などのモノカルボン酸、グリオキシ
ル酸、ピルビン酸、アセト酢酸、レブリン酸、フェニル
酢酸、ベンゾイルプロピオン酸などの置換カルボン酸、
安息香酸などの芳香族カルボン酸、シュウ酸、マロン
酸、コハク酸、グルタル酸、アジピン酸、1.4−シク
ロヘキサンジカルボン酸、マレイン酸、フタル酸等の脂
肪族あるいは芳香族ジカルボン酸、トリメリト酸、ピロ
メリト酸などの芳香族多価カルボン酸、ポリアクリル
酸、ポリメタクリル酸などを含有するポリマー、その他
メタンスルフォン酸、ベンゼンスルフォン酸、フェニル
ホスホン酸などを挙げることができる。
The structure of the present invention will be described in detail below. In the present invention, the charge and discharge cycle characteristics can be improved without impairing the high capacity of the non-aqueous electrolyte secondary battery by including at least one organic acid in the electrolyte. Examples of the organic acid that can be used in the present invention include at least one carboxylic acid, sulfonic acid, sulfinic acid, sulfenic acid, phosphoric acid mono (or di) ester, phosphonic acid, boric acid mono (or dicarboxylic acid) in the molecule. ) An organic compound containing an ester or a phenol can be mentioned, and an organic compound containing a plurality of the same or different acid functional groups in one molecule is also included. Preferred acid functional groups are carboxylic acid, sulfonic acid,
Phosphonic acids, particularly preferred are carboxylic acids, and more preferred are dicarboxylic acids, tricarboxylic acids and the like. The organic acid salts include the above-mentioned organic acids and L
Examples thereof include salts with alkali metals such as i, Na, K, Mg and Ca or alkaline earth metals and quaternary ammonium ions. Examples of the organic acid of the present invention are shown below, but the present invention is not limited thereto. Examples of organic acids include acetic acid, propionic acid, butyric acid, palmitic acid, monocarboxylic acids such as stearic acid, glyoxylic acid, pyruvic acid, acetoacetic acid, levulinic acid, phenylacetic acid, substituted carboxylic acids such as benzoylpropionic acid,
Aromatic carboxylic acids such as benzoic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, 1.4-cyclohexanedicarboxylic acid, maleic acid, aliphatic or aromatic dicarboxylic acids such as phthalic acid, trimellitic acid, Examples thereof include polymers containing aromatic polycarboxylic acid such as pyromellitic acid, polyacrylic acid, polymethacrylic acid and the like, and methanesulfonic acid, benzenesulfonic acid, phenylphosphonic acid and the like.

【0009】電解質に含有される有機酸、有機酸塩の含
有量は、電解液溶媒に対し、0.0001から0.1モ
ル/リットルが好ましく、0.001から0.1モル/
リットルが更に好ましい。電解質に含有される支持塩に
対する有機酸、有機酸塩の含有量としては、0.001
重量%から10重量%が好ましく、0.01〜5重量%
がより好ましい。
The content of organic acid or organic acid salt contained in the electrolyte is preferably 0.0001 to 0.1 mol / liter, and more preferably 0.001 to 0.1 mol / liter, based on the solvent of the electrolytic solution.
L is more preferred. The content of the organic acid and the organic acid salt with respect to the supporting salt contained in the electrolyte is 0.001.
% To 10% by weight is preferred, 0.01-5% by weight
Is more preferred.

【0010】電解質は、一般に、溶媒と、その溶媒に溶
解する支持塩から構成され、支持塩としてはリチウム塩
(アニオンとリチウムカチオン)が好ましい。本発明で
使用できる電解質の溶媒としては、プロピレンカーボネ
ート、エチレンカーボネート、ブチレンカーボネート、
ジメチルカーボネート、ジエチルカーボネート、メチル
エチルカーボネート、γ−ブチロラクトン、ギ酸メチ
ル、酢酸メチル、1,2−ジメトキシエタン、テトラヒ
ドロフラン、2−メチルテトラヒドロフラン、ジメチル
スルホキシド、1,3−ジオキソラン、ホルムアミド、
ジメチルホルムアミド、ジオキソラン、ジオキサン、ア
セトニトリル、ニトロメタン、エチルモノグライム、リ
ン酸トリエステル、トリメトキシメタン、ジオキソラン
誘導体、スルホラン、3−メチル−2−オキサゾリジノ
ン、プロピレンカーボネート誘導体、テトラヒドロフラ
ン誘導体、エチルエーテル、1,3−プロパンサルトン
などの非プロトン性有機溶媒を挙げることができ、これ
らの一種または二種以上を混合して使用する。なかで
は、カーボネート系の溶媒が好ましく、環状カーボネー
ト及び/または非環状カーボネートを含ませたものが好
ましい。環状カーボネートとしてはエチレンカーボネー
ト、プロピレンカーボネートをが好ましい。また、非環
状カーボネートとしたは、ジエチルカーボネート、ジメ
チルカーボネート、メチルエチルカーボネートを含ませ
ることが好ましい。本発明で使用出来るこれらの溶媒に
溶解する支持塩としては、例えば、LiClO4 、Li
BF4 、LiPF6 、LiCF3 SO3 、LiCF3
3 、LiAsF6 、LiSbF6 、低級脂肪族カルボ
ン酸リチウム、LiAlCl4 、LiCl、LiBr、
LiI、クロロボランリチウム、四フェニルホウ酸リチ
ウムなどのLi塩を上げることが出来、これらの一種ま
たは二種以上を混合して使用することができる。なかで
もLiBF4 及び/あるいはLiPF6 を溶解したもの
が好ましい。支持塩の濃度は、特に限定されないが、電
解質溶液1リットル当たり0.2〜3モルが好ましい。
本発明で使用できる電解質の組合せとしては、エチレン
カーボネート、プロピレンカーボネート、1,2−ジメ
トキシエタン、ジメチルカーボネートあるいはジエチル
カーボネートを適宜混合した電解液にLiCF3
3 、LiClO4、LiBF4 および/あるいはLi
PF6 を含む電解質が好ましい。特にプロピレンカーボ
ネートあるいはエチレンカーボネートと1、2−ジメト
キシエタン及び/あるいはジエチルカーボネートとの混
合溶媒にLiCF3 SO3 、LiClO4 、LiBF4
および/あるいはLiPF6 を含む電解質が好ましく、
特に、少なくともエチレンカーボネートとLiPF6
含むものが好ましい。これら電解質を電池内に添加する
量は、特に限定されないが、正極活物質や負極材料の量
や電池のサイズによって必要量用いることができる。
The electrolyte is generally composed of a solvent and a supporting salt which is soluble in the solvent, and the supporting salt is preferably a lithium salt (anion and lithium cation). The electrolyte solvent that can be used in the present invention, propylene carbonate, ethylene carbonate, butylene carbonate,
Dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, methyl formate, methyl acetate, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide,
Dimethylformamide, dioxolane, dioxane, acetonitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3 An aprotic organic solvent such as propane sultone can be mentioned, and one kind or a mixture of two or more kinds thereof is used. Of these, carbonate-based solvents are preferred, and those containing cyclic carbonate and / or non-cyclic carbonate are preferred. As the cyclic carbonate, ethylene carbonate and propylene carbonate are preferable. In addition, the non-cyclic carbonate preferably contains diethyl carbonate, dimethyl carbonate, and methyl ethyl carbonate. Examples of the supporting salt which can be used in the present invention and which is soluble in these solvents include LiClO 4 and Li
BF 4 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 C
O 3 , LiAsF 6 , LiSbF 6 , lower aliphatic lithium carboxylate, LiAlCl 4 , LiCl, LiBr,
Li salts such as LiI, lithium chloroborane and lithium tetraphenylborate can be used, and one or more of these can be used in combination. Among them, those in which LiBF 4 and / or LiPF 6 are dissolved are preferable. The concentration of the supporting salt is not particularly limited, but is preferably 0.2 to 3 mol per liter of the electrolyte solution.
The combination of electrolytes that can be used in the present invention includes LiCF 3 S in an electrolytic solution in which ethylene carbonate, propylene carbonate, 1,2-dimethoxyethane, dimethyl carbonate or diethyl carbonate is appropriately mixed.
O 3 , LiClO 4 , LiBF 4 and / or Li
An electrolyte containing PF 6 is preferred. In particular, LiCF 3 SO 3 , LiClO 4 , LiBF 4 in a mixed solvent of propylene carbonate or ethylene carbonate and 1,2-dimethoxyethane and / or diethyl carbonate.
And / or an electrolyte containing LiPF 6 is preferred,
Particularly, those containing at least ethylene carbonate and LiPF 6 are preferable. The amount of these electrolytes added to the battery is not particularly limited, but a necessary amount can be used depending on the amount of the positive electrode active material or the negative electrode material and the size of the battery.

【0011】以下、本発明の非水電解質二次電池を作る
ための他の材料と製造方法について詳述する。本発明の
非水電解質二次電池に用いられる正・負極は、正極合剤
あるいは負極合剤を集電体上に塗設して作ることが出来
る。正極あるいは負極合剤には、それぞれ正極活物質あ
るいは負極材料のほか、それぞれに導電剤、結着剤、分
散剤、フィラー、イオン導電剤、圧力増強剤や各種添加
剤を含むことができる。
Hereinafter, other materials and manufacturing methods for making the non-aqueous electrolyte secondary battery of the present invention will be described in detail. The positive and negative electrodes used in the nonaqueous electrolyte secondary battery of the present invention can be prepared by applying a positive electrode mixture or a negative electrode mixture on a current collector. The positive electrode or negative electrode mixture can contain a conductive agent, a binder, a dispersant, a filler, an ionic conductive agent, a pressure enhancer, and various additives, respectively, in addition to the positive electrode active material or the negative electrode material.

【0012】本発明で用いられる負極材料は、電池組み
込み時に主として非晶質であることが好ましい。ここで
言う主として非晶質とはCuKα線を用いたX線回折法
で2θ値で20°から40°に頂点を有するブロードな
散乱帯を有する物であり、結晶性の回折線を有してもよ
い。好ましくは2θ値で40°以上70°以下に見られ
る結晶性の回折線の内最も強い強度が、2θ値で20°
以上40°以下に見られるブロードな散乱帯の頂点の回
折線強度の500倍以下であることが好ましく、さらに
好ましくは100倍以下であり、特に好ましくは5倍以
下であり、最も好ましくは 結晶性の回折線を有さない
ことである。
The negative electrode material used in the present invention is preferably mainly amorphous when incorporated in a battery. The term “amorphous” as used herein refers to a substance having a broad scattering band having a peak at 20 ° to 40 ° in 2θ value by X-ray diffraction using CuKα ray, and having a crystalline diffraction line. Is also good. Preferably, the strongest intensity of the crystalline diffraction lines observed at 40 ° to 70 ° in 2θ value is 20 ° in 2θ value.
It is preferably 500 times or less, more preferably 100 times or less, particularly preferably 5 times or less, and most preferably the crystallinity of the diffraction line intensity at the peak of the broad scattering band observed at 40 ° or more. Has no diffraction line.

【0013】本発明で用いられる負極材料は下記一般式
(1)で表されることが好ましい。 M1 2p4q6r 一般式(1) 式中、M1 、M2 は相異なりSi、Ge、Sn、Pb、
P、B、Al、Sbから選ばれる少なくとも一種であ
り、好ましくはSi、Ge、Sn、P、B、Alであ
り、特に好ましくはSi、Sn、P、B、Alである。
4 はLi,Na,K,Rb,Cs,Mg,Ca,S
r,Baから選ばれる少なくとも一種であり、好ましく
はK,Cs,Mg,Caで、特に好ましくはCs,Mg
である。M6 はO、S、Teから選ばれる少なくとも一
種であり、好ましくはO、Sであり、特に好ましくはO
である。p 、q は各々0.001〜10であり、好まし
くは0.01〜5であり、特に好ましくは0.01〜2
である。 rは1.00〜50であり、好ましくは1.
00〜26であり、特に好ましくは1.02〜6であ
る。M1 、M2 の価数は特に限定されることはなく、単
独価数であっても、各価数の混合物であっても良い。ま
たM1 、M2 、M4 の比はM2 およびM4 がM1 に対し
て0.001〜10モル当量の範囲において連続的に変
化させることができ、それに応じM6 の量(一般式
(1)において、r の値)も連続的に変化する。
The negative electrode material used in the present invention is preferably represented by the following general formula (1). M 1 M 2p M 4q M 6r General formula (1) In the formula, M 1 and M 2 are different from each other. Si, Ge, Sn, Pb,
It is at least one selected from P, B, Al, and Sb, preferably Si, Ge, Sn, P, B, and Al, and particularly preferably Si, Sn, P, B, and Al.
M 4 is Li, Na, K, Rb, Cs, Mg, Ca, S
It is at least one selected from r and Ba, preferably K, Cs, Mg and Ca, and particularly preferably Cs and Mg.
It is. M 6 is at least one selected from O, S and Te, preferably O and S, and particularly preferably O.
It is. p and q are each 0.001 to 10, preferably 0.01 to 5, and particularly preferably 0.01 to 2;
It is. r is 1.00 to 50, preferably 1.
00 to 26, particularly preferably 1.02 to 6. The valences of M 1 and M 2 are not particularly limited, and may be a single valence or a mixture of each valence. Further, the ratio of M 1 , M 2 and M 4 can be continuously changed within the range of 0.001 to 10 molar equivalents of M 2 and M 4 with respect to M 1 , and accordingly the amount of M 6 (generally, In equation (1), the value of r) also changes continuously.

【0014】上記に挙げた化合物の中でも、本発明にお
いてはM1 がSnである場合が好ましく、一般式(2)
で表される。 SnM3p5q7r 一般式(2) 式中、M3 はSi 、Ge 、Pb 、P、B、Alから選ば
れる少なくとも一種であり、好ましくはSi 、Ge 、
P、B、Alであり、特に好ましくはSi 、P、B、A
lである。M5 はLi,Na,K,Rb,Cs,Mg,
Ca,Sr,Baから選ばれる少なくとも一種であり、
好ましくはCs、Mgで、特に好ましくはMgである。
7 はO、Sから選ばれる少なくとも一種であり、好ま
しくはOである。p 、q は各々0.001〜10であ
り、好ましくは0.01〜5であり、さらに好ましくは
0.01〜1.5であり、特に好ましくは0.7〜1.
5である。r は1.00〜50であり、好ましくは1.
00〜26であり、特に好ましくは1.02〜6であ
る。
Of the compounds listed above, it is preferred in the present invention that M 1 is Sn, and the compound represented by the general formula (2)
It is represented by SnM 3p M 5q M 7r General formula (2) In the formula, M 3 is at least one selected from Si, Ge, Pb, P, B and Al, preferably Si, Ge,
P, B, Al, particularly preferably Si, P, B, A
l. M 5 is Li, Na, K, Rb, Cs, Mg,
At least one selected from Ca, Sr, and Ba,
Preferably, it is Cs or Mg, particularly preferably Mg.
M 7 is at least one selected from O and S, and is preferably O. p and q are each 0.001 to 10, preferably 0.01 to 5, more preferably 0.01 to 1.5, and particularly preferably 0.7 to 1.
5 r is 1.00 to 50, preferably 1.r
00 to 26, particularly preferably 1.02 to 6.

【0015】本発明の負極材料の例を以下に示すが、本
発明はこれらに限定されるものではない。SnAl0.4
0.5 0.5 0.1 3.65、SnAl0.4 0.5 0.5
Na 0.2 3.7 、SnAl0.4 0.3 0.5 Rb0.2
3.4 、SnAl0.4 0.5 0.5 Cs0.4 3.65、Sn
Al0.4 0.5 0.5 0.1 Ge0.053.85、SnAl
0.4 0.5 0.5 0.1 Mg0.1 Ge0.023.83、Sn
Al0.4 0.4 0.4 3.2 、SnAl0.3 0.5
0.2 2.7 、SnAl0.3 0.5 0.2 2.7 、SnA
0.4 0.5 0.3 Ba0.08Mg0.083.26、SnAl
0.4 0.4 0.4 Ba0.083.28、SnAl0.4 0.5
0.53.6 、SnAl0.4 0.5 0.5 Mg0.1
3.7
Examples of the negative electrode material of the present invention are shown below.
The invention is not limited to these. SnAl0.4
B0.5P0.5K0.1O3.65, SnAl0.4B0.5P0.5
Na 0.2O3.7, SnAl0.4B0.3P0.5Rb0.2O
3.4, SnAl0.4B0.5P 0.5Cs0.4O3.65, Sn
Al0.4B0.5P0.5K0.1Ge0.05O3.85, SnAl
0.4B0.5P0.5K0.1Mg0.1Ge0.02O3.83, Sn
Al0.4B0.4P0.4O3.2, SnAl0.3B0.5P
0.2O2.7, SnAl0.3B0.5P0.2O2.7, SnA
l0.4B0.5P0.3Ba0.08Mg0.08O3.26, SnAl
0.4B0.4P0.4Ba0.08O3.28, SnAl0.4B0.5
P0.5O3.6, SnAl0.4B0.5P0.5Mg0.1O
3.7.

【0016】SnAl0.5 0.4 0.5 Mg0.1 0.2
3.65、SnB0.5 0.5 Li0.1 Mg0.1 0.2
3.05、SnB0.5 0.5 0.1 Mg0.1 0.2 3.05
SnB0.5 0.5 0.05Mg0.050.1 3.03、SnB
0.5 0.5 0.05Mg0.1 0.2 3.03、SnAl0.4
0.5 0.5 Cs0.1 Mg0.1 0.2 3.65、SnB
0.5 0.5 Cs0.05Mg0.050.1 3.03、SnB0.5
0.5 Mg0.1 0.1 3.05、SnB0.5 0.5 Mg
0.1 0.2 3、SnB0.5 0.5 Mg0.1 0.06
3.07、SnB0.5 0.5 Mg0.1 0.14 3.03、SnP
Ba0.083.58、SnPK0.1 3.55、SnPK0.05
0.053. 58、SnPCs0.1 3.55、SnPBa0.08
0.083.54、SnPK0.1 Mg0.1 0.2 3.55、S
nPK0.05Mg0.050.1 3.53、SnPCs0.1 Mg
0.1 0.2 3.55、SnPCs0.05Mg0.050.1
3.53
SnAl0.5B0.4P0.5Mg0.1F0.2
O3.65, SnB0.5P0.5Li0.1Mg0.1F0.2O
3.05, SnB0.5P0.5K0.1Mg0.1F0.2O3.05,
SnB0.5P0.5K0.05Mg0.05F0.1O3.03, SnB
0.5P0.5K0.05Mg0.1F0.2O3.03, SnAl0.4
B0.5P0.5Cs0.1Mg0.1F0.2O3.65, SnB
0.5P0.5Cs0.05Mg0.05F0.1O3.03, SnB0.5
P0.5Mg0.1F0.1O3.05, SnB0.5P0.5Mg
0.1F0.2OThree, SnB0.5P0.5Mg0.1F0.06O
3.07, SnB0.5P0.5Mg0.1F0.14O 3.03, SnP
Ba0.08O3.58, SnPK0.1O3.55, SnPK0.05M
g0.05O3. 58, SnPCs0.1O3.55, SnPBa0.08
F0.08O3.54, SnPK0.1Mg0.1F0.2O3.55, S
nPK0.05Mg0.05F0.1O3.53, SnPCs0.1Mg
0.1F0.2O3.55, SnPCs0.05Mg0.05F0.1O
3.53.

【0017】Sn1.1 Al0.4 0.2 0.6 Ba0.08
0.083.54、Sn1.1 Al0.4 0.2 0.6 Li0.1
0.1 Ba0.1 0.1 3.65、Sn1.1 Al0.4 0.4
0.4 Ba0.083.34、Sn1.1 Al0.4 PCs0.05
4.23、Sn1.1 Al0.4 PK0.054.23、Sn1.4 Al
0.5 0.3 0.4 Cs0. 2 3.5 、Sn1.2 Al0.4
0.2 0.6 Ba0.083.68、Sn1.2 Al0.4 0.2
0.6 Ba0.080.083.64、Sn1.2 Al0.4 0.2
0.6 Mg0.04Ba0.043.68、Sn1.2 Al0.4 0.3
0.5 Ba0.083.58、Sn1.3 Al0.3 0.3 0.4
Na0.2 3.3 、Sn1.3 Al0.2 0.4 0.4 Ca
0.2 3.4 、Sn1.3 Al0.4 0.4 0.4 Ba0.2
3.6 、Sn1.4 Al0.4 PK0.2 4. 6 、Sn1.4 Al
0.2 Ba0.1 PK0.2 4.45、Sn1.4 Al0.2 Ba
0.2 PK 0.2 4.6 、Sn1.4 Al0.4 Ba0.2 PK
0.2 Ba0.1 0.2 4.9 、Sn1.4 Al0.4 PK0.3
4.65、Sn1.5 Al0.2 PK0.2 4.4 、Sn1.5
0.4 PK0.1 4.65、Sn1.5 Al0.4 PCs0.05
4.63、Sn1.5 Al0.4 PCs0.05Mg0.1 0.2
4.63
Sn1.1Al0.4B0.2P0.6Ba0.08F
0.08O3.54, Sn1.1Al0.4B0.2P0.6Li0.1K
0.1Ba0.1F0.1O3.65, Sn1.1Al0.4B0.4P
0.4Ba0.08O3.34, Sn1.1Al0.4PCs0.05O
4.23, Sn1.1Al0.4PK0.05O4.23, Sn1.4Al
0.5B0.3P0.4Cs0. TwoO3.5, Sn1.2Al0.4B
0.2P0.6Ba0.08O3.68, Sn1.2Al0.4B0.2P
0.6Ba0.08F0.08O3.64, Sn1.2Al0.4B0.2P
0.6Mg0.04Ba0.04O3.68, Sn1.2Al0.4B0.3
P0.5Ba0.08O3.58, Sn1.3Al0.3B0.3P0.4
Na0.2O3.3, Sn1.3Al0.2B0.4P0.4Ca
0.2O3.4, Sn1.3Al0.4B0.4P0.4Ba0.2O
3.6, Sn1.4Al0.4PK0.2OFour. 6, Sn1.4Al
0.2Ba0.1PK0.2O4.45, Sn1.4Al0.2Ba
0.2PK 0.2O4.6, Sn1.4Al0.4Ba0.2PK
0.2Ba0.1F0.2O4.9, Sn1.4Al0.4PK0.3
O4.65, Sn1.5Al0.2PK0.2O4.4, Sn1.5A
l0.4PK0.1O4.65, Sn1.5Al0.4PCs0.05O
4.63, Sn1.5Al0.4PCs0.05Mg0.1F0.2O
4.63.

【0018】SnSi0.5 Al0.1 0.2 0.1 Ca
0.4 3.1 、SnSi0.4 Al0.2 0. 4 2.7 、Sn
Si0.5 Al0.2 0.1 0.1 Mg0.1 2.8 、SnS
0.6 Al0.2 0.2 2.8 、SnSi0.5 Al0.3
0.4 0.2 3.55、SnSi0.5Al0.3 0.4 0.5
4.30、SnSi0.6 Al0.1 0.1 0.3 3.25、S
nSi0.6 Al0.1 0.1 0.1 Ba0.2 2.95、Sn
Si0.6 Al0.1 0.1 0.1 Ca0.2 2.95、SnS
0.6 Al0.4 0.2 Mg0.1 3.2 、SnSi0.6
0.1 0.3 0. 1 3.05、SnSi0.6 Al0.2 Mg
0.2 2.7 、SnSi0.6 Al0.2 Ca0. 2 2.7 、S
nSi0.6 Al0.2 0.2 3 、SnSi0.6 0.2
0.2 3 、SnSi0.8 Al0.2 2.9 、SnSi0.8
Al0.3 0.2 0.2 3.85、SnSi0.8 0.2
2.9 、SnSi0.8 Ba0.2 2.8 、SnSi0.8 Mg
0. 2 2.8 、SnSi0.8 Ca0.2 2.8 、SnSi
0.8 0.2 3.1
SnSi 0.5 Al 0.1 B 0.2 P 0.1 Ca
0.4 O 3.1, SnSi 0.4 Al 0.2 B 0. 4 O 2.7, Sn
Si 0.5 Al 0.2 B 0.1 P 0.1 Mg 0.1 O 2.8 , SnS
i 0.6 Al 0.2 B 0.2 O 2.8 , SnSi 0.5 Al 0.3 B
0.4 P 0.2 O 3.55 , SnSi 0.5 Al 0.3 B 0.4 P 0.5
O 4.30 , SnSi 0.6 Al 0.1 B 0.1 P 0.3 O 3.25 , S
nSi 0.6 Al 0.1 B 0.1 P 0.1 Ba 0.2 O 2.95 , Sn
Si 0.6 Al 0.1 B 0.1 P 0.1 Ca 0.2 O 2.95 , SnS
i 0.6 Al 0.4 B 0.2 Mg 0.1 O 3.2 , SnSi 0.6 A
l 0.1 B 0.3 P 0. 1 O 3.05, SnSi 0.6 Al 0.2 Mg
0.2 O 2.7, SnSi 0.6 Al 0.2 Ca 0. 2 O 2.7, S
nSi 0.6 Al 0.2 P 0.2 O 3 , SnSi 0.6 B 0.2 P
0.2 O 3 , SnSi 0.8 Al 0.2 O 2.9 , SnSi 0.8
Al 0.3 B 0.2 P 0.2 O 3.85 , SnSi 0.8 B 0.2 O
2.9 , SnSi 0.8 Ba 0.2 O 2.8 , SnSi 0.8 Mg
0. 2 O 2.8, SnSi 0.8 Ca 0.2 O 2.8, SnSi
0.8 P 0.2 O 3.1 .

【0019】Sn0.9 Mn0.3 0.4 0.4 Ca0.1
0.1 2.95、Sn0.9 Fe0.3 0.4 0.4 Ca0.1
Rb0.1 2.95、Sn0.8 Pb0.2 Ca0.1 0.9
3.35、Sn0.3 Ge0.7 Ba0.1 0.9 3. 35、Sn
0.9 Mn0.1 Mg0.1 0.9 3.35、Sn0.2 Mn0.8
Mg0.1 0.93.35、Sn0.7 Pb0.3 Ca0.1
0.9 3.35、Sn0.2 Ge0.8 Ba0.1 0.9 3.35
Sn0.9Mn0.3B0.4P0.4Ca0.1R
b0.1O2.95, Sn0.9Fe0.3B0.4P0.4Ca0.1
Rb0.1O2.95, Sn0.8Pb0.2Ca0.1P0.9O
3.35, Sn0.3Ge0.7Ba0.1P0.9O3. 35, Sn
0.9Mn0.1Mg0.1P0.9O3.35, Sn0.2Mn0.8
Mg0.1P0.9O3.35, Sn0.7Pb0.3Ca0.1P
0.9O3.35, Sn0.2Ge0.8Ba0.1P 0.9O3.35.

【0020】上記焼成されて得られた化合物の化学式
は、測定方法として誘導結合プラズマ(ICP)発光分
光分析法、簡便法として、焼成前後の粉体の重量差から
算出できる。
The chemical formula of the compound obtained by the above calcination can be calculated by an inductively coupled plasma (ICP) emission spectroscopy as a measuring method, and as a simple method from the weight difference between the powder before and after calcination.

【0021】本発明の負極材料への軽金属挿入量は、そ
の軽金属の析出電位に近似するまででよいが、例えば、
負極材料当たり50〜700モル%が好ましいが、特
に、100〜600モル%が好ましい。その放出量は挿
入量に対して多いほど好ましい。軽金属の挿入方法は、
電気化学的、化学的、熱的方法が好ましい。電気化学的
方法は、正極活物質に含まれる軽金属を電気化学的に挿
入する方法や軽金属あるいはその合金から直接電気化学
的に挿入する方法が好ましい。化学的方法は、軽金属と
の混合、接触あるいは、有機金属、例えば、ブチルリチ
ウム等と反応させる方法がある。電気化学的方法、化学
的方法が好ましい。該軽金属はリチウムあるいはリチウ
ムイオンが特に好ましい。
The amount of the light metal to be inserted into the negative electrode material of the present invention may be close to the deposition potential of the light metal.
The amount is preferably from 50 to 700 mol%, more preferably from 100 to 600 mol%, per negative electrode material. It is preferable that the release amount be larger than the insertion amount. How to insert light metal
Electrochemical, chemical and thermal methods are preferred. As the electrochemical method, a method of electrochemically inserting a light metal contained in the positive electrode active material or a method of directly electrochemically inserting a light metal or an alloy thereof from a light metal is preferable. As a chemical method, there is a method of mixing or contacting with a light metal or a method of reacting with an organic metal such as butyllithium. Electrochemical and chemical methods are preferred. The light metal is particularly preferably lithium or lithium ion.

【0022】本発明においては、以上示したような一般
式(1)、(2)で示される化合物を主として負極材料
として用いることにより、より充放電サイクル特性の優
れた、かつ高い放電電圧、高容量で安全性が高く,高電
流特性が優れた非水電解質二次電池を得ることができ
る。本発明において、特に優れた効果を得ることができ
るのはSnを含有し且つSnの価数が2価で存在する化
合物を負極材料として用いることである。Snの価数は
化学滴定操作によって求めることができる。例えばPhys
ics and Chemistry of Glasses Vol.8 No.4 (1967)の1
65頁に記載の方法で分析することができる。また、S
nの固体核磁気共鳴(NMR)測定によるナイトシフト
から決定することも可能である。例えば、幅広測定にお
いて金属Sn(0価のSn)はSn(CH3 4 に対し
て7000ppm付近と極端に低磁場にピークが出現す
るのに対し、SnO(=2価)では100ppm付近、
SnO2 (=4価)では−600ppm付近に出現す
る。このように同じ配位子を有する場合ナイトシフトが
中心金属であるSnの価数に大きく依存するので、119
Sn−NMR測定で求められたピーク位置で価数の決定
が可能となる。本発明の負極材料に各種化合物を含ませ
ることができる。例えば、遷移金属(Sc、Ti、V、
Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Z
r、Nb、Mo、Tc、Ru、Rh、Pd、Ag、C
d、ランタノイド系金属、Hf、Ta、W、Re、O
s、Ir、Pt、Au、Hg)や周期表17族元素
(F、Cl)を含ませることができる。また電子伝導性
をあげる各種化合物(例えば、Sb、In、Nbの化合
物)のドーパントを含んでもよい。添加する化合物の量
は0〜20モル%が好ましい。
In the present invention, the compounds represented by the general formulas (1) and (2) as described above are mainly used as the negative electrode material, so that the charge and discharge cycle characteristics are more excellent, the high discharge voltage and the high discharge voltage are high. It is possible to obtain a non-aqueous electrolyte secondary battery with high capacity, high safety and excellent high current characteristics. In the present invention, a particularly excellent effect can be obtained by using a compound containing Sn and having a divalent Sn valence as the negative electrode material. The valence of Sn can be determined by a chemical titration operation. For example, Phys
ics and Chemistry of Glasses Vol.8 No.4 (1967)
It can be analyzed by the method described on page 65. Also, S
It can also be determined from the night shift by n solid state nuclear magnetic resonance (NMR) measurement. For example, in wide measurement, Sn (zero-valent Sn) has a peak in an extremely low magnetic field of around 7,000 ppm with respect to Sn (CH 3 ) 4 , whereas SnO (= 2 valence) has a peak of around 100 ppm.
In SnO 2 (= tetravalent), it appears near −600 ppm. In the case of having the same ligand as described above, the knight shift greatly depends on the valence of Sn as the central metal.
The valence can be determined at the peak position determined by Sn-NMR measurement. Various compounds can be included in the negative electrode material of the present invention. For example, transition metals (Sc, Ti, V,
Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Z
r, Nb, Mo, Tc, Ru, Rh, Pd, Ag, C
d, lanthanoid metal, Hf, Ta, W, Re, O
s, Ir, Pt, Au, Hg) and Group 17 elements of the periodic table (F, Cl). Further, it may contain dopants of various compounds (for example, compounds of Sb, In, and Nb) that increase electron conductivity. The amount of the compound added is preferably 0 to 20 mol%.

【0023】本発明における一般式(1)(2)で示さ
れる酸化物を主体とする複合酸化物の合成法は焼成法、
溶液法いずれの方法も採用することができる。例えば焼
成法について詳細に説明するとM1 化合物、M2 化合物
とM4 化合物(M1 、M2 は相異なりSi、Ge、S
n、Pb、P、B、Al、Sb、M4 はMg,Ca,S
r,Ba)を混合し、焼成せしめればよい。Sn化合物
としてはたとえばSnO、SnO2 、Sn2 3 、Sn
3 4 、Sn7 13・H2 O、Sn815、水酸化第一
錫、オキシ水酸化第二錫、亜錫酸、蓚酸第一錫、燐酸第
一錫、オルト錫酸、メタ錫酸、パラ錫酸、弗化第一錫、
弗化第二錫、塩化第一錫、塩化第二錫、ピロリン酸第一
錫、リン化錫、硫化第一錫、硫化第二錫、等を挙げるこ
とができる。Si化合物としてはたとえばSiO2 、S
iO、テトラメチルシラン、テトラエチルシラン等の有
機珪素化合物、テトラメトキシシラン、テトラエトキシ
シラン等のアルコキシシラン化合物、トリクロロハイド
ロシラン等のハイドロシラン化合物を挙げることができ
る。Ge化合物としてはたとえばGeO2 、GeO、ゲ
ルマニウムテトラメトキシド、ゲルマニウムテトラエト
キシド等のアルコキシゲルマニウム化合物等を挙げるこ
とができる。Pb化合物としてはたとえばPbO2 、P
bO、Pb2 3 、Pb3 4 、硝酸鉛、炭酸鉛、蟻酸
鉛、酢酸鉛、四酢酸鉛、酒石酸鉛、鉛ジエトキシド、鉛
ジ(イソプロポキシド)等を挙げることができる。P化
合物としてはたとえば五酸化リン、オキシ塩化リン、五
塩化リン、三塩化リン、三臭化リン、トリメチルリン
酸、トリエチルリン酸、トリプロピルリン酸、ピロリン
酸第一錫、リン酸ホウ素等を挙げることができる。B化
合物としてはたとえば三二酸化ホウ素、三塩化ホウ素、
三臭化ホウ素、炭化ホウ素、ほう酸、ほう酸トリメチ
ル、ほう酸トリエチル、ほう酸トリプロピル、ほう酸ト
リブチル、リン化ホウ素、リン酸ホウ素等を挙げること
ができる。Al化合物としてはたとえば酸化アルミニウ
ム(α−アルミナ、β−アルミナ)、ケイ酸アルミニウ
ム、アルミニウムトリ−iso−プロポキシド、亜テル
ル酸アルミニウム、塩化アルミニウム、ホウ化アルミニ
ウム、リン化アルミニウム、リン酸アルミニウム、乳酸
アルミニウム、ほう酸アルミニウム、硫化アルミニウ
ム、硫酸アルミニウム、ホウ化アルミニウム等を挙げる
ことができる。Sb化合物としてはたとえば三酸化二ア
ンチモン、トリフェニルアンチモン等を挙げることがで
きる。
The method for synthesizing the composite oxide mainly composed of the oxides represented by the general formulas (1) and (2) in the present invention is a firing method,
Any of the solution methods can be employed. For example, the firing method will be described in detail. M 1 compound, M 2 compound and M 4 compound (M 1 and M 2 are different from Si, Ge, S
n, Pb, P, B, Al, Sb, M 4 are Mg, Ca, S
r, Ba) may be mixed and fired. Examples of the Sn compound include SnO, SnO 2 , Sn 2 O 3 , and Sn.
3 O 4 , Sn 7 O 13 .H 2 O, Sn 8 O 15 , stannous hydroxide, stannic oxyhydroxide, stannic acid, stannous oxalate, stannous phosphate, orthostannic acid, meta Stannic acid, parastannic acid, stannous fluoride,
Examples thereof include stannic fluoride, stannous chloride, stannic chloride, stannous pyrophosphate, tin phosphide, stannous sulfide, and stannic sulfide. Examples of the Si compound include SiO 2 , S
Organic silicon compounds such as iO, tetramethylsilane and tetraethylsilane, alkoxysilane compounds such as tetramethoxysilane and tetraethoxysilane, and hydrosilane compounds such as trichlorohydrosilane can be exemplified. Examples of the Ge compound include GeO 2 , GeO, and alkoxy germanium compounds such as germanium tetramethoxide and germanium tetraethoxide. Examples of the Pb compound include PbO 2 and P
bO, Pb 2 O 3 , Pb 3 O 4 , lead nitrate, lead carbonate, lead formate, lead acetate, lead tetraacetate, lead tartrate, lead diethoxide, lead di (isopropoxide) and the like can be mentioned. Examples of the P compound include phosphorus pentoxide, phosphorus oxychloride, phosphorus pentachloride, phosphorus trichloride, phosphorus tribromide, trimethyl phosphate, triethyl phosphate, tripropyl phosphate, stannous pyrophosphate, boron phosphate and the like. Can be mentioned. As the B compound, for example, boron trioxide, boron trichloride,
Examples thereof include boron tribromide, boron carbide, boric acid, trimethyl borate, triethyl borate, tripropyl borate, tributyl borate, boron phosphide, and boron phosphate. Examples of the Al compound include aluminum oxide (α-alumina, β-alumina), aluminum silicate, aluminum tri-iso-propoxide, aluminum tellurite, aluminum chloride, aluminum boride, aluminum phosphide, aluminum phosphate, and lactic acid. Examples include aluminum, aluminum borate, aluminum sulfide, aluminum sulfate, and aluminum boride. Examples of the Sb compound include diantimony trioxide and triphenylantimony.

【0024】Mg,Ca,Sr,Ba化合物としては、
各々の酸化塩、水酸化塩、炭酸塩、リン酸塩、硫酸塩、
硝酸塩、アルミニウム化合物等を挙げることができる。
As the Mg, Ca, Sr, and Ba compounds,
Each oxide, hydroxide, carbonate, phosphate, sulfate,
Nitrate, aluminum compound and the like can be mentioned.

【0025】焼成条件としては、昇温速度として昇温速
度毎分4℃以上2000℃以下であることが好ましく、
さらに好ましくは6℃以上2000℃以下である。とく
に好ましくは10℃以上2000℃以下であり、かつ焼
成温度としては250℃以上1500℃以下であること
が好ましく、さらに好ましくは350℃以上1500℃
以下であり、とくに好ましくは500℃以上1500℃
以下であり、かつ焼成時間としては0.01時間以上1
00時間以下であることが好ましく、さらに好ましくは
0.5時間以上70時間以下であり、とくに好ましくは
1時間以上20時間以下であり、かつ降温速度としては
毎分2℃以上107℃以下であることが好ましく、さら
に好ましくは4℃以上107 ℃以下であり、とくに好ま
しくは6℃以上107 ℃以下であり、特に好ましくは1
0℃以上107 ℃以下である。本発明における昇温速度
とは「焼成温度(℃表示)の50%」から「焼成温度
(℃表示)の80%」に達するまでの温度上昇の平均速
度であり、本発明における降温速度とは「焼成温度(℃
表示)の80%」から「焼成温度(℃表示)の50%」
に達するまでの温度降下の平均速度である。降温は焼成
炉中で冷却してもよくまた焼成炉外に取り出して、例え
ば水中に投入して冷却してもよい。またセラミックスプ
ロセッシング(技報堂出版 1987)217頁記載の
gun法・Hammer−Anvil法・slap法・
ガスアトマイズ法・プラズマスプレー法・遠心急冷法・
melt drag法などの超急冷法を用いることもで
きる。またニューガラスハンドブック(丸善 199
1)172頁記載の単ローラー法、双ローラ法を用いて
冷却してもよい。焼成中に溶融する材料の場合には、焼
成中に原料を供給しつつ焼成物を連続的に取り出しても
よい。焼成中に溶融する材料の場合には融液を攪拌する
ことが好ましい。
The firing conditions are preferably a temperature raising rate of 4 ° C. or more and 2000 ° C. or less per minute,
More preferably, it is 6 ° C. or higher and 2000 ° C. or lower. It is particularly preferably 10 ° C or more and 2000 ° C or less, and the firing temperature is preferably 250 ° C or more and 1500 ° C or less, more preferably 350 ° C or more and 1500 ° C or less.
Or less, particularly preferably 500 ° C. or more and 1500 ° C.
And the firing time is 0.01 hours or more 1
It is preferably 00 hours or less, more preferably 0.5 hours or more and 70 hours or less, particularly preferably 1 hour or more and 20 hours or less, and the temperature decreasing rate is 2 ° C or more and 107 ° C or less per minute. It is more preferably 4 ° C. or higher and 10 7 ° C. or lower, particularly preferably 6 ° C. or higher and 10 7 ° C. or lower, and particularly preferably 1
It is above 0 ° C and below 10 7 ° C. The rate of temperature rise in the present invention is an average rate of temperature rise from “50% of firing temperature (displayed in ° C)” to “80% of firing temperature (displayed in ° C)”. "Firing temperature (℃
80% of the display) to “50% of the firing temperature (° C)”
Is the average rate of temperature drop to reach. The temperature may be cooled in a firing furnace, or may be taken out of the firing furnace and put into, for example, water for cooling. In addition, the gun method, Hammer-Anvil method, slap method, and the like described in page 217 of ceramics processing (Gihodo Shuppan 1987).
Gas atomizing method, plasma spray method, centrifugal quenching method,
An ultra-quenching method such as a melt drag method can also be used. See also New Glass Handbook (Maruzen 199
1) Cooling may be performed using a single roller method or a twin roller method described on page 172. In the case of a material that melts during firing, a fired product may be continuously taken out while supplying raw materials during firing. In the case of a material that melts during firing, it is preferable to stir the melt.

【0026】焼成ガス雰囲気は好ましくは酸素含有率が
5体積%以下の雰囲気であり、さらに好ましくは不活性
ガス雰囲気である。不活性ガスとしては例えば窒素、ア
ルゴン、ヘリウム、クリプトン、キセノン等が挙げられ
る。
The firing gas atmosphere is preferably an atmosphere having an oxygen content of 5% by volume or less, and more preferably an inert gas atmosphere. Examples of the inert gas include nitrogen, argon, helium, krypton, xenon, and the like.

【0027】本発明で用いられる一般式(1)(2)で
示される化合物の平均粒子サイズは0.1〜60μm が
好ましく、1.0〜30μm が特に好ましく、2.0〜
20μm がさらに好ましい。所定の粒子サイズにするに
は、良く知られた粉砕機や分級機が用いられる。例え
ば、乳鉢、ボールミル、サンドミル、振動ボールミル、
衛星ボールミル、遊星ボールミル、旋回気流型ジェット
ミルや篩などが用いられる。粉砕時には水、あるいはメ
タノール等の有機溶媒を共存させた湿式粉砕も必要に応
じて行うことが出来る。所望の粒径とするためには分級
を行うことが好ましい。分級方法としては特に限定はな
く、篩、風力分級機、水ひなどを必要に応じて用いるこ
とができる。分級は乾式、湿式ともに用いることができ
る。
The average particle size of the compounds represented by the general formulas (1) and (2) used in the present invention is preferably 0.1 to 60 μm, particularly preferably 1.0 to 30 μm, and 2.0 to
20 μm is more preferable. In order to obtain a predetermined particle size, a well-known pulverizer or classifier is used. For example, mortar, ball mill, sand mill, vibrating ball mill,
A satellite ball mill, a planetary ball mill, a swirling air jet mill, a sieve, and the like are used. At the time of pulverization, wet pulverization in the presence of water or an organic solvent such as methanol can also be performed as necessary. Classification is preferably performed to obtain a desired particle size. The classification method is not particularly limited, and a sieve, an air classifier, a drainage, and the like can be used as necessary. Classification can be performed both in a dry type and a wet type.

【0028】本発明で用いられるより好ましいリチウム
含有遷移金属酸化物正極材料としては、リチウム化合物
/遷移金属化合物(ここで遷移金属とは、Ti、V、C
r、Mn、Fe、Co、Ni、Mo、Wから選ばれる少
なくとも1種)の合計のモル比が0.3〜2.2になる
ように混合して合成することが好ましい。本発明で用い
られるとくに好ましいリチウム含有遷移金属酸化物正極
材料としては、リチウム化合物/遷移金属化合物(ここ
で遷移金属とは、V、Cr、Mn、Fe、Co、Niか
ら選ばれる少なくとも1種)の合計のモル比が0.3〜
2.2になるように混合して合成することが好ましい。
本発明で用いられるとくに好ましいリチウム含有遷移金
属酸化物正極材料とは、Lix QOy (ここでQは主と
して、その少なくとも一種がCo、Mn、Ni、V、F
eを含む遷移金属)、x=0.2〜1.2、y=1.4
〜3)であることが好ましい。Qとしては遷移金属以外
にAl、Ga、In、Ge、Sn、Pb、Sb、Bi、
Si、P、Bなどを混合してもよい。混合量は遷移金属
に対して0〜30モル%が好ましい。
A more preferable lithium-containing transition metal oxide positive electrode material used in the present invention is a lithium compound / transition metal compound (wherein the transition metal means Ti, V, C).
It is preferable to mix and synthesize so that the total molar ratio of r, Mn, Fe, Co, Ni, Mo, and W) is 0.3 to 2.2. As a particularly preferable lithium-containing transition metal oxide positive electrode material used in the present invention, a lithium compound / transition metal compound (wherein the transition metal is at least one selected from V, Cr, Mn, Fe, Co and Ni) The total molar ratio of
It is preferable to synthesize them by mixing them to 2.2.
Particularly preferable lithium-containing transition metal oxide positive electrode material used in the present invention is Lix QOy (wherein Q is mainly at least one of Co, Mn, Ni, V, and F).
e), x = 0.2-1.2, y = 1.4
To 3). As Q, besides transition metals, Al, Ga, In, Ge, Sn, Pb, Sb, Bi,
Si, P, B, etc. may be mixed. The mixing amount is preferably 0 to 30 mol% with respect to the transition metal.

【0029】本発明で用いられるさらに好ましいリチウ
ム含有金属酸化物正極材料としては、Lix CoO2
Lix NiO2 、Lix MnO2 、Lix Coa Ni
1-a 2 、Lix Cob 1-b Oz 、Lix Cob Fe
1-b 2 、Lix Mn2 4 、Lix Mnc Co2-c
4 、Lix Mnc Ni2-c 4 、Lix Mnc 2-c
4 、Lix Mnc Fe2-c 4 (ここでx=0.7〜
1.2、a=0.1〜0.9、b=0.8〜0.98、
c=1.6〜1.96、z=2.01〜2.3)があげ
られる。本発明で用いられる最も好ましいリチウム含有
遷移金属酸化物正極材料としては、Lix CoO2 、L
x NiO2 、Lix MnO2 、Lix Coa Ni1-a
O2 、Lix Mn2 4 、Lix Cob 1-b z (こ
こでx=0.7〜1.2、a=0.1〜0.9、b=
0.9〜0.98、z=2.01〜2.3)があげられ
る。本発明で用いられる最も好ましいリチウム含有遷移
金属酸化物正極材料としては、Lix CoO2 、Lix
NiO2 、Lix MnO2 、Lix Coa Ni
1-a2 、LixMn2 4 、Lix Cob 1-b
z (ここでx=0.7〜1.2、a=0.1〜0.9、
b=0.9〜0.98、z=2.02〜2.3)があげ
られる。ここで、上記のx値は、充放電開始前の値であ
り、充放電により増減する。
More preferred lithium used in the present invention
Examples of the metal-containing metal oxide positive electrode material include LixCoOTwo,
LixNiOTwo, LixMnOTwo, LixCoaNi
1-aO Two, LixCobV1-bOz, LixCobFe
1-bOTwo, LixMnTwoOFour, LixMncCo2-cO
Four, LixMncNi2-cOFour, LixMncV2-cO
Four, LixMncFe2-cOFour(Where x = 0.7-
1.2, a = 0.1-0.9, b = 0.8-0.98,
c = 1.6 to 1.96, z = 2.01 to 2.3).
Can be Most preferred lithium containing used in the present invention
As the transition metal oxide cathode material, LixCoOTwo, L
ixNiOTwo, LixMnOTwo, LixCoaNi1-a
O2, LixMnTwoOFour, LixCobV1-bOz(This
Where x = 0.7-1.2, a = 0.1-0.9, b =
0.9 to 0.98, z = 2.01 to 2.3).
You. Most Preferred Lithium-Containing Transitions Used in the Present Invention
As a metal oxide positive electrode material, LixCoOTwo, Lix
NiOTwo, LixMnOTwo, LixCoaNi
1-aOTwo, LixMnTwoOFour, LixCobV1-bO
z(Where x = 0.7-1.2, a = 0.1-0.9,
b = 0.9-0.98, z = 2.02-2.3)
Can be Here, the above x value is a value before the start of charging / discharging.
Change with charging and discharging.

【0030】本発明で使用出来る導電性の炭素化合物と
しては、構成された電池において、化学変化を起こさな
い電子伝導性材料であれば何でもよい。具体例として
は、鱗状黒鉛、鱗片状黒鉛、土状黒鉛等の天然黒鉛、石
油コークス、石炭コークス、セルロース類、糖類、メソ
フェーズピッチ等の高温焼成体、気相成長黒鉛等の人工
黒鉛等のグラファイト類、アセチレンブラック、ファー
ネスブラック、ケッチェンブラック、チャンネルブラッ
ク、ランプブラック、サーマルブラック等のカーボンブ
ラック類、アスファルトピッチ、コールタール、活性
炭、メソフューズピッチ、ポリアセン等をあげることが
出来る。これらの中では、グラファイトやカーボンブラ
ックが好ましい。炭素系以外の導電剤として、金属繊維
等の導電性繊維類、銅、ニッケル、アルミニウム、銀等
の金属粉類、酸化亜鉛、チタン酸カリウム等の導電性ウ
ィスカー類、酸化チタン等の導電性金属酸化物等を単独
またはこれらの混合物を必要に応じて含ませることが出
来る。
The conductive carbon compound that can be used in the present invention may be any electron-conductive material that does not undergo a chemical change in the constructed battery. Specific examples include flake graphite, flake graphite, natural graphite such as earthy graphite, petroleum coke, coal coke, celluloses, sugars, high-temperature fired bodies such as mesophase pitch, and graphite such as artificial graphite such as vapor-grown graphite. Carbon blacks such as acetylene black, furnace black, ketjen black, channel black, lamp black and thermal black, asphalt pitch, coal tar, activated carbon, meso fuse pitch, polyacene and the like. Of these, graphite and carbon black are preferable. As non-carbon conductive agents, conductive fibers such as metal fibers, metal powders such as copper, nickel, aluminum and silver, conductive whiskers such as zinc oxide and potassium titanate, conductive metals such as titanium oxide. Oxides and the like can be included alone or as a mixture thereof as required.

【0031】導電剤の合剤層への添加量は、負極材料ま
たは正極材料に対し6〜50重量%であることが好まし
く、特に6〜30重量%であることが好ましい。カーボ
ンや黒鉛では、6〜20重量%であることがが特に好ま
しい。
The amount of the conductive agent added to the mixture layer is preferably 6 to 50% by weight, more preferably 6 to 30% by weight, based on the negative electrode material or the positive electrode material. In the case of carbon or graphite, the content is particularly preferably 6 to 20% by weight.

【0032】本発明で用いる電極合剤を保持するための
結着剤としては、多糖類、熱可塑性樹脂及びゴム弾性を
有するポリマーを一種またはこれらの混合物を用いるこ
とが出来る。好ましい結着剤としては、でんぷん、カル
ボキシメチルセルロース、セルロース、ジアセチルセル
ロース、メチルセルロース、ヒドロキシエチルセルロー
ス、ヒドロキシプロピルセルロース、アルギン酸Na、
ポリアクリル酸、ポリアクリル酸Na、ポリビニルフェ
ノール、ポリビニルメチルエーテル、ポリビニルアルコ
ール、ポリビニルピロリドン、ポリアクリルアミド、ポ
リヒドロキシ(メタ)アクリレート、スチレンーマレイ
ン酸共重合体等の水溶性ポリマー、ポリビニルクロリ
ド、ポリテトラフルロロエチレン、ポリフッ化ビニリデ
ン、テトラフロロエチレン−ヘキサフロロプロピレン共
重合体、ビニリデンフロライド−テトラフロロエチレン
−ヘキサフロロプロピレン共重合体、ポリエチレン、ポ
リプロピレン、エチレン−プロピレン−ジエンターポリ
マー(EPDM)、スルホン化EPDM、ポリビニルア
セタール樹脂、メチルメタアクリレート、2−エチルヘ
キシルアクリレート等の(メタ)アクリル酸エステルを
含有する(メタ)アクリル酸エステル共重合体、(メ
タ)アクリル酸エステル−アクリロニトリル共重合体、
ビニルアセテート等のビニルエステルを含有するポリビ
ニルエステル共重合体、スチレンーブタジエン共重合
体、アクリロニトリルーブタジエン共重合体、ポリブタ
ジエン、ネオプレンゴム、フッ素ゴム、ポリエチレンオ
キシド、ポリエステルポリウレタン樹脂、ポリエーテル
ポリウレタン樹脂、ポリカーボネートポリウレタン樹
脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂
等のエマルジョン(ラテックス)あるいはサスペンジョ
ンを挙げることが出来る。特にポリアクリル酸エステル
系のラテックス、カルボキシメチルセルロース、ポリテ
トラフルオロエチレン、ポリフッ化ビニリデンが好まし
い。これらの結着剤は単独または混合して用いることが
出来る。その結着剤の添加量は、少ないと電極合剤の保
持力・凝集力が弱くまたサイクル性が悪く、多すぎると
電極体積が増加し電極単位体積あるいは単位重量あたり
の容量が減少し、さらに導電性が低下し、容量は減少す
る。結着剤の添加量は、特に限定されないが、1〜30
重量%が好ましく、特に2〜10重量%が好ましい。
As the binder for holding the electrode mixture used in the present invention, polysaccharides, thermoplastic resins, and polymers having rubber elasticity can be used alone or as a mixture thereof. Preferred binders include starch, carboxymethyl cellulose, cellulose, diacetyl cellulose, methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, sodium alginate,
Water-soluble polymers such as polyacrylic acid, sodium polyacrylate, polyvinylphenol, polyvinylmethylether, polyvinylalcohol, polyvinylpyrrolidone, polyacrylamide, polyhydroxy (meth) acrylate, styrene-maleic acid copolymer, polyvinyl chloride, polytetra Fluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfone (Meth) acrylates containing (meth) acrylic acid esters such as activated EPDM, polyvinyl acetal resin, methyl methacrylate, 2-ethylhexyl acrylate, etc. Acrylic acid ester copolymer, (meth) acrylic acid ester - acrylonitrile copolymer,
Polyvinyl ester copolymer containing vinyl ester such as vinyl acetate, styrene butadiene copolymer, acrylonitrile butadiene copolymer, polybutadiene, neoprene rubber, fluoro rubber, polyethylene oxide, polyester polyurethane resin, polyether polyurethane resin, polycarbonate Emulsions (latex) or suspensions of polyurethane resins, polyester resins, phenol resins, epoxy resins and the like can be given. In particular, polyacrylic ester latex, carboxymethyl cellulose, polytetrafluoroethylene, and polyvinylidene fluoride are preferable. These binders can be used alone or as a mixture. If the amount of the binder added is small, the holding power and cohesive force of the electrode mixture is weak and the cycleability is poor, and if too large, the electrode volume increases and the volume per electrode unit volume or unit weight decreases, and further, The conductivity decreases and the capacity decreases. The amount of the binder added is not particularly limited, but is 1 to 30.
% By weight, and particularly preferably 2 to 10% by weight.

【0033】本発明の負極合剤または正極合剤ペースト
の調整は、水系で行うことが好ましい。合剤ペーストの
調整は、まず活物質および導電剤を混合し、結着剤(樹
脂粉体のサスペンジョンまたはエマルジョン(ラテック
ス)状のもの)および水を加えて混練混合し、引続い
て、ミキサー、ホモジナイザー、ディゾルバー、プラネ
タリミキサー、ペイントシェイカー、サンドミル等の攪
拌混合機、分散機で分散して行うことが出来る。調整さ
れた正極活物質や負極活物質の合剤ペーストは、集電体
の上に塗布(コート)、乾燥、圧縮されて、主に用いら
れる。塗布は種々の方法で行うことが出来るが、例え
ば、リバースロール法、ダイレクトロール法、ブレード
法、ナイフ法、エクストルージョン法、カーテン法、グ
ラビア法、バー法、ディップ法及びスクイーズ法を挙げ
ることが出来る。ブレード法、ナイフ法及びエクストル
ージョン法が好ましい。塗布は、0.1〜100m/分
の速度で実施されることが好ましい。この際、合剤ペー
ストの液物性、乾燥性に合わせて、上記塗布方法を選定
することにより、良好な塗布層の表面状態を得ることが
出来る。その塗布層の厚み、長さや巾は、電池の大きさ
により決められるが、塗布層の厚みは、乾燥後圧縮され
た状態で、1〜2000μmが特に好ましい。
The negative electrode mixture or the positive electrode mixture paste of the present invention is preferably prepared in an aqueous system. The mixture paste is prepared by first mixing the active material and the conductive agent, adding the binder (suspension of resin powder or emulsion (latex)) and water, kneading and mixing, and then mixing, It can be carried out by dispersing using a homogenizer, a dissolver, a planetary mixer, a paint shaker, a stirring mixer such as a sand mill, or a disperser. The prepared mixture paste of the positive electrode active material and the negative electrode active material is mainly used after being coated (coated) on a current collector, dried, and compressed. Coating can be performed by various methods, for example, a reverse roll method, a direct roll method, a blade method, a knife method, an extrusion method, a curtain method, a gravure method, a bar method, a dip method, and a squeeze method. I can do it. The blade method, the knife method and the extrusion method are preferred. The coating is preferably performed at a speed of 0.1 to 100 m / min. At this time, by selecting the above-mentioned coating method in accordance with the liquid physical properties and drying properties of the mixture paste, a good surface state of the coating layer can be obtained. The thickness, length and width of the coating layer are determined depending on the size of the battery. The thickness of the coating layer is particularly preferably 1 to 2000 μm in a compressed state after drying.

【0034】ペレットやシートの水分除去のための乾燥
又は脱水方法としては、一般に採用されている方法を利
用することができ、熱風、真空、赤外線、遠赤外線、電
子線及び低湿風を単独あるいは組み合わせて用いること
が出来る。温度は80〜350℃の範囲が好ましく、特
に100〜250℃の範囲が好ましい。含水量は、電池
全体で2000ppm以下が好ましく、正極合剤、負極
合剤や電解質ではそれぞれ500ppm以下にすること
が充放電サイクル性の点で好ましい。
As a drying or dehydrating method for removing water from the pellets or sheets, a generally adopted method can be used. Hot air, vacuum, infrared rays, far infrared rays, electron beams and low humidity air can be used alone or in combination. Can be used. The temperature is preferably in the range of 80 to 350C, particularly preferably in the range of 100 to 250C. The water content is preferably 2000 ppm or less in the whole battery, and is preferably 500 ppm or less in each of the positive electrode mixture, the negative electrode mixture and the electrolyte from the viewpoint of charge / discharge cycleability.

【0035】シート状の電極合剤の圧縮は、一般に採用
されているプレス方法を用いることが出来るが、特に金
型プレス法やカレンダープレス法が好ましい。プレス圧
は、特に限定されないが、10kg/cm2 〜3t/c
2 が好ましい。カレンダープレス法のプレス速度は、
0.1〜50m/分が好ましい。プレス温度は、室温〜
200℃が好ましい。
The sheet-like electrode mixture can be compressed by a generally used pressing method, but a die pressing method and a calendar pressing method are particularly preferable. The pressing pressure is not particularly limited, but is 10 kg / cm 2 to 3 t / c.
m 2 is preferred. The press speed of the calendar press method is
0.1 to 50 m / min is preferred. Press temperature is room temperature ~
200 ° C. is preferred.

【0036】本発明で使用できる正極及び負極の支持体
即ち集電体は、材質として、正極にはアルミニウム、ス
テンレス鋼、ニッケル、チタン、またはこれらの合金で
あり、負極には銅、ステンレス鋼、ニッケル、チタン、
またはこれらの合金であり、形態としては、箔、エキス
パンドメタル、パンチングメタル、金網である。特に、
正極にはアルミニウム箔、負極には銅箔が好ましい。
The positive electrode and negative electrode supports, ie, current collectors, which can be used in the present invention, are made of aluminum, stainless steel, nickel, titanium or an alloy thereof for the positive electrode and copper, stainless steel for the negative electrode. Nickel, titanium,
Or, these are alloys, and are in the form of foil, expanded metal, punching metal, or wire mesh. Especially,
Aluminum foil is preferable for the positive electrode, and copper foil is preferable for the negative electrode.

【0037】本発明で使用できるセパレータは、イオン
透過度が大きく、所定の機械的強度を持ち、絶縁性の薄
膜であれば良く、材質として、オレフィン系ポリマー、
フッ素系ポリマー、セルロース系ポリマー、ポリイミ
ド、ナイロン、ガラス繊維、アルミナ繊維が用いられ、
形態として、不織布、織布、微孔性フィルムが用いられ
る。特に、材質として、ポリプロピレン、ポリエチレ
ン、ポリプロピレンとポリエチレンの混合体、ポリプロ
ピレンとテフロンの混合体、ポリエチレンとテフロンの
混合体が好ましく、形態として微孔性フィルムであるも
のが好ましい。特に、孔径が0.01〜1μm、厚みが
5〜50μmの微孔性フィルムが好ましい。
The separator which can be used in the present invention has a large ion permeability, has a predetermined mechanical strength, and is an insulating thin film. As a material, an olefin polymer,
Fluorine-based polymer, cellulose-based polymer, polyimide, nylon, glass fiber, alumina fiber is used,
As the form, a nonwoven fabric, a woven fabric, or a microporous film is used. In particular, the material is preferably polypropylene, polyethylene, a mixture of polypropylene and polyethylene, a mixture of polypropylene and Teflon, a mixture of polyethylene and Teflon, and the form is preferably a microporous film. In particular, a microporous film having a pore size of 0.01 to 1 μm and a thickness of 5 to 50 μm is preferable.

【0038】電池の形状はボタン、コイン、シート、シ
リンダー、角などのいずれにも適用できる。電池は、ペ
レット、シート状あるいはセパレーターと共に巻回した
電極を電池缶に挿入し、缶と電極を電気的に接続し、電
解液を注入し封口して形成する。この時、安全弁を封口
板として用いることができる。更に電池の安全性を保証
するためにPTC素子を用いるのが好ましい。
The shape of the battery can be applied to any of buttons, coins, sheets, cylinders, corners and the like. A battery is formed by inserting an electrode wound with a pellet, a sheet, or a separator into a battery can, electrically connecting the can and the electrode, injecting an electrolyte, and sealing the battery. At this time, a safety valve can be used as a sealing plate. Further, it is preferable to use a PTC element in order to guarantee the safety of the battery.

【0039】本発明で使用できる有底電池外装缶は材質
としてニッケルメッキを施した鉄鋼板、ステンレス鋼板
(SUS304、SUS304L,SUS304N、S
US316、SUS316L、SUS430、SUS4
44等)、ニッケルメッキを施したステンレス鋼板(同
上)、アルミニウムまたはその合金、ニッケル、チタ
ン、銅であり、形状として、真円形筒状、楕円形筒状、
正方形筒状、長方形筒状である。特に、外装缶が負極端
子を兼ねる場合は、ステンレス鋼板、ニッケルメッキを
施した鉄鋼板が好ましく、外装缶が正極端子を兼ねる場
合は、ステンレス鋼板、アルミニウムまたはその合金が
好ましい。
The bottomed battery outer can which can be used in the present invention is made of nickel-plated steel plate, stainless steel plate (SUS304, SUS304L, SUS304N, S).
US316, SUS316L, SUS430, SUS4
44, etc.), a nickel-plated stainless steel plate (same as above), aluminum or its alloy, nickel, titanium, and copper.
It has a square tubular shape and a rectangular tubular shape. In particular, when the outer can also serves as the negative electrode terminal, a stainless steel plate or a nickel-plated iron steel plate is preferable, and when the outer can also serves as the positive electrode terminal, a stainless steel plate, aluminum or an alloy thereof is preferable.

【0040】該シート状の合剤電極は、巻いたり、折っ
たりして缶に挿入し、缶とシートを電気的に接続し、電
解質を注入し、封口板を用いて電池缶を形成する。この
とき、安全弁を封口板として用いることが出来る。安全
弁の他、従来から知られている種々の安全素子を備えつ
けても良い。例えば、過電流防止素子として、ヒュー
ズ、バイメタル、PTC素子等が用いられる。また、安
全弁のほかに電池缶の内圧上昇の対策として、電池缶に
切込を入れる方法、ガスケット亀裂方法あるいは封口板
亀裂方法を利用することが出来る。また、充電機に過充
電や過放電対策を組み込んだ回路を具備させても良い。
The sheet-shaped mixture electrode is rolled or folded and inserted into a can, the can and the sheet are electrically connected, an electrolyte is injected, and a sealing plate is used to form a battery can. At this time, a safety valve can be used as a sealing plate. In addition to the safety valve, various conventionally known safety elements may be provided. For example, a fuse, a bimetal, a PTC element, or the like is used as the overcurrent prevention element. In addition to the safety valve, as a countermeasure against an increase in the internal pressure of the battery can, a method of making a cut in the battery can, a gasket cracking method or a sealing plate cracking method can be used. Further, the charger may be provided with a circuit incorporating measures for overcharging and overdischarging.

【0041】電解質は、全量を1回で注入してもよい
が、2段階以上に分けて行うことが好ましい。2段階以
上に分けて注入する場合、それぞれの液は同じ組成で
も、違う組成(例えば、非水溶媒あるいは非水溶媒にリ
チウム塩を溶解した溶液を注入した後、前記溶媒より粘
度の高い非水溶媒あるいは非水溶媒にリチウム塩を溶解
した溶液を注入)でも良い。また、電解質の注入時間の
短縮等のために、電池缶を減圧(好ましくは500〜1
torr 、より好ましくは400〜10 torr )したり、
電池缶に遠心力や超音波をかけることを行ってもよい。
The total amount of electrolyte may be injected once, but it is preferable to perform the injection in two or more stages. In the case of injecting in two or more stages, even if each solution has the same composition, different compositions (for example, after injecting a non-aqueous solvent or a solution of a lithium salt dissolved in a non-aqueous solvent, a non-aqueous solvent having a higher viscosity than the solvent) are used. A solution of a lithium salt dissolved in a solvent or a non-aqueous solvent may be injected). Also, in order to shorten the electrolyte injection time, the pressure of the battery can is reduced (preferably 500 to 1).
torr, more preferably 400 to 10 torr) or
Centrifugal force or ultrasonic waves may be applied to the battery can.

【0042】缶やリード板は、電気伝導性をもつ金属や
合金を用いることが出来る。例えば、鉄、ニッケル、チ
タン、クロム、モリブデン、銅、アルミニウム等の金属
あるいはそれらの合金が用いられる。キャップ、缶、シ
ート、リード板の溶接法は、公知の方法(例、直流又は
交流の電気溶接、レーザー溶接、超音波溶接)を用いる
ことが出来る。封口用シール剤は、アスファルト等の従
来から知られている化合物や混合物を用いることが出来
る。
For the can and the lead plate, a metal or alloy having electrical conductivity can be used. For example, metals such as iron, nickel, titanium, chromium, molybdenum, copper, and aluminum or alloys thereof are used. As a method for welding the cap, the can, the sheet, and the lead plate, a known method (eg, DC or AC electric welding, laser welding, ultrasonic welding) can be used. A conventionally known compound or mixture such as asphalt can be used as the sealing agent for sealing.

【0043】本発明で使用できるガスケットは、材質と
して、オレフィン系ポリマー、フッ素系ポリマー、セル
ロース系ポリマー、ポリイミド、ポリアミドであり、耐
有機溶媒性及び低水分透過性から、オレフィン系ポリマ
ーが好ましく、特にプロピレン主体のポリマーが好まし
い。さらに、プロピレンとエチレンのブロック共重合ポ
リマーであることが好ましい。
The gasket which can be used in the present invention is made of an olefin polymer, a fluorine polymer, a cellulosic polymer, a polyimide or a polyamide as a material, and the olefin polymer is preferable from the viewpoint of organic solvent resistance and low water permeability, and particularly, Polymers based on propylene are preferred. Further, it is preferably a block copolymer of propylene and ethylene.

【0044】本発明の電池は必要に応じて外装材で被覆
される。外装材としては、熱収縮チューブ、粘着テー
プ、金属フィルム、紙、布、塗料、プラスチックケース
等がある。また、外装の少なくとも一部に熱で変色する
部分を設け、使用中の熱履歴がわかるようにしても良
い。本発明の電池は必要に応じて複数本を直列及び/ま
たは並列に組み電池パックに収納される。電池パックに
は正温度係数抵抗体、温度ヒューズ、ヒューズ及び/ま
たは電流遮断素子等の安全素子の他、安全回路(各電池
及び/または組電池全体の電圧、温度、電流等をモニタ
ーし、必要なら電流を遮断する機能を有す回路)を設け
ても良い。また電池パックには、組電池全体の正極及び
負極端子以外に、各電池の正極及び負極端子、組電池全
体及び各電池の温度検出端子、組電池全体の電流検出端
子等を外部端子として設けることもできる。また電池パ
ックには、電圧変換回路(DC−DCコンバータ等)を
内蔵しても良い。また各電池の接続は、リード板を溶接
することで固定しても良いし、ソケット等で容易に着脱
できるように固定しても良い。さらには、電池パックに
電池残存容量、充電の有無、使用回数等の表示機能を設
けても良い。
The battery of the present invention is optionally covered with an exterior material. Examples of the exterior material include a heat-shrinkable tube, an adhesive tape, a metal film, paper, cloth, paint, a plastic case, and the like. Further, at least a part of the exterior may be provided with a portion that changes color by heat so that the heat history during use can be recognized. A plurality of batteries of the present invention are assembled in series and / or in parallel and stored in a battery pack as needed. In addition to safety elements such as positive temperature coefficient resistors, thermal fuses, fuses and / or current interrupting elements, battery packs have safety circuits (voltage, temperature, current, etc. of each battery and / or assembled battery as a whole, Then, a circuit having a function of interrupting the current may be provided. In addition to the positive and negative terminals of the whole battery pack, the positive and negative terminals of each battery, the temperature detection terminals of the whole battery pack and each battery, the current detection terminals of the whole battery pack, etc. shall be provided as external terminals on the battery pack. Can also. The battery pack may have a built-in voltage conversion circuit (such as a DC-DC converter). The connection of each battery may be fixed by welding a lead plate, or may be fixed by a socket or the like so that it can be easily detached. Further, the battery pack may be provided with a display function of the remaining battery capacity, the presence / absence of charging, the number of times of use, and the like.

【0045】本発明の電池は様々な機器に使用される。
特に、ビデオムービー、モニター内蔵携帯型ビデオデッ
キ、モニター内蔵ムービーカメラ、コンパクトカメラ、
一眼レフカメラ、レンズ付きフィルム、ノート型パソコ
ン、ノート型ワープロ、電子手帳、携帯電話、コードレ
ス電話、ヒゲソリ、電動工具、電動ミキサー、自動車等
に使用されることが好ましい。
The battery of the present invention is used in various devices.
In particular, video movies, portable VCRs with monitors, movie cameras with monitors, compact cameras,
It is preferably used for a single-lens reflex camera, a film with a lens, a notebook computer, a notebook word processor, an electronic organizer, a mobile phone, a cordless phone, a razor, a power tool, a power mixer, a car, and the like.

【0046】[0046]

【実施例】以下に具体例をあげ、本発明をさらに詳しく
説明するが、発明の主旨を越えない限り、本発明は実施
例に限定されるものではない。
The present invention will be described in more detail with reference to specific examples, but the present invention is not limited to the examples unless it exceeds the gist of the invention.

【0047】〔正極合剤ペーストの作成例;実施例、比
較例〕正極活物質;LiCoO2 (炭酸リチウムと四酸
化三コバルトと3:2のモル比で混合したものをアルミ
ナるつぼにいれ、空気中、毎分2℃で750℃に昇温し
4時間仮焼した後、さらに毎分2℃の速度で900℃に
昇温しその温度で8時間焼成し解砕したもの。中心粒子
サイズ5μm、洗浄品50gを100mlの水に分散し
た時の分散液の電導度は0.6mS/m、pHは10.
1、窒素吸着法による比表面積は0.42m2 /g)を
200gとアセチレンブラック10gとを、ホモジナイ
ザーで混合し、続いて結着剤として2−エチルヘキシル
アクリレートとアクリル酸とアクリロニトリルの共重合
体の水分散物(固形分濃度50重量%)を8g、濃度2
重量%のカルボキシメチルセルロース水溶液を60gを
加え混練混合し、さらに水を50gを加え、ホモジナイ
ザーで攪拌混合し、正極合剤ペーストを作成した。 〔負極合剤ペーストの作成例〕負極活物質;SnGe
0.1 0.5 0.58Mg0.1 0.1 3.35(一酸化錫6.
7g、ピロリン酸錫10.3g、三酸化二硼素1.7
g、炭酸カリウム0.7g、酸化マグネシウム0.4
g、二酸化ゲルマニウム1.0gを乾式混合し、アルミ
ナ製るつぼに入れ、アルゴン雰囲気下15℃/分で10
00℃まで昇温し、1100℃で12時間焼成した後、
10℃/分で室温にまで降温し焼成炉より取り出したも
のを集め、ジェットミルで粉砕したもの、平均粒径4.
5μm 、CuKα線を用いたX線回折法において2θ値
で28°付近に頂点を有するブロードなピークを有する
物であり、2θ値で40°以上70°以下には結晶性の
回折線は見られなかった。)を200g、導電剤(人造
黒鉛)30gとホモジナイザーで混合し、さらに結着剤
として濃度2重量%のカルボキシメチルセルロース水溶
液50g、ポリフッ化ビニリデン10gとを加え混合し
たものと水を30g加えさらに混練混合し、負極合剤ペ
ーストを作成した。 〔正極および負極電極シートの作成〕上記で作成した正
極合剤ペーストをブレードコーターで厚さ30μmのア
ルミニウム箔集電体の両面に、塗布量400g/m2
圧縮後のシートの厚みが280μmになるように塗布
し、乾燥した後、ローラープレス機で圧縮成型し所定の
大きさに裁断し、帯状の正極シートを作成した。さらに
ドライボックス(露点;−50℃以下のの乾燥空気)中
で遠赤外線ヒーターにて充分脱水乾燥し、正極シートを
作成した。同様に、負極合剤ペーストを20μmの銅箔
集電体に塗布し、上記正極シート作成と同様の方法で、
塗布量70g/m2 、圧縮後のシートの厚みが90μm
である負極シートを作成した。 〔電解質調整例(実施例1〜13)〕アルゴン雰囲気
で、200ccの細口のポリプロピレン容器に65.3
gの炭酸ジエチルをいれ、これに液温が30℃を越えな
いように注意しながら、22.2gの炭酸エチレンを少
量ずつ溶解した。次に、0.4gのLiBF4 ,12.
1gのLiPF6 を液温が30℃を越えないように注意
しながら、それぞれ順番に、上記ポリプロピレン容器に
少量ずつ溶解した。得られた電解質は比重1.135で
無色透明の液体であった。水分は18ppm(京都電子
製 商品名MKC−210型カールフィシャー水分測定
装置で測定)、遊離酸分は24ppm(ブロムチモール
ブルーを指示薬とし、0.1規定NaOH水溶液を用い
て中和滴定して測定)であった。さらにこの電解液に表
1に記載の化合物を所定濃度になるようにそれぞれ溶解
させ電解質を調整した。 〔シリンダー電池の作成例〕正極シート、微孔性ポリプ
ロピレンフィルム製セパレーター、負極シートおよびセ
パレーターの順に積層し、これを渦巻き状に巻回した。
この巻回体を負極端子を兼ねるニッケルメッキを施した
鉄製の有底円筒型電池缶に収納した。さらに電解質とし
て表1に記載の添加剤を加えた電解質を電池缶内に注入
した。正極端子を有する電池蓋をガスケットを介してか
しめて円筒型電池を作成した。
[Preparation Example of Positive Electrode Mixture Paste; Examples and Comparative Examples] Positive electrode active material; LiCoO 2 (a mixture of lithium carbonate and tricobalt tetroxide in a molar ratio of 3: 2 was placed in an alumina crucible and aired. Medium, heated to 750 ° C. at 2 ° C./min for 4 hours, calcined for 4 hours, further heated to 900 ° C. at a rate of 2 ° C./minute and fired at that temperature for 8 hours to be crushed. When 50 g of the washed product is dispersed in 100 ml of water, the dispersion has an electric conductivity of 0.6 mS / m and a pH of 10.
1. 200 g of a specific surface area of 0.42 m 2 / g) by a nitrogen adsorption method and 10 g of acetylene black were mixed with a homogenizer, and subsequently a copolymer of 2-ethylhexyl acrylate, acrylic acid and acrylonitrile was used as a binder. 8 g of water dispersion (solid content 50% by weight), concentration 2
A 60% by weight carboxymethylcellulose aqueous solution was added and kneaded and mixed, 50 g of water was further added, and the mixture was stirred and mixed by a homogenizer to prepare a positive electrode mixture paste. [Example of preparing negative electrode mixture paste] Negative electrode active material: SnGe
0.1 B 0.5 P 0.58 Mg 0.1 K 0.1 O 3.35 (tin monoxide 6.
7 g, tin pyrophosphate 10.3 g, diboron trioxide 1.7
g, potassium carbonate 0.7 g, magnesium oxide 0.4
g and 1.0 g of germanium dioxide were dry-mixed, placed in an alumina crucible, and heated at 10 ° C./min in an argon atmosphere at 10 ° C./min.
After heating to 00 ° C and firing at 1100 ° C for 12 hours,
3. What was taken out from the firing furnace after being cooled to room temperature at 10 ° C / min, and which was crushed by a jet mill and had an average particle size of 4.
It has a broad peak with an apex near 28 ° at 2θ value of 5 μm and an X-ray diffraction method using CuKα ray, and crystalline diffraction lines are observed at 40 ° to 70 ° at 2θ value. There wasn't. ) Is mixed with 30 g of a conductive agent (artificial graphite) with a homogenizer, 50 g of a carboxymethylcellulose aqueous solution having a concentration of 2% by weight as a binder and 10 g of polyvinylidene fluoride are added and mixed, and 30 g of water is further mixed and kneaded and mixed. Then, a negative electrode mixture paste was prepared. [Preparation of Positive Electrode and Negative Electrode Sheet] The positive electrode mixture paste prepared above was applied by a blade coater on both sides of an aluminum foil current collector having a thickness of 30 μm to give an application amount of 400 g / m 2 ,
The sheet was compressed so as to have a thickness of 280 μm, dried, and then compression-molded by a roller press and cut into a predetermined size to prepare a belt-shaped positive electrode sheet. Further, it was thoroughly dehydrated and dried with a far infrared heater in a dry box (dew point; dry air at -50 ° C or lower) to prepare a positive electrode sheet. Similarly, the negative electrode mixture paste is applied to a copper foil current collector having a thickness of 20 μm, and the same method for producing the positive electrode sheet is used.
Application amount 70 g / m 2 , compressed sheet thickness 90 μm
Was prepared. [Electrolyte Preparation Example (Examples 1 to 13)] 65.3 in a 200 cc narrow-mouth polypropylene container in an argon atmosphere.
2 g of ethylene carbonate was dissolved little by little, taking care that the liquid temperature did not exceed 30 ° C. Next, 0.4 g of LiBF 4 , 12.
1 g of LiPF 6 was dissolved little by little in the above polypropylene container, taking care so that the liquid temperature did not exceed 30 ° C. The obtained electrolyte was a colorless and transparent liquid having a specific gravity of 1.135. Moisture is 18 ppm (measured with a Karl Fischer moisture meter, Model MKC-210, manufactured by Kyoto Electronics Co., Ltd.), and free acid content is 24 ppm (measured by neutralization titration with a 0.1 N NaOH aqueous solution using bromthymol blue as an indicator). )Met. Further, the compounds shown in Table 1 were each dissolved in this electrolytic solution to a predetermined concentration to prepare an electrolyte. [Cylinder Battery Preparation Example] A positive electrode sheet, a microporous polypropylene film separator, a negative electrode sheet and a separator were laminated in this order and spirally wound.
The wound body was housed in a nickel-plated iron bottomed cylindrical battery can also serving as a negative electrode terminal. Further, an electrolyte to which the additives shown in Table 1 were added was injected into the battery can as the electrolyte. A battery cover having a positive electrode terminal was caulked via a gasket to produce a cylindrical battery.

【0048】(比較例1)実施例と同様の方法で、添加
剤を加えていない電解質を使用して円筒型電池を作成し
た。 (比較例2〜3)酸化物系負極活物質に変え、炭素系活
物質(黒鉛粉末)を用い前記負極シートの作成と同様の
方法で負極シートを作成し、表1の電解質をそれぞれ使
用して円筒型電池を作成した。
(Comparative Example 1) A cylindrical battery was prepared in the same manner as in Example 1 except that the electrolyte containing no additive was used. (Comparative Examples 2 to 3) A negative electrode sheet was prepared by using a carbon active material (graphite powder) in the same manner as the negative electrode sheet instead of the oxide negative electrode active material, and each of the electrolytes shown in Table 1 was used. To make a cylindrical battery.

【0049】上記の方法で作成した電池について、電流
密度5mA/cm2 、充電終止電圧4.1V、放電終止
電圧2.8Vの条件で充放電し、放電容量およびサイク
ル寿命を求めた。それぞれの電池の容量(Wh)の比、
およびサイクル性(充放電1回目に対する300回目容
量の割合)を表1に示す。
The battery prepared by the above method was charged and discharged under the conditions of a current density of 5 mA / cm 2 , a charge end voltage of 4.1 V and a discharge end voltage of 2.8 V, and the discharge capacity and cycle life were determined. The ratio of the capacity (Wh) of each battery,
Table 1 shows the cyclability (the ratio of the 300th capacity to the first charge / discharge).

【0050】 表1 実験 添加剤 添加濃度 初期容量 サイクル No 種類 (モル/リットル) 相対値 性 実施例1 プロピオン酸 0.001 1.0 80 実施例2 プロピオン酸 0.01 0.98 81 実施例3 プロピオン酸 0.05 0.97 82 実施例4 蓚酸 0.001 1.0 85 実施例5 蓚酸 0.01 1.01 85 実施例6 蓚酸 0.05 1.0 87 実施例7 コハク酸 0.01 0.99 84 実施例8 マレイン酸 0.01 0.98 83 実施例9 フタル酸 0.01 1.01 86 実施例10 トリメリト酸 0.01 0.99 84 実施例11 ピロメリト酸 0.01 1.02 88 実施例12 ベンゼンスルホン酸 0.01 0.96 82 実施例13 フェニルホスホン酸 0.01 0.98 86 実施例14 蓚酸リチウム 0.01 1.0 82 実施例15 コハク酸リチウム 0.01 1.0 82 比較例1 無し 0 1.0 70 比較例2 無し 0 0.80 75 比較例3 蓚酸 0.01 0.81 80Table 1 Experiment Additives Additive concentration Initial capacity Cycle No Type (mol / l) Relative value Example 1 Propionic acid 0.001 1.0 80 Example 2 Propionic acid 0.01 0.98 81 Example 3 Propionic acid 0.05 0.97 82 Example 4 Oxalic acid 0.001 1.0 85 Example 5 Oxalic acid 0.01 1.01 85 Example 6 Oxalic acid 0.05 1.0 87 Example 7 Succinic acid 0.01 0.9984 Example 8 Maleic acid 0.01 0.98 83 Example 9 Phthalic acid 0.01 1.01 86 Example 10 Trimellitic acid 0.01 0.9984 Example 11 Pyromellitic acid 0.01 1. 02 88 Example 12 Benzenesulfonic acid 0.01 0.96 82 Example 13 Phenylphosphonic acid 0.01 0.98 86 Example 14 Lithium oxalate 0.0 1.0 82 Example 15 succinic lithium 0.01 1.0 82 Comparative Example 1 None 0 1.0 70 Comparative Example 2 None 0 0.80 75 Comparative Example 3 oxalate 0.01 0.81 80

【0051】本発明の実施例1〜15に示すように、酸
化物系負極活物質を使用し、有機酸あるいは有機酸塩を
添加した電解質とを組み合わせた電池は、比較例1の有
機酸あるいは有機酸塩を添加していない電解質を使用し
た電池に比較してサイクル性が向上していることが明ら
かである。また、本実施例の電池は、比較例2〜3の炭
素系負極活物質を使用した電池に対し、容量が大きく、
さらに、有機酸あるいは有機酸塩添加によるサイクル性
の向上率は炭素系負極活物質を用いたものよりも大きい
ことが明らかである。
As shown in Examples 1 to 15 of the present invention, the battery using the oxide-based negative electrode active material in combination with the electrolyte containing the organic acid or the organic acid salt is the organic acid of Comparative Example 1 or It is clear that the cycle property is improved as compared with the battery using the electrolyte without adding the organic acid salt. In addition, the battery of this example has a larger capacity than the batteries using the carbon-based negative electrode active materials of Comparative Examples 2 and 3,
Further, it is apparent that the improvement rate of the cycle property by adding the organic acid or the organic acid salt is larger than that using the carbon-based negative electrode active material.

【0052】[0052]

【発明の効果】本発明のように、酸化物系負極と、有機
酸及び/または有機酸塩を含有した電解質を組み合わせ
るて用いることにより、容量が大きく優れた充放電特性
を有しさらには充放電繰り返しによる放電容量の劣化の
少ない非水電解質二次電池を得ることができる。
As in the present invention, by using the oxide type negative electrode and the electrolyte containing the organic acid and / or the organic acid salt in combination, the capacity is large and the charge and discharge characteristics are excellent. It is possible to obtain a non-aqueous electrolyte secondary battery with little deterioration in discharge capacity due to repeated discharge.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は実施例に使用したシリンダー型電池の断
面図を示す。
FIG. 1 is a sectional view of a cylinder type battery used in Examples.

【符号の説明】[Explanation of symbols]

1 ポリプロピレン製ガスケット 2 負極端子を兼ねる負極缶(電池缶) 3 セパレーター 4 負極シート 5 正極シート 6 非水電解液 7 防爆弁体 8 正極端子を兼ねる正極キャップ 10 内部フタ体 11 リング Reference Signs List 1 gasket made of polypropylene 2 negative electrode can (battery can) also serving as negative electrode terminal 3 separator 4 negative electrode sheet 5 positive electrode sheet 6 nonaqueous electrolyte solution 7 explosion-proof valve 8 positive electrode cap also serving as positive electrode terminal 10 internal lid 11 ring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前川 幸雄 神奈川県南足柄市中沼210番地 富士写真 フイルム株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yukio Maekawa 210 Nakanuma, Minamiashigara City, Kanagawa Prefecture Fuji Photo Film Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを可逆的に吸蔵放出可能な材料
を含む正極、周期表1,2,13,14,15族原子か
ら選ばれる三種以上の原子を含む、主として非晶質カル
コゲン化合物及び/または非晶質酸化物からなる負極、
リチウム塩を含む非水電解質、セパレーターから成る非
水電解質二次電池に於いて、該非水電解質に少なくとも
1種の有機酸及び/または有機酸塩を含有することを特
徴とする非水電解質二次電池。
1. A positive electrode containing a material capable of reversibly occluding and releasing lithium, a predominantly amorphous chalcogen compound containing three or more kinds of atoms selected from the atoms of groups 1, 2, 13, 14, and 15 of the periodic table, and / or Or a negative electrode made of an amorphous oxide,
A non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte containing a lithium salt and a separator, wherein the non-aqueous electrolyte contains at least one organic acid and / or organic acid salt. battery.
【請求項2】 該非水電解質に含有する有機酸及び/ま
たは有機酸塩が少なくとも1種のカルボン酸及び/また
はカルボン酸塩である請求項1に記載の非水電解質二次
電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the organic acid and / or organic acid salt contained in the non-aqueous electrolyte is at least one carboxylic acid and / or carboxylic acid salt.
【請求項3】 該非水電解質に含有する有機酸及び/ま
たは有機酸塩が少なくとも1種の多価カルボン酸及び/
または多価カルボン酸塩である請求項2に記載の非水電
解質二次電池。
3. The organic acid and / or organic acid salt contained in the non-aqueous electrolyte is at least one polyvalent carboxylic acid and / or
Alternatively, the non-aqueous electrolyte secondary battery according to claim 2, which is a polycarboxylic acid salt.
【請求項4】 該非水電解質に含有する有機酸及び/ま
たは有機酸塩の含有量が、電解質中の支持塩に対して
0.001重量%以上、10重量%以下であることを特
徴とする請求項1〜3のいずれか1項に記載の非水電解
質二次電池。
4. The content of the organic acid and / or organic acid salt contained in the non-aqueous electrolyte is 0.001% by weight or more and 10% by weight or less with respect to the supporting salt in the electrolyte. The non-aqueous electrolyte secondary battery according to claim 1.
【請求項5】 請求項4の支持塩がLiPF6 及び/ま
たはLiBF4 を含有することを特徴とする非水電解質
二次電池。
5. A non-aqueous electrolyte secondary battery, wherein the supporting salt of claim 4 contains LiPF 6 and / or LiBF 4 .
【請求項6】 該負極材料の少なくとも一種が、一般式
(1)で示されることを特徴とする請求項1〜5のいず
れか1項に記載の非水電解質二次電池。 M1 2p4q6r 一般式(1) (式中、M1 、M2 は相異なりSi、Ge、Sn、P
b、P、B、Al、Sbから選ばれる少なくとも一種、
4 はLi,Na,K,Rb,Cs,Mg,Ca,S
r,Baから選ばれる少なくとも一種、M6 はO、S、
Teから選ばれる少なくとも一種、p 、q は各々0.0
01〜10、r は1.00〜50の数字を表す。)
6. The non-aqueous electrolyte secondary battery according to claim 1, wherein at least one of the negative electrode materials is represented by the general formula (1). M 1 M 2p M 4q M 6r General formula (1) (where M 1 and M 2 are different from each other, Si, Ge, Sn, P
at least one selected from b, P, B, Al, and Sb;
M 4 is Li, Na, K, Rb, Cs, Mg, Ca, S
at least one selected from r and Ba, M 6 is O, S,
At least one selected from Te, p and q are each 0.0
01 to 10, r represents a number of 1.00 to 50. )
JP8005484A 1996-01-17 1996-01-17 Nonaqueous electrolyte secondary battery Pending JPH09199168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8005484A JPH09199168A (en) 1996-01-17 1996-01-17 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8005484A JPH09199168A (en) 1996-01-17 1996-01-17 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH09199168A true JPH09199168A (en) 1997-07-31

Family

ID=11612529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8005484A Pending JPH09199168A (en) 1996-01-17 1996-01-17 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH09199168A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307769A (en) * 2000-04-19 2001-11-02 Mitsui Chemicals Inc Electrolyt solution for lithium storage battery and secondary battery using the same
JP2001307770A (en) * 2000-04-19 2001-11-02 Mitsui Chemicals Inc Electrolytic solution for lithium storage battery and secondary battery using the same
JP2002025617A (en) * 2000-07-11 2002-01-25 Sony Corp Nonaqueous electrolyte secondary battery
JP2006351242A (en) * 2005-06-13 2006-12-28 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2008016252A (en) * 2006-07-04 2008-01-24 Sony Corp Nonaqueous electrolyte composition and nonaqueous electrolyte battery
US8277973B2 (en) 2006-06-16 2012-10-02 Sony Corporation Nonaqueous electrolyte composition and nonaqueous electrolyte secondary battery
JP2012243485A (en) * 2011-05-18 2012-12-10 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
JP2012248519A (en) * 2011-05-31 2012-12-13 Sekisui Chem Co Ltd Electrolytic solution, gel electrolyte and lithium ion secondary battery
US9673450B2 (en) 2011-09-02 2017-06-06 Solvay Sa Lithium ion battery
US9979050B2 (en) 2011-09-02 2018-05-22 Solvay Sa Fluorinated electrolyte compositions
US10044066B2 (en) 2012-06-01 2018-08-07 Solvary SA Fluorinated electrolyte compositions
US10074874B2 (en) 2012-06-01 2018-09-11 Solvay Sa Additives to improve electrolyte performance in lithium ion batteries
US10686220B2 (en) 2013-04-04 2020-06-16 Solvay Sa Nonaqueous electrolyte compositions
CN114583259A (en) * 2020-12-01 2022-06-03 泰星能源解决方案有限公司 Nonaqueous electrolyte solution for lithium ion secondary battery and lithium ion secondary battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307769A (en) * 2000-04-19 2001-11-02 Mitsui Chemicals Inc Electrolyt solution for lithium storage battery and secondary battery using the same
JP2001307770A (en) * 2000-04-19 2001-11-02 Mitsui Chemicals Inc Electrolytic solution for lithium storage battery and secondary battery using the same
JP4662600B2 (en) * 2000-04-19 2011-03-30 三井化学株式会社 Electrolytic solution for lithium battery and secondary battery using the same
JP2002025617A (en) * 2000-07-11 2002-01-25 Sony Corp Nonaqueous electrolyte secondary battery
JP2006351242A (en) * 2005-06-13 2006-12-28 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US8277973B2 (en) 2006-06-16 2012-10-02 Sony Corporation Nonaqueous electrolyte composition and nonaqueous electrolyte secondary battery
JP2008016252A (en) * 2006-07-04 2008-01-24 Sony Corp Nonaqueous electrolyte composition and nonaqueous electrolyte battery
JP2012243485A (en) * 2011-05-18 2012-12-10 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
JP2012248519A (en) * 2011-05-31 2012-12-13 Sekisui Chem Co Ltd Electrolytic solution, gel electrolyte and lithium ion secondary battery
US9673450B2 (en) 2011-09-02 2017-06-06 Solvay Sa Lithium ion battery
US9979050B2 (en) 2011-09-02 2018-05-22 Solvay Sa Fluorinated electrolyte compositions
US10044066B2 (en) 2012-06-01 2018-08-07 Solvary SA Fluorinated electrolyte compositions
US10074874B2 (en) 2012-06-01 2018-09-11 Solvay Sa Additives to improve electrolyte performance in lithium ion batteries
US10686220B2 (en) 2013-04-04 2020-06-16 Solvay Sa Nonaqueous electrolyte compositions
US10916805B2 (en) 2013-04-04 2021-02-09 Solvay Sa Nonaqueous electrolyte compositions
CN114583259A (en) * 2020-12-01 2022-06-03 泰星能源解决方案有限公司 Nonaqueous electrolyte solution for lithium ion secondary battery and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP3756232B2 (en) Nonaqueous electrolyte secondary battery
JPH11219730A (en) Nonaqueous electrolyte secondary battery
JP4066465B2 (en) Nonaqueous electrolyte secondary battery
JPH113728A (en) Nonaqueous electrolyte secondary battery
JP4038826B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method
JPH09219217A (en) Nonaqueous electrolyte secondary battery
JP3661301B2 (en) Nonaqueous electrolyte for lithium secondary battery and nonaqueous electrolyte secondary battery
JPH09199168A (en) Nonaqueous electrolyte secondary battery
JP2008004557A (en) Nonaqueous electrolyte for lithium secondary battery
JP2005294274A (en) Electrolyte for nonaqueous secondary battery and nonaqueous electrolyte secondary battery
JPH09223516A (en) Nonaqueous electrolyte secondary battery
JP4285407B2 (en) Non-aqueous electrolyte for lithium secondary battery and non-aqueous electrolyte secondary battery
JP4352469B2 (en) Non-aqueous electrolyte secondary battery
JPH09223517A (en) Nonaqueous electrolyte secondary battery
JP4096368B2 (en) Nonaqueous electrolyte secondary battery
JP4289324B2 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery
JP3641873B2 (en) Non-aqueous electrolyte secondary battery
JPH10144347A (en) Non-aqueous electrolyte secondary battery
JPH10134845A (en) Nonaqueous electrolyte secondary battery
JP2004006382A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery
JPH113731A (en) Nonaqueous electrolyte secondary battery
JP2005108862A (en) Nonaqueous electrolyte for lithium secondary battery and nonaqueous electrolyte secondary battery
JP4023484B2 (en) Non-aqueous electrolyte secondary battery
JP3663763B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP3635884B2 (en) Non-aqueous electrolyte secondary battery