JPH10116615A - Production of positive electrode material and nonaqueous electrolyte secondary battery using it - Google Patents

Production of positive electrode material and nonaqueous electrolyte secondary battery using it

Info

Publication number
JPH10116615A
JPH10116615A JP8268449A JP26844996A JPH10116615A JP H10116615 A JPH10116615 A JP H10116615A JP 8268449 A JP8268449 A JP 8268449A JP 26844996 A JP26844996 A JP 26844996A JP H10116615 A JPH10116615 A JP H10116615A
Authority
JP
Japan
Prior art keywords
diffraction
positive electrode
electrode material
lithium manganese
manganese oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8268449A
Other languages
Japanese (ja)
Inventor
Naoyuki Sugano
直之 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8268449A priority Critical patent/JPH10116615A/en
Publication of JPH10116615A publication Critical patent/JPH10116615A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase charge and discharge capacity, enhance charge and discharge cycle characteristics, and lengthen a life of a nonaqueous electrolyte secondary battery using lithium manganese oxide as positive electrode material. SOLUTION: A transition metal compound is sedimented in lithium manganese oxide (Lix MOy ) in which diffraction peak intensity ratios of a diffraction plane (400) and a diffraction plane (311) by X-ray diffraction are in a range of 1.05<=(400)/(311)<=1.20, more preferably 1.10<=(400)/(311)<=1.15. Simultaneously, the lithium manganese oxide containing the sedimented transition metal compound is dried and dehydrated in vacuum at a temperature of 150 deg.C or less so as to produce positive electrode material. The lithium manganese oxide uses one among LiMn2 O4 , Li1+x Mn2 O4 , Li2 MnO3 , LiMnO2 , Li2 MnO3 , and the additional element of the transition metal uses one among Ni, Co, Fe.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は充放電サイクル特性
にすぐれ、安定して長期使用が可能な非水電解液二次電
池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery which has excellent charge / discharge cycle characteristics and can be used stably for a long period of time.

【0002】[0002]

【従来の技術】近年、携帯電話、ヘッドホンステレオ、
ノートブック型コンピュータ等の小型電子機器の発達が
めざましく、これらに用いられる小型で大容量の電源に
対する要望が大きくなってきている。従来、これら電子
機器用として鉛電池やNiCd電池、或いはより大容量
のNiMH電池、更にはリチウムイオン二次電池が実用
化されてきた。このリチウムイオン二次電池は正極にL
iCoO2 やLiNiO2 を、また負極にリチウムがド
ープ且つ脱ドープが可能な炭素材料を用い、非水電解液
を電解液とする二次電池であって、小型軽量で容量が大
きく、近年、その普及はめざましいものがある。
2. Description of the Related Art In recent years, portable telephones, headphone stereos,
The development of small electronic devices such as notebook computers has been remarkable, and there has been an increasing demand for small and large-capacity power supplies used for them. Conventionally, lead batteries, NiCd batteries, NiMH batteries having a larger capacity, and lithium ion secondary batteries have been put to practical use for these electronic devices. This lithium ion secondary battery has L
A secondary battery using iCoO 2 or LiNiO 2 , a lithium-doped and undoped carbon material for the negative electrode, and a non-aqueous electrolyte as an electrolyte. The spread has been remarkable.

【0003】また、従来から電池材料としてリチウムマ
ンガン酸化物の研究開発が盛んに行われてきており、種
々の合成方法や添加金属による複合酸化物が検討されて
きた。しかし、これら材料の処理に関して詳細な報告は
今までにはなく、あくまでもリチウム量と酸素量の構成
比率に関して検討されたものの報告が主であった。
[0003] In addition, research and development of lithium manganese oxide as a battery material has been actively carried out, and various synthetic methods and composite oxides using added metals have been studied. However, there has been no detailed report on the treatment of these materials so far, and mainly reports have been made on the composition ratio of the amount of lithium and the amount of oxygen.

【0004】一方、リチウムマンガン酸化物の理論的容
量は、LiMn2 4 では単位質量当たり148mAh
/gであって、従って利用できる容量を如何に増大させ
るかが技術的な目標となっていた。このために、例えば
リチウムマンガン酸化物の粉末結晶にイオンの挿入脱離
反応をスムーズに進める機能を持たせること等がある
が、従来より提唱されていた粉末結晶の合成方法では、
充放電における初期容量は110mAh/g程度で、1
00サイクル後の容量は初期容量の80%以下のものし
か得ることができなかった。
On the other hand, the theoretical capacity of lithium manganese oxide is 148 mAh per unit mass in LiMn 2 O 4.
/ G, and thus how to increase the available capacity was a technical goal. For this purpose, for example, a lithium manganese oxide powder crystal may have a function of smoothly promoting the insertion / desorption reaction of ions, and the like.However, in a conventionally proposed method of synthesizing a powder crystal,
The initial capacity in charge and discharge is about 110 mAh / g,
The capacity after the 00 cycle was less than 80% of the initial capacity.

【0005】このようにリチウム量や酸素量の構成比率
の規定だけではリチウムマンガン酸化物の性能を大きく
改良することはできず、僅かな容量の改善やサイクル特
性の改良に留まっているのが現状である。従って、この
材料を用いて実用的な電池の製造は困難であり、工業的
な大量生産を可能とするものではなかった。
[0005] As described above, the performance of lithium manganese oxide cannot be greatly improved only by specifying the composition ratios of the lithium amount and the oxygen amount, but only a slight improvement in the capacity and an improvement in the cycle characteristics. It is. Therefore, it is difficult to produce a practical battery using this material, and it has not been possible to mass-produce the battery industrially.

【0006】一方、LiMn2 4 の粉末材料を大容量
で柔軟性を有するシート状電極に成形することは困難で
あって、実用的電極を作成することが難しい。また、こ
の材料を用いて電池を構成した場合でもリチウムの出入
りに伴い、充放電性能は急速に低下することが認めら
れ、数十回の充放電後では大きく性能が低下して高性能
電池の開発に利用することができなかった。
On the other hand, it is difficult to form a LiMn 2 O 4 powder material into a sheet electrode having a large capacity and flexibility, and it is difficult to prepare a practical electrode. In addition, even when a battery is formed using this material, it is recognized that the charge / discharge performance rapidly decreases as lithium enters and exits. Could not be used for development.

【0007】また、特開平6−111819号公報、ま
たは特開平7−282798号公報に、充放電サイクル
を行うに従い、高電位ではマンガンの酸化数の不均一化
が進行し、その結果としてマンガンの溶解現象が起こる
と記載されている。これによるLiMn2 4 の充放電
サイクルでの性能劣化を防止し長期的な安定性を確保す
るために、種々、材料や製法を変えて検討されている
が、未だ十分な問題解決を得ていないのが現状である。
Further, as disclosed in Japanese Patent Application Laid-Open Nos. 6-111819 and 7-282798, as the charge / discharge cycle is performed, the oxidation number of manganese becomes non-uniform at high potentials. It is stated that a dissolution phenomenon occurs. In order to prevent LiMn 2 O 4 from deteriorating its performance in charge and discharge cycles and to secure long-term stability, various materials and manufacturing methods have been studied, but sufficient problems have yet to be solved. There is no present.

【0008】[0008]

【発明が解決しようとする課題】従って本発明の課題
は、正極材料としてリチウムマンガン酸化物を用いる非
水電解液二次電池の充放電容量の増大と充放電サイクル
特性の向上、および長寿命化を図り、携帯用電子機器の
電源として好適な電池を提供しようとするものである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to increase the charge / discharge capacity, improve the charge / discharge cycle characteristics, and extend the life of a nonaqueous electrolyte secondary battery using lithium manganese oxide as a cathode material. Accordingly, a battery suitable as a power source for a portable electronic device is provided.

【0009】[0009]

【課題を解決するための手段】本発明は上記課題に鑑み
なされたものであり、粉体のX線回折による回折面(4
00)と回折面(311)の回折ピークの強度比が所定
の範囲内にあるリチウムマンガン酸化物(LiX MnO
y )に、遷移金属化合物を沈析すると共に、前記沈析さ
れた遷移金属化合物を含有するリチウムマンガン酸化物
を、温度150℃以下の真空中において乾燥、脱水処理
をして正極材料を製造する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has been made in consideration of the above-mentioned problems.
00) and lithium manganese oxide intensity ratio of the diffraction peak is within a predetermined range of the diffraction plane (311) (Li X MnO
y ), a transition metal compound is precipitated, and the lithium manganese oxide containing the precipitated transition metal compound is dried and dehydrated in a vacuum at a temperature of 150 ° C. or lower to produce a positive electrode material. .

【0010】また、前記X線回折による回折ピークの強
度比が、1.05≦〔回折面(400)の回折強度〕/
〔回折面(311)の回折強度〕≦1.20、より好ま
しくは1.10≦〔回折面(400)の回折強度〕/
〔回折面(311)の回折強度〕≦1.15であるリチ
ウムマンガン酸化物を用いること。
The intensity ratio of the diffraction peak by the X-ray diffraction is 1.05 ≦ [diffraction intensity of the diffraction surface (400)] /
[Diffraction intensity of diffraction surface (311)] ≦ 1.20, more preferably 1.10 ≦ [Diffraction intensity of diffraction surface (400)] /
Use of a lithium manganese oxide satisfying [diffraction intensity of diffraction surface (311)] ≦ 1.15.

【0011】また、前記リチウムマンガン酸化物はLi
Mn2 4 、Li1+x Mn2 4 、LiMn2 3 、L
iMnO2 、Li2 MnO3 の群より選ばれて成る物質
の1つを用いること。
Further, the lithium manganese oxide is Li
Mn 2 O 4 , Li 1 + x Mn 2 O 4 , LiMn 2 O 3 , L
Using one of the substances selected from the group consisting of iMnO 2 and Li 2 MnO 3 .

【0012】また、前記遷移金属の添加元素は、Ni、
Co、Feの群から選ばれる元素の一つであり、前記沈
析させたCo、Ni、Feが、0.005≦Me/Mn
≦0.02とすること。
Further, the additive element of the transition metal is Ni,
Co, one of the elements selected from the group of Fe, wherein the precipitated Co, Ni, Fe is 0.005 ≦ Me / Mn
≦ 0.02.

【0013】更に、正極材料にリチウムマンガン酸化物
を用い、負極材料にリチウム金属、リチウム合金、若し
くはリチウムをドープ且つ脱ドープが可能な炭素材料を
用いる非水電解液二次電池において、上述した製造方法
により得られた正極材料を用いて非水電解液二次電池を
構成し、上記課題を解決する。
Further, in a non-aqueous electrolyte secondary battery using a lithium manganese oxide as a positive electrode material and a lithium metal, a lithium alloy, or a carbon material capable of being doped and dedoped with lithium as a negative electrode material, A non-aqueous electrolyte secondary battery is configured using the positive electrode material obtained by the method, and the above-described problem is solved.

【0014】[0014]

【発明の実施の形態】従来よりリチウムマンガン酸化物
の製造方法として、素材粉末を混合し適宜温度を制御し
て行う方法や、熱処理温度を多段階に制御して行う方
法、リチウムとマンガンの混合比率を制御する方法、長
時間の温度処理で制御する方法等があるが、本実施の形
態例ではリチウムとマンガンの混合比率を制御し、それ
を混合、熱処理する2段階の製造方法を用いた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As a conventional method for producing lithium manganese oxide, a method of mixing raw material powders and appropriately controlling the temperature, a method of controlling the heat treatment temperature in multiple stages, and a method of mixing lithium and manganese have been proposed. There are a method of controlling the ratio, a method of controlling by a long-time temperature treatment, and the like. In the present embodiment, a two-stage manufacturing method of controlling the mixture ratio of lithium and manganese, mixing and heat-treating the mixture is used. .

【0015】リチウムマンガン酸化物へのCo、Niの
処理には硫酸化合物、硝酸化合物、塩化物、シュウ酸化
合物、ハロゲン化合物、酢酸化合物、シアン化合物、ヘ
キサアンミン化合物、エチレンジアミン化合物、ペンタ
ンジオナト化合物、チオシアン化合物等の希薄溶液を用
いることができる。これらの処理は一般的な水溶液中
で、沈析処理により行うことができる。
For the treatment of lithium and manganese oxides with Co and Ni, sulfuric acid compounds, nitric acid compounds, chlorides, oxalic acid compounds, halogen compounds, acetic acid compounds, cyanide compounds, hexaammine compounds, ethylenediamine compounds, pentanedionate compounds, A dilute solution such as a thiocyan compound can be used. These treatments can be performed by a precipitation treatment in a general aqueous solution.

【0016】処理条件は溶液中の固形成分比を10%程
度とし、溶液中の水素イオン濃度はPH9を終点として
処理を行う。均一な処理効果を得るために水素イオン濃
度の変化は徐々に起こるようにする。沈析処理に用いる
水溶液としてアンモニア水、アルカリ水溶液、アミン類
等が使用可能であるが、特にLiOH水溶液等のアルカ
リ希薄溶液が好ましい。沈析処理後の粉末の取り出しは
濾過、洗浄できるものであれば何れの手段を用いてもよ
い。
The processing conditions are such that the solid component ratio in the solution is about 10%, and the hydrogen ion concentration in the solution is PH9 as the end point. The change in the hydrogen ion concentration is made to occur gradually in order to obtain a uniform processing effect. As the aqueous solution used for the precipitation treatment, aqueous ammonia, an aqueous alkali solution, amines and the like can be used, and a dilute alkali solution such as an aqueous LiOH solution is particularly preferable. Any means may be used for taking out the powder after the precipitation treatment as long as it can be filtered and washed.

【0017】リチウムマンガン酸化物の製造方法 まず、水酸化リチウムとオキシ水酸化マンガンをLi:
Mn=0.515:1の原子比率で混合する。つぎに、
この混合物をアルミナ製坩堝に入れ、電気炉で酸素雰囲
気下350℃で2時間熱処理を行う。これを一旦取り出
し、再度乳鉢で混合し、これを再度アルミナ製坩堝に入
れて電気炉で酸素雰囲気下700℃で16時間熱処理を
行う。その後、室温まで冷却し、粉砕する。上述した方
法で得られた材料粉末をX線回折法で測定すると、スピ
ネル型LiMn2 4 のピークに一致するものであっ
た。また、この材料の結晶格子の回折面(311)と回
折面(400)の回折強度比は1:1.12であった。
The method for producing a lithium manganese oxide First, lithium hydroxide and manganese oxyhydroxide Li:
Mix at an atomic ratio of Mn = 0.515: 1. Next,
This mixture is placed in an alumina crucible and heat-treated at 350 ° C. for 2 hours in an oxygen atmosphere in an electric furnace. This is once taken out, mixed again in a mortar, put again in an alumina crucible, and heat-treated at 700 ° C. for 16 hours in an oxygen atmosphere in an electric furnace. Then, it cools to room temperature and grinds. When the material powder obtained by the above-described method was measured by an X-ray diffraction method, it coincided with the peak of spinel type LiMn 2 O 4 . Further, the diffraction intensity ratio between the diffraction plane (311) and the diffraction plane (400) of the crystal lattice of this material was 1: 1.12.

【0018】実施例1 前述したようにして得られたLiMn2 4 に水溶液中
でNi化合物を用い、Ni処理を行う。まず、塩化ニッ
ケルを0.005モル/リットルの濃度になるように水
に溶解させ、500mlのニッケル水溶液を作成する。
このニッケル水溶液にLiMn2 4 を23g溶解し、
撹拌しながらLiOHの5%水溶液を徐々に加えて、溶
液のPHを9.0に調整する。この状態で1時間撹拌
し、その後ガラスフィルターを用いて濾過し、純水で洗
浄して固形成分を摘出する。つぎに、前記固形成分を真
空乾燥機で温度130℃、10-2mmHgの圧力下で1
2時間乾燥させ、残存している水酸基を除去する。この
ようにして得られた材料粉末をX線解析法で測定した結
果、スピネル型LiMn2 4 のみの回折ピークであっ
た。また、この材料の回折面(311)と回折面(40
0)の回折強度比も同一であった。
Example 1 Ni treatment is performed on LiMn 2 O 4 obtained as described above using an Ni compound in an aqueous solution. First, nickel chloride is dissolved in water to a concentration of 0.005 mol / liter to prepare a 500 ml nickel aqueous solution.
23 g of LiMn 2 O 4 was dissolved in this nickel aqueous solution,
The pH of the solution is adjusted to 9.0 by gradually adding a 5% aqueous solution of LiOH while stirring. In this state, the mixture is stirred for 1 hour, then filtered using a glass filter, and washed with pure water to extract a solid component. Next, the solid component was dried in a vacuum dryer at a temperature of 130 ° C. under a pressure of 10 −2 mmHg for 1 hour.
Dry for 2 hours to remove residual hydroxyl groups. As a result of measuring the material powder thus obtained by X-ray analysis, it was found that the diffraction peak was only of spinel type LiMn 2 O 4 . The diffraction plane (311) and the diffraction plane (40)
The diffraction intensity ratio of 0) was also the same.

【0019】実施例2 前述したようにして得られたLiMn2 4 に水溶液中
でNi化合物を用い、Ni処理を行う。塩化ニッケルを
0.0025モル/リットルの濃度になるように水に溶
解させ、500mlのニッケル水溶液を作成し、この溶
液中で実施例1と同様にLiMn2 4 のNi処理を行
う。得られた固形成分を真空乾燥機で温度150℃、1
-2mmHgの圧力下で12時間乾燥させ、残存してい
る水酸基を除去する。このようにして得られた材料粉末
をX線解析法で測定した結果、スピネル型LiMn2
4 のみの回折ピークであった。また、この材料の回折面
(311)と回折面(400)の回折強度比も同一であ
った。
Example 2 Ni treatment is performed on LiMn 2 O 4 obtained as described above using a Ni compound in an aqueous solution. Nickel chloride is dissolved in water so as to have a concentration of 0.0025 mol / liter to prepare a 500 ml aqueous nickel solution, and Ni treatment of LiMn 2 O 4 is performed in this solution in the same manner as in Example 1. The obtained solid component was heated at 150 ° C.
Dry under a pressure of 0 -2 mmHg for 12 hours to remove residual hydroxyl groups. As a result of measuring the material powder obtained in this manner by X-ray analysis, spinel-type LiMn 2 O
Only 4 diffraction peaks were obtained. Further, the diffraction intensity ratio between the diffraction surface (311) and the diffraction surface (400) of this material was also the same.

【0020】実施例3 前述したようにして得られたLiMn2 4 に水溶液中
でNi化合物を用い、Ni処理を行う。塩化ニッケルを
0.01モル/リットルの濃度になるように水に溶解さ
せ、500mlのニッケル水溶液を作成し、この中で実
施例1と同様にLiMn2 のNi処理を行う。得ら
れた固形成分を真空乾燥機で温度120℃、10−2
mHgの圧力下で12時間乾燥させ、残存している水酸
基を除去する。このようにして得られた材料粉末をX線
解析法で測定した結果、スピネル型LiMn2 4 のみ
の回折ピークであった。また、この材料の回折面(31
1)と回折面(400)の回折強度比も同一であった。
EXAMPLE 3 Ni treatment is performed on LiMn 2 O 4 obtained as described above using a Ni compound in an aqueous solution. Nickel chloride is dissolved in water so as to have a concentration of 0.01 mol / liter to prepare a 500 ml aqueous nickel solution, in which Ni treatment of LiMn 2 O 4 is performed in the same manner as in Example 1. The obtained solid component was heated in a vacuum dryer at a temperature of 120 ° C. and 10 −2 m.
It is dried under a pressure of mHg for 12 hours to remove the remaining hydroxyl groups. As a result of measuring the material powder thus obtained by X-ray analysis, it was found that the diffraction peak was only of spinel type LiMn 2 O 4 . In addition, the diffraction surface of this material (31
The diffraction intensity ratio between 1) and the diffraction surface (400) was also the same.

【0021】比較例1 実施例1と同一条件でLiMn2 4 のNi処理を行
う。得られた固形成分を真空乾燥機で温度300℃、1
-2mmHgの圧力下で12時間乾燥させ、残存してい
る水酸基を除去する。このようにして得られた材料粉末
をX線解析法で測定した結果、スピネル型LiMn2
4 のみの回折ピークであった。また、この材料の回折面
(311)と回折面(400)の回折強度比は回折面
(311)の回折強度:回折面(400)の回折強度=
1:1.13であった。
Comparative Example 1 Ni treatment of LiMn 2 O 4 is performed under the same conditions as in Example 1. The obtained solid component was heated at a temperature of 300 ° C.
Dry under a pressure of 0 -2 mmHg for 12 hours to remove residual hydroxyl groups. As a result of measuring the material powder obtained in this manner by X-ray analysis, spinel-type LiMn 2 O
Only 4 diffraction peaks were obtained. The diffraction intensity ratio between the diffraction surface (311) and the diffraction surface (400) of this material is: diffraction intensity of the diffraction surface (311): diffraction intensity of the diffraction surface (400) =
1: 1.13.

【0022】比較例2 実施例1と同一条件でLiMn2 4 のNi処理を行
う。得られた固形成分をギアオーブンを用い、温度13
0℃で12時間乾燥させ、残存している水酸基を除去す
る。このようにして得られた材料粉末をX線解析法で測
定した結果、スピネル型LiMn2 4 のみの回折ピー
クであった。また、この材料の回折面(311)と回折
面(400)の回折強度比は回折面(311)の回折強
度:回折面(400)の回折強度=1:1.12であっ
た。
Comparative Example 2 Ni treatment of LiMn 2 O 4 is performed under the same conditions as in Example 1. The obtained solid component was heated at a temperature of 13 using a gear oven.
Dry at 0 ° C. for 12 hours to remove residual hydroxyl groups. As a result of measuring the material powder thus obtained by X-ray analysis, it was found that the diffraction peak was only of spinel type LiMn 2 O 4 . The diffraction intensity ratio between the diffraction surface (311) and the diffraction surface (400) of this material was: diffraction intensity of the diffraction surface (311): diffraction intensity of the diffraction surface (400) = 1: 1.12.

【0023】比較例3 実施例1と同一条件でLiMn2 4 のNi処理を行
う。得られた固形成分をギアオーブンを用い、温度30
0℃で12時間乾燥させ、残存している水酸基を除去す
る。このようにして得られた材料粉末をX線解析法で測
定した結果、スピネル型LiMn2 4 のみの回折ピー
クであった。また、この材料の回折面(311)と回折
面(400)の回折強度比は回折面(311)の回折強
度:回折面(400)の回折強度=1:1.13であっ
た。
Comparative Example 3 Ni treatment of LiMn 2 O 4 is performed under the same conditions as in Example 1. The obtained solid component was heated at a temperature of 30 using a gear oven.
Dry at 0 ° C. for 12 hours to remove residual hydroxyl groups. As a result of measuring the material powder thus obtained by X-ray analysis, it was found that the diffraction peak was only of spinel type LiMn 2 O 4 . The diffraction intensity ratio between the diffraction surface (311) and the diffraction surface (400) of this material was: diffraction intensity of the diffraction surface (311): diffraction intensity of the diffraction surface (400) = 1: 1.13.

【0024】試験電池の作成 上述したようにして得られた7種類の材料を正極材料と
してコイン型電池を作製した。
Preparation of Test Battery A coin-type battery was prepared using the seven types of materials obtained as described above as positive electrode materials.

【0025】コイン型電池1は図1に示すように、電池
缶2に負極材料3として厚さ1.6mm、直径17mm
のリチウムをプレス機で加圧密着させ、つぎに絶縁用ポ
リプロピレン製のガスケット4を電池缶2の側壁に沿っ
て配設する。一方、前記正極材料を90重量%とグラフ
ァイトを7重量%と結着剤としてポリフッ化ビニリデン
を3重量%の割合で配合し、この配合した部材50mg
をアルミニウムネットと共に加圧プレス機で直径15m
mに加圧成型して正極ペレット5とする。この正極ペレ
ット5を端子蓋6に載せ、更にその上にポリプロピレン
製のセパレータ7を載せる。電解液としてプロピレンカ
ーボネートとジメチルカーボネートとを1:1の割合で
混合し、これにLiPF6 を1モル/リットルの割合で
溶解させた液を端子蓋6内に注入し、その後、前記電池
缶2を被せ、かしめて封口して電池を作製した。
As shown in FIG. 1, a coin-type battery 1 has a thickness of 1.6 mm and a diameter of 17 mm as a negative electrode material 3 in a battery can 2.
Then, a lithium gasket 4 made of polypropylene for insulation is arranged along the side wall of the battery can 2. On the other hand, 90% by weight of the positive electrode material, 7% by weight of graphite, and 3% by weight of polyvinylidene fluoride as a binder were mixed.
With a press machine with aluminum net 15m in diameter
m to form a positive electrode pellet 5. The positive electrode pellet 5 is placed on the terminal cover 6, and a polypropylene separator 7 is further placed thereon. Propylene carbonate and dimethyl carbonate were mixed at a ratio of 1: 1 as an electrolytic solution, and a solution in which LiPF 6 was dissolved at a ratio of 1 mol / liter was poured into the terminal cover 6. And sealed by caulking to produce a battery.

【0026】電池試験 Ni処理なしのLiMn2 4 、実施例1〜3のLiM
2 4 、および比較例1〜3のLiMn2 4 を正極
材料とし、上述した方法で各々複数個の電池を作製し、
それらの電池を以下の条件で放電負荷性能試験および充
放電サイクル試験を行った。
Battery test LiMn 2 O 4 without Ni treatment, LiM of Examples 1-3
n 2 O 4 , and LiMn 2 O 4 of Comparative Examples 1 to 3 were used as positive electrode materials, and a plurality of batteries were produced by the above-described method.
These batteries were subjected to a discharge load performance test and a charge / discharge cycle test under the following conditions.

【0027】まず、電流密度0.5mA/cm2 、上限
電圧4.2Vで12時間充電した後、電流密度0.5m
A/cm2 で3.0Vまで放電させ、つぎに1.0mA
/cm2 、上限電圧4.2Vで5.5時間充電した後、
電流密度1.0mA/cmで3.0Vまで放電させる
サイクルを5回繰り返し行う。その後、これらの電池は
放電負荷性能試験用、充放電サイクル試験用、保存前後
の容量試験用に分けられ試験に供される。
First, the battery was charged at a current density of 0.5 mA / cm 2 and an upper limit voltage of 4.2 V for 12 hours.
Discharge to 3.0 V at A / cm 2 , then 1.0 mA
/ Cm 2 , after charging for 5.5 hours at an upper limit voltage of 4.2 V,
A cycle of discharging to 3.0 V at a current density of 1.0 mA / cm 2 is repeated five times. Thereafter, these batteries are divided into a discharge load performance test, a charge / discharge cycle test, and a capacity test before and after storage, and subjected to tests.

【0028】放電負荷性能試験は電流密度1.0mA/
cm、上限電圧4.2Vで5.5時間充電した後、
電流密度0.5〜5.0mA/cm2 の範囲内の所定の
値で3.0Vまで放電させる試験をそれぞれ3回ずつ行
い、その時の容量(mAh/g)を測定した。その結果
を図2に示す。
The discharge load performance test was conducted at a current density of 1.0 mA /
After charging for 5.5 hours at cm 2 and upper limit voltage of 4.2V,
A test was performed three times each for discharging to 3.0 V at a predetermined value within a current density range of 0.5 to 5.0 mA / cm 2 , and the capacity (mAh / g) at that time was measured. The result is shown in FIG.

【0029】また、充放電サイクル試験は電流密度1.
0mA/cm2 、上限電圧4.2Vで5.5時間充電し
た後、電流密度1.0mA/cm2 で3.0Vまで放電
させるサイクル試験を繰り返し行い、その時の容量(m
Ah/g)を所定のサイクルごとに測定した。その結果
を図3に示す。
In the charge / discharge cycle test, the current density was 1.
After charging for 5.5 hours at 0 mA / cm 2 and an upper limit voltage of 4.2 V, a cycle test of discharging to 3.0 V at a current density of 1.0 mA / cm 2 was repeated, and the capacity at that time (m
Ah / g) was measured at each predetermined cycle. The result is shown in FIG.

【0030】図2より放電負荷性能試験の結果、全ての
電流密度においてLiMn2 4 にNi処理を施した
後、温度150℃以下の真空中で乾燥させた実施例1〜
3は優れた容量を保持することが分かる。
As shown in FIG. 2, as a result of the discharge load performance test, LiMn 2 O 4 was subjected to Ni treatment at all current densities and dried in a vacuum at a temperature of 150 ° C. or less.
3 shows that excellent capacity is maintained.

【0031】また、図3より実施例1〜3は優れたサイ
クル特性を示すことが分かる。これは粉末の表面に吸着
した水分は常圧で十分に乾燥できるが、遷移金属化合物
の脱水、乾燥を摂氏数百度で行うと、脱水だけでなく沈
析させた遷移金属化合物が脱水反応の後、部分的な結晶
化、規則配列化を起こし、また、LiMn2 4 の内部
に進入し、サイクル特性の低下を起こすものとみられ、
従って真空で乾燥させた実施例1〜3が良い特性を示す
ものと思われる。このことは遷移金属の性状が似ている
と相互に置換、拡散という現象を起こすが、金属化合物
等においても同様のことが起こるためと考えられる。
FIG. 3 shows that Examples 1 to 3 show excellent cycle characteristics. This is because moisture adsorbed on the surface of the powder can be dried sufficiently at normal pressure, but when the transition metal compound is dehydrated and dried at several hundred degrees Celsius, not only dehydration but also the precipitated transition metal compound is dehydrated after the dehydration reaction. , Cause partial crystallization and regular arrangement, and enter the inside of LiMn 2 O 4 , which is considered to cause a decrease in cycle characteristics.
Therefore, it is considered that Examples 1 to 3 dried in vacuum show good characteristics. This is thought to be due to the fact that when the properties of the transition metals are similar, the phenomena of mutual substitution and diffusion occur, but the same also occurs in metal compounds and the like.

【0032】また、このように比較的低温の真空乾燥条
件下において残存する水酸化物の影響が少ないことは、
実施例1〜3の容量低下が僅かであることから確認する
ことができる。しかしながら、沈析させた遷移金属がM
e/Mn=0.02以上となると、熱処理後に酸化物が
抵抗体層の性状を示しはじめ、サイクルの経過に伴い、
徐々に容量低下を起こす要因となってくる。
The fact that the effect of the hydroxide remaining under vacuum drying conditions at a relatively low temperature as described above is small is as follows.
It can be confirmed from the fact that the capacity decreases in Examples 1 to 3 are slight. However, the precipitated transition metal is M
When e / Mn = 0.02 or more, the oxide starts to show the properties of the resistor layer after the heat treatment, and as the cycle progresses,
This gradually causes a decrease in capacity.

【0033】また、作製した他の電池を、電流密度1.
0mA/cm2 、上限電圧4.2Vで5.5時間充電し
た後、電流密度1.0mA/cm2 で3.0Vまで放電
させて保存前の容量を測定し、つぎの充電状態で停止し
てこれら充電した電池を温度60℃で10日間保存を行
い、保存後の電池を電流密度1.0mA/cm2 で3.
0Vまで放電させて保存後の容量を測定し、つぎにその
電池を電流密度1.0mA/cm2 、上限電圧4.2V
で5.5時間充電した後、電流密度1.0mA/cm2
で3.0Vまで放電させる充放電試験を2回行い保存後
の回復容量を測定した。その結果を表1に示す。
Further, the other batteries thus produced were subjected to a current density of 1.
After charging at 0 mA / cm 2 and an upper limit voltage of 4.2 V for 5.5 hours, discharging at a current density of 1.0 mA / cm 2 to 3.0 V, measuring the capacity before storage, and stopping at the next charging state. These charged batteries were stored at a temperature of 60 ° C. for 10 days, and the stored batteries were stored at a current density of 1.0 mA / cm 2 .
The battery was discharged to 0 V, the capacity after storage was measured, and the battery was then charged with a current density of 1.0 mA / cm 2 and an upper limit voltage of 4.2 V.
After charging for 5.5 hours at a current density of 1.0 mA / cm 2
, A charge / discharge test for discharging to 3.0 V was performed twice, and the recovery capacity after storage was measured. Table 1 shows the results.

【0034】[0034]

【表1】 [Table 1]

【0035】表1に示されるように、実施例1〜3の電
池は保存後および保存後の回復容量が優れていることが
分かる。以上の試験結果から、LiMn2 4 をNi処
理し、温度150℃以下で真空乾燥した材料を用いた電
池は、優れた放電負荷特性、充放電サイクル特性、容量
維持性能を示すことが分かる。
As shown in Table 1, it is understood that the batteries of Examples 1 to 3 have excellent recovery capacities after storage and after storage. From the above test results, it is found that a battery using a material obtained by subjecting LiMn 2 O 4 to Ni treatment and vacuum-drying at a temperature of 150 ° C. or less exhibits excellent discharge load characteristics, charge / discharge cycle characteristics, and capacity retention performance.

【0036】また、本発明による方法では、特開平6−
111819号公報に記載されている、他の材料を複合
させた粉末材料のように容量を損なうことがなく、放電
負荷特性、充放電サイクル特性、および高温での安定性
が得られ、実用上十分な性能を有する電池を形成するこ
とができ、また、より安定した製造方法を得ることがで
きる。
Further, according to the method of the present invention,
Unlike the powdered material obtained by combining other materials described in JP-A-111819, the capacity is not impaired, the discharge load characteristics, the charge / discharge cycle characteristics, and the stability at high temperatures are obtained. A battery having excellent performance can be formed, and a more stable manufacturing method can be obtained.

【0037】また、充放電サイクルを経た後の電池を解
体したところ、遷移金属処理が成されている材料では何
れもマンガンの溶出に伴う変色や、負極でのマンガン析
出の現象は見られず、特開平7−282798号公報に
記載されている、電解液へのマンガン析出を抑制する効
果があることが確認できた。
When the battery after the charge / discharge cycle was disassembled, no discoloration due to manganese elution or manganese precipitation at the negative electrode was observed in any of the materials subjected to the transition metal treatment. It has been confirmed that there is an effect described in JP-A-7-282798 to suppress the precipitation of manganese in the electrolytic solution.

【0038】更に、本発明の方法によれば図4のNi処
理前のLiMn2 4 のX線回折結果と、図5のLiM
2 4 をNi処理し、温度130℃で乾燥した実施例
1のX線回折結果から、回折面(311)と回折面(4
00)のX線回折ピーク強度の比率を変えることなく水
分、水酸基の除去を行えることが分かる。
Further, according to the method of the present invention, the results of X-ray diffraction of LiMn 2 O 4 before Ni treatment shown in FIG.
From the X-ray diffraction results of Example 1 in which n 2 O 4 was treated with Ni and dried at a temperature of 130 ° C., the diffraction surface (311) and the diffraction surface (4
It can be seen that water and hydroxyl groups can be removed without changing the ratio of the X-ray diffraction peak intensities of (00).

【0039】尚、本実施例では本発明による正極材料を
コイン型非水電解液二次電池に用いたものについて説明
したが、これに限ることなく、円筒状渦巻き式電池、平
板状角形電池、インサイドアウト型円筒電池等、何れの
電池に用いてもよく、また、何れの大きさの電池に用い
てもよいことは当然である。
In this embodiment, the positive electrode material according to the present invention is used for a coin-type non-aqueous electrolyte secondary battery. However, the present invention is not limited to this, and the present invention is not limited to this. It may be used for any type of battery, such as an inside-out type cylindrical battery, and may be used for any size battery.

【0040】また、正極材料としてLiMn2 4 を用
いたものについて説明したが、Li1+x Mn2 4 、L
iMn2 3 、LiMnO2 、Li2 MnO3 の何れか
を用いても良い。
Also, the case where LiMn 2 O 4 is used as the cathode material has been described, but Li 1 + x Mn 2 O 4 , L
Any of iMn 2 O 3 , LiMnO 2 , and Li 2 MnO 3 may be used.

【0041】[0041]

【発明の効果】以上の説明からも明らかなように、本発
明のリチウムマンガン酸化物を用いることにより充放電
容量が増大し、充放電サイクル性能が向上し、更にサイ
クル経過後の電流依存性のある放電負荷性能の低下が少
なくなり、長期間安定して使用することができる。
As is clear from the above description, the use of the lithium manganese oxide of the present invention increases the charge / discharge capacity, improves the charge / discharge cycle performance, and further improves the current dependency after the cycle has elapsed. A certain decrease in discharge load performance is reduced, and the device can be used stably for a long period of time.

【0042】また、導電材料、粒径に対して殆ど依存す
ることなく、いずれの混合状態においても効率的な充放
電反応性、イオン導電性を保持することが確認され、従
来のLiCoO2 ないしLiNiO2 を正極とし、炭素
材料を負極とするリチウムイオン二次電池と同等の性能
を有する二次電池を構成することができる。
In addition, it was confirmed that, regardless of the conductive material and the particle size, the charge / discharge reactivity and the ionic conductivity were maintained efficiently in any mixed state, and the conventional LiCoO 2 or LiNiO 2 A secondary battery having the same performance as a lithium ion secondary battery using 2 as a positive electrode and a carbon material as a negative electrode can be configured.

【0043】更に、従来のリチウムマンガン酸化物では
長期の充放電サイクルを行うと容量低下と共にセパレー
タの変色が多く発生していたが、本発明のリチウムマン
ガン酸化物ではこの材料中のマンガンの酸化数の不均一
化を抑制することができるのでリチウムの溶解を防止
し、従ってセパレータの変色を防止することができる。
Further, in the conventional lithium manganese oxide, when the charge / discharge cycle is performed for a long time, the capacity is reduced and the discoloration of the separator is often caused. In the lithium manganese oxide of the present invention, the oxidation number of manganese in this material is increased. Can prevent the dissolution of lithium and, therefore, the discoloration of the separator.

【0044】上述した方法で脱水乾燥を行うことによ
り、低温においてリチウムイオンの不活性化を起こさな
いリチウムマンガン酸化物材料を容易に得ることができ
る。
By performing dehydration and drying by the above-described method, a lithium manganese oxide material that does not cause lithium ion inactivation at a low temperature can be easily obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による正極材料を用いたコイン型電池
の断面図である。
FIG. 1 is a cross-sectional view of a coin-type battery using a positive electrode material according to the present invention.

【図2】 本発明による正極材料を用いたコイン型電池
の放電負荷性能試験の結果を示す図である。
FIG. 2 is a diagram showing a result of a discharge load performance test of a coin-type battery using a positive electrode material according to the present invention.

【図3】 本発明による正極材料を用いたコイン型電池
のサイクル特性試験の結果を示す図である。
FIG. 3 is a view showing a result of a cycle characteristic test of a coin-type battery using a positive electrode material according to the present invention.

【図4】 LiMn2 4 の処理前のX線回折結果であ
る。
FIG. 4 is an X-ray diffraction result before LiMn 2 O 4 treatment.

【図5】 LiMn2 4 をNi処理し、温度130
℃、真空中で乾燥した実施例1のX線回折結果である。
FIG. 5: NiMn treatment of LiMn 2 O 4 , temperature of 130
It is the X-ray-diffraction result of Example 1 dried in vacuum at ° C.

【符号の説明】 1…コイン型電池、2…電池缶、3…負極材料、4…ガ
スケット、5…正極ペレット、6…端子蓋、7…セパレ
ータ
[Explanation of Signs] 1 ... Coin type battery, 2 ... Battery can, 3 ... Negative electrode material, 4 ... Gasket, 5 ... Positive electrode pellet, 6 ... Terminal cover, 7 ... Separator

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 粉体のX線回折による回折面(400)
と回折面(311)の回折ピークの強度比が所定の範囲
内にあるリチウムマンガン酸化物(LiX MnOy
に、遷移金属化合物を沈析すると共に、 前記沈析された遷移金属化合物を含有するリチウムマン
ガン酸化物を、温度150℃以下の真空中において乾
燥、脱水処理をすることを特徴とする正極材料の製造方
法。
1. A diffraction surface (400) of a powder by X-ray diffraction.
And a lithium manganese oxide (Li x MnO y ) in which the intensity ratio of the diffraction peak of the diffraction plane (311) is within a predetermined range.
In addition to precipitating the transition metal compound, the lithium manganese oxide containing the precipitated transition metal compound is dried in a vacuum at a temperature of 150 ° C. or less, and subjected to a dehydration treatment to produce a positive electrode material. Production method.
【請求項2】 前記X線回折による回折ピークの強度比
が、1.05≦〔回折面(400)の回折強度〕/〔回
折面(311)の回折強度〕≦1.20であるリチウム
マンガン酸化物を用いることを特徴とする請求項1に記
載の正極材料の製造方法。
2. A lithium manganese alloy wherein the intensity ratio of the diffraction peak by the X-ray diffraction is 1.05 ≦ [diffraction intensity of diffraction surface (400)] / [diffraction intensity of diffraction surface (311)] ≦ 1.20. The method for producing a positive electrode material according to claim 1, wherein an oxide is used.
【請求項3】 前記X線回折による回折ピークの強度比
が、1.10≦〔回折面(400)の回折強度〕/〔回
折面(311)の回折強度〕≦1.15であるリチウム
マンガン酸化物を用いることを特徴とする請求項1に記
載の正極材料の製造方法。
3. A lithium manganese having an X-ray diffraction diffraction peak intensity ratio of 1.10 ≦ [diffraction surface (400) diffraction intensity] / [diffraction surface (311) diffraction intensity] ≦ 1.15. The method for producing a positive electrode material according to claim 1, wherein an oxide is used.
【請求項4】 前記リチウムマンガン酸化物はLiMn
2 4 、Li1+x Mn2 4 、LiMn2 3 、LiM
nO2 、Li2 MnO3 の群より選ばれて成る物質の1
つであることを特徴とする、請求項1に記載の正極材料
の製造方法。
4. The lithium manganese oxide is LiMn.
2 O 4 , Li 1 + x Mn 2 O 4 , LiMn 2 O 3 , LiM
One of the substances selected from the group consisting of nO 2 and Li 2 MnO 3
The method for producing a positive electrode material according to claim 1, wherein:
【請求項5】 前記遷移金属の添加元素は、Ni、C
o、Feの群から選ばれる元素の一つであることを特徴
とする、請求項1に記載の正極材料の製造方法。
5. The additive element of the transition metal is Ni, C
The method for producing a positive electrode material according to claim 1, wherein the element is one of elements selected from the group consisting of o and Fe.
【請求項6】 前記沈析させたCo、Ni、Feが、
0.005≦Me/Mn≦0.02であることを特徴と
する、請求項5に記載の正極材料の製造方法。
6. The deposited Co, Ni, Fe comprises:
The method for producing a positive electrode material according to claim 5, wherein 0.005≤Me / Mn≤0.02.
【請求項7】 正極材料にリチウムマンガン酸化物を用
い、負極材料にリチウム金属、リチウム合金、若しくは
リチウムをドープ且つ脱ドープが可能な炭素材料を用い
る非水電解液二次電池において、 請求項1ないし請求項6に記載された製造方法により得
られた正極材料を用いて構成したことを特徴とする非水
電解液二次電池。
7. A non-aqueous electrolyte secondary battery using a lithium manganese oxide as a positive electrode material and a lithium metal, a lithium alloy, or a carbon material capable of being doped and dedoped with lithium as a negative electrode material. A non-aqueous electrolyte secondary battery comprising a positive electrode material obtained by the manufacturing method according to claim 6.
JP8268449A 1996-10-09 1996-10-09 Production of positive electrode material and nonaqueous electrolyte secondary battery using it Pending JPH10116615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8268449A JPH10116615A (en) 1996-10-09 1996-10-09 Production of positive electrode material and nonaqueous electrolyte secondary battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8268449A JPH10116615A (en) 1996-10-09 1996-10-09 Production of positive electrode material and nonaqueous electrolyte secondary battery using it

Publications (1)

Publication Number Publication Date
JPH10116615A true JPH10116615A (en) 1998-05-06

Family

ID=17458671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8268449A Pending JPH10116615A (en) 1996-10-09 1996-10-09 Production of positive electrode material and nonaqueous electrolyte secondary battery using it

Country Status (1)

Country Link
JP (1) JPH10116615A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6399251B1 (en) * 1999-04-27 2002-06-04 Hitachi, Ltd. Lithium secondary battery
WO2003044881A1 (en) * 2001-11-22 2003-05-30 Yuasa Corporation Positive electrode active material for lithium secondary cell and lithium secondary cell
JP2009212093A (en) * 2009-06-22 2009-09-17 Sony Corp Positive electrode for battery and nonaqueous electrolyte secondary battery using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6399251B1 (en) * 1999-04-27 2002-06-04 Hitachi, Ltd. Lithium secondary battery
WO2003044881A1 (en) * 2001-11-22 2003-05-30 Yuasa Corporation Positive electrode active material for lithium secondary cell and lithium secondary cell
CN100353596C (en) * 2001-11-22 2007-12-05 株式会社杰士汤浅 Positive electrode active material for lithium secondary cell and lithium secondary cell
US7393476B2 (en) 2001-11-22 2008-07-01 Gs Yuasa Corporation Positive electrode active material for lithium secondary cell and lithium secondary cell
JP2009212093A (en) * 2009-06-22 2009-09-17 Sony Corp Positive electrode for battery and nonaqueous electrolyte secondary battery using the same

Similar Documents

Publication Publication Date Title
US11251428B2 (en) Positive electrode active material manufacturing method with control of washing slurry liquid electrical conductivity
JP4973825B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
CA2552375C (en) Electrode active material powder with size dependent composition and method to prepare the same
US7314682B2 (en) Lithium metal oxide electrodes for lithium batteries
CN111052465B (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using same
JP6201277B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP3873717B2 (en) Positive electrode material and battery using the same
KR20160030878A (en) Positive-electrode active material for non-aqueous electrolyte secondary battery, method for producing said positive-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using said positive-electrode active material for non-aqueous electrolyte secondary battery
JP2005044801A (en) Positive electrode active material for lithium secondary battery, its manufacturing method, and lithium secondary battery including same
CN104428254A (en) Doped nickelate compounds
US11677065B2 (en) Cathode active material of lithium secondary battery
US20150180031A1 (en) Lithium metal oxide electrodes for lithium batteries
JP2003017060A (en) Positive electrode active material and non-aqueous electrolyte battery
JP3929548B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP3007859B2 (en) Method for preparing high capacity LiMn2O4 secondary battery anode compound
JPH09293508A (en) Positive electrode material for lithium secondary battery, its manufacture and nonaqueous electrolyte secondary battery using it
JPH09259863A (en) Nonaqueous electrolyte secondary battery and its manufacture
JPH09265984A (en) Nonaqueous electrolyte secondary battery
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP2000348722A (en) Nonaqueous electrolyte battery
JP2001297750A (en) Power-generating element for lithium secondary battery and lithium secondary battery using same
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same
JPH10125324A (en) Manufacture of nonaqueous electrolyte secondary battery and positive active material thereof
US20030047717A1 (en) Multi-doped nickel oxide cathode material
JPH10116615A (en) Production of positive electrode material and nonaqueous electrolyte secondary battery using it