JPH10106567A - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery

Info

Publication number
JPH10106567A
JPH10106567A JP8275419A JP27541996A JPH10106567A JP H10106567 A JPH10106567 A JP H10106567A JP 8275419 A JP8275419 A JP 8275419A JP 27541996 A JP27541996 A JP 27541996A JP H10106567 A JPH10106567 A JP H10106567A
Authority
JP
Japan
Prior art keywords
plane
carbon material
aqueous electrolyte
negative electrode
peak intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8275419A
Other languages
Japanese (ja)
Inventor
Yasuyuki Kusumoto
靖幸 樟本
Yoshihiro Shoji
良浩 小路
Mikiya Yamazaki
幹也 山崎
Toshiyuki Noma
俊之 能間
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8275419A priority Critical patent/JPH10106567A/en
Publication of JPH10106567A publication Critical patent/JPH10106567A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte battery excellent in the cycle characteristics with a suppressed drop of the battery capacity, in which lithium is quickly inserted into a carbon material of a negative electrode during charging, polarization of the carbon material at the ime of charging is suppressed, and there is less risk that the non-aqueous electrolytic solution is dissolved by the carbon material. SOLUTION: A non-aqueous electrolyte battery is composed of a positive electrode 1, a negative electrode 2 using carbon material, and a non-aqueous electrolytic solution, wherein the carbon material for the negative electrode 2 is structured so that the half value width of the (101) plane at X-ray diffraction is below 0.7 deg. and the ratio of the peak intensity of the (101) plane to that of the (002) plane is over 0.006.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、正極と、炭素材
料を用いた負極と、非水電解液とを備えた非水電解質電
池に係り、負極に使用する炭素材料を改良してサイクル
特性を向上させた非水電解質電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nonaqueous electrolyte battery comprising a positive electrode, a negative electrode using a carbon material, and a nonaqueous electrolyte. The present invention relates to an improved nonaqueous electrolyte battery.

【0002】[0002]

【従来の技術】近年、高出力,高エネルギー密度の新型
電池の1つとして、電解質に非水電解液を用い、リチウ
ムの酸化,還元を利用した高起電力の非水電解質電池が
利用されるようになった。
2. Description of the Related Art In recent years, a non-aqueous electrolyte battery having a high electromotive force using a non-aqueous electrolyte as an electrolyte and utilizing oxidation and reduction of lithium has been used as one of new batteries having a high output and a high energy density. It became so.

【0003】そして、このような非水電解質電池におい
ては、その負極材料として、従来よりリチウムイオンの
吸蔵,放出が可能な炭素材料が広く利用されていた。
In such a nonaqueous electrolyte battery, a carbon material capable of inserting and extracting lithium ions has been widely used as a negative electrode material.

【0004】ここで、このように負極に炭素材料を用い
た非水電解質電池の場合、一般に、充電時において負極
の炭素材料中にリチウムが電気化学的に挿入される反応
が遅いため、炭素材料における分極が大きくなり、この
炭素材料との接触によって非水電解液が分解し、これに
より次第に電池容量が低下して、サイクル特性が悪くな
るという問題があった。
[0004] In the case of a non-aqueous electrolyte battery using a carbon material for the negative electrode as described above, the reaction of electrochemically inserting lithium into the carbon material of the negative electrode during charging is generally slow, so , The non-aqueous electrolyte is decomposed by contact with the carbon material, which causes a problem that the battery capacity gradually decreases and the cycle characteristics deteriorate.

【0005】また、従来においては、上記のような非水
電解質電池において、特開平6−302315号公報に
示されるように、炭素材料等の活物質粉末に炭化ケイ素
ウィスカー,窒化ケイ素ウィスカー,チタン酸カリウム
ウィスカー等のウィスカーを混合させて、非水電解質電
池におけるサイクル特性を向上させるようにしたもの
や、炭素材料に炭酸リチウムを添加させてサイクル特性
を向上させるようにしたもの等が提案されている。
Conventionally, in a non-aqueous electrolyte battery as described above, as disclosed in JP-A-6-302315, an active material powder such as a carbon material is coated with silicon carbide whiskers, silicon nitride whiskers, titanic acid, and the like. A whisker such as a potassium whisker is mixed to improve the cycle characteristics in a nonaqueous electrolyte battery, and a whisker to improve the cycle characteristics by adding lithium carbonate to a carbon material has been proposed. .

【0006】しかし、これらのものにおいても、上記の
ように充電時に負極に用いた炭素材料における分極を十
分に抑制することができず、依然として、炭素材料との
接触によって非水電解液が分解し、電池容量が次第に低
下して、サイクル特性が悪くなるという問題があった。
However, even in these materials, the polarization of the carbon material used for the negative electrode during charging cannot be sufficiently suppressed as described above, and the non-aqueous electrolyte is still decomposed by contact with the carbon material. In addition, there is a problem that the battery capacity gradually decreases and the cycle characteristics deteriorate.

【0007】[0007]

【発明が解決しようとする課題】この発明は、正極と、
炭素材料を用いた負極と、非水電解質とを備えた非水電
解質電池における上記のような問題を解決することを課
題とするものであり、充電時に負極の炭素材料中に速や
かにリチウムが挿入されるようになり、充電時における
炭素材料の分極が抑制されて、炭素材料により非水電解
液が分解するということが少なく、電池容量の低下が抑
制され、サイクル特性に優れた非水電解質電池が得られ
るようにすることを課題とするものである。
SUMMARY OF THE INVENTION The present invention provides a positive electrode,
It is an object of the present invention to solve the above-described problems in a nonaqueous electrolyte battery including a negative electrode using a carbon material and a nonaqueous electrolyte, and lithium is rapidly inserted into the carbon material of the negative electrode during charging. The polarization of the carbon material during charging is suppressed, the non-aqueous electrolyte is less likely to be decomposed by the carbon material, the reduction in battery capacity is suppressed, and the non-aqueous electrolyte battery has excellent cycle characteristics. Is to be obtained.

【0008】[0008]

【課題を解決するための手段】この発明における非水電
解質電池においては、上記のような課題を解決するた
め、正極と、炭素材料を用いた負極と、非水電解液とを
備えた非水電解質電池において、上記の負極における炭
素材料として、X線回折における(101)面の半値幅
が0.7deg以下でかつ(002)面のピーク強度に
対する(101)面のピーク強度の比が0.006以上
である炭素材料を用いるようにしたのである。
In order to solve the above-mentioned problems, a non-aqueous electrolyte battery according to the present invention includes a positive electrode, a negative electrode using a carbon material, and a non-aqueous electrolyte. In the electrolyte battery, as a carbon material for the negative electrode, the half width of the (101) plane in X-ray diffraction is 0.7 deg or less, and the ratio of the peak intensity of the (101) plane to the peak intensity of the (002) plane is 0.1%. That is, a carbon material of 006 or more is used.

【0009】ここで、この発明の非水電解質電池におい
て、負極に使用する炭素材料は、上記のようにX線回折
における(101)面の半値幅が0.7deg以下で結
晶化度が高く、また(002)面のピーク強度に対する
(101)面のピーク強度の比が0.006以上で結晶
層の基底面(basal面)に対する端面(edge
面)の比が大きくなっている。
Here, in the non-aqueous electrolyte battery of the present invention, the carbon material used for the negative electrode has a high crystallinity when the half width of the (101) plane in X-ray diffraction is 0.7 deg or less, as described above. When the ratio of the peak intensity of the (101) plane to the peak intensity of the (002) plane is 0.006 or more, the edge (edge) with respect to the basal plane (basal plane) of the crystal layer is formed.
Aspect ratio) has increased.

【0010】そして、負極における炭素材料にリチウム
が挿入される場合、リチウムが炭素材料のedge面か
ら挿入されるため、結晶層のbasal面に対するed
ge面の比が大きい上記のような炭素材料においては、
この炭素材料内部までのリチウムの拡散が速やかに行な
われるようになり、充電時にリチウムが炭素材料中に速
やかに挿入されて、炭素材料における分極が少なくな
る。このため、炭素材料による非水電解液の分解が抑制
されて電池容量の低下が少なくなり、非水電解質電池に
おけるサイクル特性が向上される。
When lithium is inserted into the carbon material in the negative electrode, since lithium is inserted from the edge surface of the carbon material, the lithium is inserted into the basal surface of the crystal layer.
In the above carbon material having a large ratio of the ge plane,
The diffusion of lithium to the inside of the carbon material is quickly performed, and lithium is quickly inserted into the carbon material at the time of charging, so that polarization in the carbon material is reduced. For this reason, the decomposition of the non-aqueous electrolyte by the carbon material is suppressed, the decrease in battery capacity is reduced, and the cycle characteristics of the non-aqueous electrolyte battery are improved.

【0011】また、この発明における非水電解質電池に
おいて、充電時に炭素材料中に十分なリチウムが速やか
に挿入されるようにして、非水電解質電池におけるサイ
クル特性をより向上させるためには、前記X線回折にお
ける(101)面の半値幅が0.6deg以下の炭素材
料を用いることが好ましく、また(002)面のピーク
強度に対する(101)面のピーク強度の比が0.01
0以上、より好ましくは(002)面のピーク強度に対
する(101)面のピーク強度の比が0.015以上の
炭素材料を用いるようにする。
In the non-aqueous electrolyte battery according to the present invention, in order to ensure that sufficient lithium is quickly inserted into the carbon material at the time of charging to further improve the cycle characteristics of the non-aqueous electrolyte battery, the above-mentioned X It is preferable to use a carbon material having a half value width of the (101) plane of 0.6 deg or less in the line diffraction, and the ratio of the peak intensity of the (101) plane to the peak intensity of the (002) plane is 0.01%.
It is preferable to use a carbon material having a peak intensity of 0 or more, more preferably 0.015 or more of the (101) plane to the (002) plane.

【0012】また、この発明における非水電解質電池に
おいて、その正極に使用する正極材料としては、従来よ
り使用されている公知の正極材料を用いることができ、
リチウムイオンを吸蔵,放出できる材料として、例え
ば、マンガン,コバルト,ニッケル,鉄,バナジウム,
ニオブの少なくとも1種を含むリチウム遷移金属複合酸
化物等を使用することができ、より具体的には、LiC
oO2 、LiNiO2 、LiMnO2 、LiFeO2
の材料を使用することができる。
In the non-aqueous electrolyte battery according to the present invention, as the positive electrode material used for the positive electrode, a known positive electrode material conventionally used can be used.
Materials capable of absorbing and releasing lithium ions include, for example, manganese, cobalt, nickel, iron, vanadium,
For example, a lithium transition metal composite oxide containing at least one niobium can be used, and more specifically, LiC
oO 2, LiNiO 2, LiMnO 2 , it is possible to use a material such as LiFeO 2.

【0013】また、この発明の非水電解質電池における
非水電解液としては、従来より使用されている公知の非
水電解液を用いることができる。
As the non-aqueous electrolyte in the non-aqueous electrolyte battery of the present invention, a conventionally known non-aqueous electrolyte can be used.

【0014】そして、この非水電解液における溶媒とし
ては、例えば、エチレンカーボネート、プロピレンカー
ボネート、ブチレンカーボネート、ビニレンカーボネー
ト、シクロペンタノン、スルホラン、ジメチルスルホラ
ン、3−メチル−1,3−オキサゾリジン−2−オン、
γ−ブチロラクトン、ジメチルカーボネート、ジエチル
カーボネート、エチルメチルカーボネート、メチルプロ
ピルカーボネート、ブチルメチルカーボネート、エチル
プロピルカーボネート、ブチスエチルカーボネート、ジ
プロピルカーボネート、1,2−ジメトキシエタン、テ
トラヒドロフラン、2−メチルテトラヒドロフラン、
1,3−ジオキソラン、酢酸メチル、酢酸エチル等の有
機溶媒を1種又は2種以上組み合わせて使用することが
できる。
As the solvent in the non-aqueous electrolyte, for example, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, cyclopentanone, sulfolane, dimethyl sulfolane, 3-methyl-1,3-oxazolidin-2-yl on,
γ-butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, butisethyl carbonate, dipropyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran,
Organic solvents such as 1,3-dioxolan, methyl acetate and ethyl acetate can be used alone or in combination of two or more.

【0015】また、この非水電解液において上記のよう
な溶媒に溶解させる溶質としては、例えば、LiPF
6 、LiBF4 、LiClO4 、LiCF3 SO3 、L
iAsF6 、LiN(CF3 SO22 、LiCF3
(CF23 SO3 等のリチウム化合物を使用すること
ができる。
The solute dissolved in the above-mentioned solvent in the non-aqueous electrolyte is, for example, LiPF
6 , LiBF 4 , LiClO 4 , LiCF 3 SO 3 , L
iAsF 6 , LiN (CF 3 SO 2 ) 2 , LiCF 3
A lithium compound such as (CF 2 ) 3 SO 3 can be used.

【0016】[0016]

【実施例】以下、この発明に係る非水電解質電池につい
て、実施例を挙げて具体的に説明すると共に、この発明
の実施例に係る非水電解質電池が保存特性等の点で優れ
ていることを比較例を挙げて明らかにする。なお、この
発明における非水電解質電池は、下記の実施例に示した
ものに限定されるものではなく、その要旨を変更しない
範囲において適宜変更して実施できるものである。
EXAMPLES Hereinafter, the nonaqueous electrolyte battery according to the present invention will be specifically described with reference to examples, and the nonaqueous electrolyte battery according to the examples of the present invention will be excellent in storage characteristics and the like. Will be clarified with reference to comparative examples. The non-aqueous electrolyte battery according to the present invention is not limited to those shown in the following examples, but can be implemented by appropriately changing the scope of the invention without changing its gist.

【0017】(実施例1)この実施例における非水電解
質電池においては、下記のようにして作製した正極と負
極とを用いると共に、下記のようにして調製した非水電
解液を用い、図1に示すような円筒型で外径13.8m
m、高さ48.9mmになった非水電解質二次電池を作
製した。
Example 1 In the nonaqueous electrolyte battery of this example, a positive electrode and a negative electrode prepared as described below were used, and a nonaqueous electrolyte prepared as follows was used. 13.8m outside diameter with cylindrical type as shown in
m, a non-aqueous electrolyte secondary battery having a height of 48.9 mm was produced.

【0018】[正極の作製]正極を作製するにあたって
は、正極材料として、800℃で熱処理したリチウム含
有二酸化コバルトLiCoO2 を用いるようにした。
[Preparation of Positive Electrode] In preparing the positive electrode, lithium-containing cobalt dioxide LiCoO 2 heat-treated at 800 ° C. was used as a positive electrode material.

【0019】そして、この正極材料LiCoO2 と、導
電剤であるカーボン粉末と、結着剤であるフッ素樹脂粉
末とを85:10:5の重量比で混合し、この混合物を
正極集電体に塗布した後、これを150℃で熱処理して
正極を作製した。
Then, the positive electrode material LiCoO 2 , a carbon powder as a conductive agent, and a fluororesin powder as a binder are mixed in a weight ratio of 85: 10: 5, and this mixture is used as a positive electrode current collector. After the application, this was heat-treated at 150 ° C. to produce a positive electrode.

【0020】[負極の作製]負極を作製するにあたって
は、負極材料として、X線回折における(101)面の
半値幅が0.45deg、(002)面のピーク強度に
対する(101)面のピーク強度の比が0.020であ
る炭素材料を用い、この炭素材料の粉末と、結着剤であ
るフッ素樹脂粉末とを85:15の重量比で混合し、こ
の混合物を負極集電体に塗布した後、これを150℃で
熱処理して負極を作製した。
[Preparation of Negative Electrode] In preparing a negative electrode, the half-width of the (101) plane in X-ray diffraction was 0.45 deg, and the peak intensity of the (101) plane relative to the peak intensity of the (002) plane was used as a negative electrode material. Was used, and a powder of this carbon material and a fluororesin powder as a binder were mixed at a weight ratio of 85:15, and the mixture was applied to a negative electrode current collector. Thereafter, this was heat-treated at 150 ° C. to produce a negative electrode.

【0021】[非水電解液の調製]非水電解液を調製す
るにあたっては、エチレンカーボネートと1,2−ジメ
トキシエタンとを1:1の体積比で混合させた混合溶媒
を用い、この混合溶媒に溶質としてヘキサフルオロリン
酸リチウムLiPF6 を1mol/lの割合で溶解させ
て非水電解液を調製した。
[Preparation of Non-Aqueous Electrolyte] In preparing a non-aqueous electrolyte, a mixed solvent in which ethylene carbonate and 1,2-dimethoxyethane were mixed at a volume ratio of 1: 1 was used. A nonaqueous electrolyte was prepared by dissolving lithium hexafluorophosphate LiPF 6 as a solute at a ratio of 1 mol / l.

【0022】[電池の作製]そして、この実施例の非水
電解質二次電池を作製するにあたっては、図1に示すよ
うに、上記のようにして作製した正極1と負極2との間
にセパレータ3としてリチウムイオン透過性のポリプロ
ピレン製の微多孔膜を介在させ、これらをスパイラル状
に巻いてフェライト系ステンレス鋼(SUS430)か
らなる電池缶4内に収容させた後、この電池缶4内に上
記の非水電解液を注液して封口し、正極1を正極リード
5を介して正極蓋6に接続させると共に負極2を負極リ
ード7を介して電池缶4に接続させ、電池缶4と正極蓋
6とを絶縁パッキン8により電気的に分離させた。
[Preparation of Battery] Then, in preparing the nonaqueous electrolyte secondary battery of this embodiment, as shown in FIG. 1, a separator was placed between the positive electrode 1 and the negative electrode 2 prepared as described above. 3, a lithium ion permeable polypropylene microporous membrane is interposed, and these are spirally wound and accommodated in a battery can 4 made of ferritic stainless steel (SUS430). The positive electrode 1 is connected to the positive electrode lid 6 via the positive electrode lead 5 and the negative electrode 2 is connected to the battery can 4 via the negative electrode lead 7. The lid 6 was electrically separated from the lid 6 by an insulating packing 8.

【0023】(比較例1)この比較例1においては、負
極を作製するにあたり、負極の炭素材料として、X線回
折における(101)面の半値幅が0.29deg、
(002)面のピーク強度に対する(101)面のピー
ク強度の比が0.0037になった天然黒鉛(d値=
3.354Å、Lc=2000Å)を用いるようにし、
それ以外は上記の実施例1の場合と同様にして非水電解
質二次電池を作製した。
Comparative Example 1 In Comparative Example 1, when producing a negative electrode, the half-value width of the (101) plane in X-ray diffraction was 0.29 deg.
Natural graphite in which the ratio of the peak intensity of the (101) plane to the peak intensity of the (002) plane is 0.0037 (d value =
3.354 °, Lc = 2000 °)
Otherwise, a non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 described above.

【0024】そして、上記のようにして作製した実施例
1及び比較例1の各非水電解質二次電池を室温下におい
て、それぞれ充電電流600mA(=1C)で充電終止
電圧4.1Vまで充電させた後、放電電流600mA
(=1C)で放電終止電圧2.75Vまで放電させ、こ
れを1サイクルとして充放電を繰り返して行ない、サイ
クル数と放電容量との関係を調べてその結果を図2に示
すと共に、放電容量が初期の放電容量の80%に低下す
るまでのサイクル数を求め、その結果を下記の表1に示
した。
Then, the non-aqueous electrolyte secondary batteries of Example 1 and Comparative Example 1 produced as described above were charged at room temperature at a charging current of 600 mA (= 1 C) to a charging end voltage of 4.1 V. After that, discharge current 600mA
(= 1 C), discharge was performed to a discharge end voltage of 2.75 V, and charge and discharge were repeated as one cycle. The relationship between the number of cycles and discharge capacity was examined. The results are shown in FIG. The number of cycles until the discharge capacity was reduced to 80% of the initial discharge capacity was determined, and the results are shown in Table 1 below.

【0025】[0025]

【表1】 [Table 1]

【0026】表1及び図2に示す結果から明らかなよう
に、負極にこの発明の条件を満たす炭素材料を使用した
実施例1の非水電解質二次電池は、この発明の条件を満
たさない炭素材料を使用した比較例1の非水電解質二次
電池に比べて、サイクル数の増加による放電容量の減少
が遅く、長期にわたって安定した放電容量が得られ、サ
イクル特性が向上していた。
As is clear from the results shown in Table 1 and FIG. 2, the nonaqueous electrolyte secondary battery of Example 1 in which the carbon material satisfying the conditions of the present invention was used for the negative electrode did not satisfy the conditions of the present invention. As compared with the non-aqueous electrolyte secondary battery of Comparative Example 1 using the material, the decrease in the discharge capacity due to the increase in the number of cycles was slow, a stable discharge capacity was obtained over a long period, and the cycle characteristics were improved.

【0027】(実施例2〜11及び比較例2)実施例2
〜11及び比較例2の各非水電解質二次電池において
は、上記の実施例1の非水電解質二次電池において使用
した負極の炭素材料だけを変更させるようにし、その炭
素材料として、X線回折における(002)面のピーク
強度に対する(101)面のピーク強度の比が実施例1
と同じ0.020である一方、(101)面の半値幅が
下記の表2に示す値になったものを用いて各非水電解質
二次電池を作製した。
(Examples 2 to 11 and Comparative Example 2) Example 2
In each of the nonaqueous electrolyte secondary batteries of Comparative Example 2 to Comparative Example 2, only the carbon material of the negative electrode used in the nonaqueous electrolyte secondary battery of Example 1 was changed, and the carbon material was X-ray In the diffraction, the ratio of the peak intensity of the (101) plane to the peak intensity of the (002) plane was determined in Example 1.
Each of the non-aqueous electrolyte secondary batteries was manufactured using the same 0.020 as the above, but having the half-width of the (101) plane shown in Table 2 below.

【0028】そして、このようにして作製した実施例2
〜11及び比較例2の各非水電解質二次電池について
も、上記の場合と同様にして充放電を繰り返して行な
い、放電容量が初期の放電容量の80%に低下するまで
のサイクル数を求め、その結果を図3及び下記の表2に
示した。
The second embodiment thus produced
Each of the nonaqueous electrolyte secondary batteries of Comparative Examples 2 to 11 and Comparative Example 2 was repeatedly charged and discharged in the same manner as described above, and the number of cycles until the discharge capacity was reduced to 80% of the initial discharge capacity was obtained. The results are shown in FIG. 3 and Table 2 below.

【0029】[0029]

【表2】 [Table 2]

【0030】表2及び図3に示す結果から明らかなよう
に、X線回折における(101)面の半値幅が0.7d
eg以下で、この発明の条件を満たす炭素材料を負極に
使用した実施例1〜11の各非水電解質二次電池は、
(101)面の半値幅が0.75degでこの発明の条
件を満たしていない炭素材料を使用した比較例2の非水
電解質二次電池に比べてサイクル特性が向上しており、
特に、(101)面の半値幅が0.6deg以下になっ
た実施例1〜9の各非水電解質二次電池においては、サ
イクル数が900回以上でサイクル特性がより向上して
いた。
As is clear from the results shown in Table 2 and FIG. 3, the half width of the (101) plane in X-ray diffraction is 0.7 d.
eg or less, each of the non-aqueous electrolyte secondary batteries of Examples 1 to 11 using a carbon material satisfying the conditions of the present invention for the negative electrode,
The cycle characteristics are improved as compared with the nonaqueous electrolyte secondary battery of Comparative Example 2 using a carbon material having a half-width of the (101) plane of 0.75 deg and not satisfying the conditions of the present invention,
In particular, in each of the nonaqueous electrolyte secondary batteries of Examples 1 to 9 in which the half-width of the (101) plane was 0.6 deg or less, the cycle characteristics were further improved when the number of cycles was 900 or more.

【0031】(実施例12〜26及び比較例3)実施例
12〜26及び比較例3の各非水電解質二次電池におい
ては、上記の実施例1の非水電解質二次電池において使
用した負極の炭素材料だけを変更させるようにし、その
炭素材料として、X線回折における(101)面の半値
幅が実施例1と同じ0.45degである一方、(00
2)面のピーク強度に対する(101)面のピーク強度
の比が下記の表3に示す値になったものを用いて各非水
電解質二次電池を作製した。
(Examples 12 to 26 and Comparative Example 3) In each of the nonaqueous electrolyte secondary batteries of Examples 12 to 26 and Comparative Example 3, the negative electrode used in the nonaqueous electrolyte secondary battery of Example 1 was used. Of the (101) plane in X-ray diffraction is 0.45 deg, which is the same as that in Example 1, while (00)
Each non-aqueous electrolyte secondary battery was manufactured using a battery having a ratio of the peak intensity of the (101) plane to the peak intensity of the (2) plane having a value shown in Table 3 below.

【0032】そして、このようにして作製した実施例1
2〜26及び比較例3の各非水電解質二次電池について
も、上記の場合と同様にして充放電を繰り返して行な
い、放電容量が初期の放電容量の80%に低下するまで
のサイクル数を求め、その結果を図4及び下記の表3に
示した。
Then, the embodiment 1 manufactured as described above was used.
For each of the non-aqueous electrolyte secondary batteries of Examples 2 to 26 and Comparative Example 3, charge and discharge were repeated in the same manner as described above, and the number of cycles until the discharge capacity was reduced to 80% of the initial discharge capacity was calculated. And the results are shown in FIG. 4 and Table 3 below.

【0033】[0033]

【表3】 [Table 3]

【0034】表3及び図4に示す結果から明らかなよう
に、X線回折における(002)面のピーク強度に対す
る(101)面のピーク強度の比が0.006以上で、
この発明の条件を満たす炭素材料を負極に使用した実施
例1及び実施例12〜25の各非水電解質二次電池は、
(002)面のピーク強度に対する(101)面のピー
ク強度の比が0.005でこの発明の条件を満たしてい
ない炭素材料を使用した比較例3の非水電解質二次電池
に比べてサイクル特性が向上しており、また(002)
面のピーク強度に対する(101)面のピーク強度の比
が0.010以上になった実施例1及び実施例16〜2
6の各非水電解質二次電池においては、サイクル数が9
00回以上でサイクル特性がより向上しており、さらに
(002)面のピーク強度に対する(101)面のピー
ク強度の比が0.015以上になった実施例1及び実施
例21〜26の各非水電解質二次電池においては、サイ
クル数が950回以上でサイクル特性がさらに向上して
いた。
As is clear from the results shown in Table 3 and FIG. 4, when the ratio of the peak intensity of the (101) plane to the peak intensity of the (002) plane in X-ray diffraction is 0.006 or more,
Each of the nonaqueous electrolyte secondary batteries of Examples 1 and 12 to 25 using a carbon material satisfying the conditions of the present invention for the negative electrode,
The ratio of the peak intensity of the (101) plane to the peak intensity of the (002) plane is 0.005, and the cycle characteristics are lower than those of the nonaqueous electrolyte secondary battery of Comparative Example 3 using a carbon material not satisfying the conditions of the present invention. And (002)
Example 1 and Examples 16 and 2 in which the ratio of the peak intensity of the (101) plane to the peak intensity of the plane became 0.010 or more.
In each of the nonaqueous electrolyte secondary batteries of No. 6, the number of cycles was 9
In each of Examples 1 and 21 to 26, the cycle characteristics were further improved at the time of 00 or more times, and the ratio of the peak intensity of the (101) plane to the peak intensity of the (002) plane was 0.015 or more. In the nonaqueous electrolyte secondary battery, the cycle characteristics were further improved when the number of cycles was 950 or more.

【0035】[0035]

【発明の効果】以上詳述したように、この発明における
非水電解質電池においては、負極に使用する炭素材料と
して、X線回折における(101)面の半値幅が0.7
deg以下で結晶化度が高く、また(002)面のピー
ク強度に対する(101)面のピーク強度の比が0.0
06以上で結晶層のbasal面に対するedge面の
比が大きくなったものを用いるようにしたため、充電時
にリチウムがこの炭素材料中に速やかに挿入されて、炭
素材料における分極が少なくなり、炭素材料による非水
電解液の分解が抑制されて電池容量の低下が少なくな
り、サイクル特性に優れた非水電解質電池が得られるよ
うになった。
As described above in detail, in the nonaqueous electrolyte battery according to the present invention, as a carbon material used for the negative electrode, the half width of the (101) plane in X-ray diffraction is 0.7.
deg or less, and the ratio of the peak intensity of the (101) plane to the peak intensity of the (002) plane was 0.0%.
Since the ratio of the edge plane to the basal plane of the crystal layer was increased at 06 or more, lithium was quickly inserted into the carbon material at the time of charging, and the polarization of the carbon material was reduced. Decomposition of the non-aqueous electrolyte was suppressed, and a decrease in battery capacity was reduced, so that a non-aqueous electrolyte battery having excellent cycle characteristics was obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例及び比較例において作製した
非水電解質二次電池の内部構造を示した概略断面図であ
る。
FIG. 1 is a schematic cross-sectional view showing an internal structure of a nonaqueous electrolyte secondary battery produced in an example of the present invention and a comparative example.

【図2】実施例1及び比較例1の非水電解質二次電池に
おける放電容量とサイクル数との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the discharge capacity and the number of cycles in the nonaqueous electrolyte secondary batteries of Example 1 and Comparative Example 1.

【図3】非水電解質二次電池の負極に使用した炭素材料
における(101)面の半値幅とサイクル数の関係を示
す図である。
FIG. 3 is a diagram showing the relationship between the half width of the (101) plane and the number of cycles in a carbon material used for a negative electrode of a nonaqueous electrolyte secondary battery.

【図4】非水電解質二次電池の負極に使用した炭素材料
における(002)面のピーク強度に対する(101)
面のピーク強度比とサイクル数との関係を示した図であ
る。
FIG. 4 shows (101) with respect to the peak intensity of the (002) plane in the carbon material used for the negative electrode of the nonaqueous electrolyte secondary battery.
FIG. 4 is a diagram illustrating a relationship between a peak intensity ratio of a surface and the number of cycles.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 1 Positive electrode 2 Negative electrode

フロントページの続き (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内Continued on the front page (72) Inventor Toshiyuki Noma 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Koji Nishio 2-5-2-5 Keihanhondori, Moriguchi-shi, Osaka No. Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極と、炭素材料を用いた負極と、非水
電解液とを備えた非水電解質電池において、上記の負極
における炭素材料として、X線回折における(101)
面の半値幅が0.7deg以下でかつ(002)面のピ
ーク強度に対する(101)面のピーク強度の比が0.
006以上である炭素材料を用いたことを特徴とする非
水電解質電池。
1. A non-aqueous electrolyte battery comprising a positive electrode, a negative electrode using a carbon material, and a non-aqueous electrolyte, wherein the carbon material in the negative electrode is determined by X-ray diffraction (101).
The half-value width of the plane is 0.7 deg or less, and the ratio of the peak intensity of the (101) plane to the peak intensity of the (002) plane is 0.2.
A nonaqueous electrolyte battery using a carbon material of 006 or more.
【請求項2】 請求項1に記載した非水電解質電池にお
いて、上記の負極における炭素材料のX線回折において
(101)面の半値幅が0.6deg以下あることを特
徴とする非水電解質電池。
2. The non-aqueous electrolyte battery according to claim 1, wherein the X-ray diffraction of the carbon material in the negative electrode has a half width of the (101) plane of 0.6 deg or less. .
【請求項3】 請求項1又は2に記載した非水電解質電
池において、上記の負極における炭素材料のX線回折に
おいて(002)面のピーク強度に対する(101)面
のピーク強度の比が0.010以上であることを特徴と
する非水電解質電池。
3. The non-aqueous electrolyte battery according to claim 1, wherein the ratio of the peak intensity of the (101) plane to the peak intensity of the (002) plane in the X-ray diffraction of the carbon material in the negative electrode is 0. 010 or more.
JP8275419A 1996-09-25 1996-09-25 Non-aqueous electrolyte battery Pending JPH10106567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8275419A JPH10106567A (en) 1996-09-25 1996-09-25 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8275419A JPH10106567A (en) 1996-09-25 1996-09-25 Non-aqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPH10106567A true JPH10106567A (en) 1998-04-24

Family

ID=17555252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8275419A Pending JPH10106567A (en) 1996-09-25 1996-09-25 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPH10106567A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009301895A (en) * 2008-06-13 2009-12-24 Denso Corp Collector, electrode, and electrical storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009301895A (en) * 2008-06-13 2009-12-24 Denso Corp Collector, electrode, and electrical storage device

Similar Documents

Publication Publication Date Title
JP3213459B2 (en) Non-aqueous electrolyte secondary battery
JP2004139743A (en) Nonaqueous electrolyte secondary battery
JPH10312826A (en) Nonaqueous electrolyte battery and charging method therefor
JP2003282055A (en) Non-aqueous electrolyte secondary battery
JPH11339850A (en) Lithium-ion secondary battery
JP4306858B2 (en) Solute for non-aqueous electrolyte battery and non-aqueous electrolyte battery
JP3349399B2 (en) Lithium secondary battery
JPH10199510A (en) Negative electrode for lithium battery and lithium battery
JP4083040B2 (en) Lithium battery
JPH11283667A (en) Lithium ion battery
JP3172445B2 (en) Non-aqueous electrolyte battery
JPH10255762A (en) Lithium battery
JP4176435B2 (en) Non-aqueous electrolyte battery
JP3239068B2 (en) Non-aqueous electrolyte battery
JP4237531B2 (en) Lithium secondary battery and method for producing lithium secondary battery
JPH10106567A (en) Non-aqueous electrolyte battery
JP2002170569A (en) Lithium secondary cell
JPH1040955A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JPH1140197A (en) Polymer electrolyte battery
JP3423168B2 (en) Non-aqueous electrolyte secondary battery
JP3423169B2 (en) Non-aqueous electrolyte secondary battery
JPH1012275A (en) Nonaqueous electrolyte battery
JP2001085014A (en) Lithium secondary battery
JP3663127B2 (en) Non-aqueous electrolyte battery
JP2001250557A (en) Lithium secondary cell