JPH10102215A - Iron base alloy for fine crystal permanent magnet and its production - Google Patents

Iron base alloy for fine crystal permanent magnet and its production

Info

Publication number
JPH10102215A
JPH10102215A JP8277203A JP27720396A JPH10102215A JP H10102215 A JPH10102215 A JP H10102215A JP 8277203 A JP8277203 A JP 8277203A JP 27720396 A JP27720396 A JP 27720396A JP H10102215 A JPH10102215 A JP H10102215A
Authority
JP
Japan
Prior art keywords
permanent magnet
alloy
roll
sec
amorphous structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8277203A
Other languages
Japanese (ja)
Other versions
JP3720489B2 (en
Inventor
Hirokazu Kanekiyo
裕和 金清
Satoru Hirozawa
哲 広沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP27720396A priority Critical patent/JP3720489B2/en
Publication of JPH10102215A publication Critical patent/JPH10102215A/en
Application granted granted Critical
Publication of JP3720489B2 publication Critical patent/JP3720489B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Abstract

PROBLEM TO BE SOLVED: To obtain an amorphous structure at a specified ratio or above by a melt quenching method at a roll circumferential speed by which stable industrial production is made possible, in an Fe-B-R compsn. in which the ratios of Pr and Nd are regulated to specified ones, by forming the compsn. into the one added with small amounts of Zr, Nb, Mo, Hf, Ta and W. SOLUTION: Alloy molten metal expressed by the compositional formula of T100-x-y Bx Ry Mz and in which the symbols (x), (y) and (z) limiting the compositional ranges satisfy, by at%, 15<=x<=30, 1<=y<=6 and 1<=z<=5 is rapidly cooled at 2 to 10m/sec roll circumferential speed by a melt quenching method using rapid cooling rolls and is subjected to crystallization heat treatment at 600 to 700 deg.C, where, in the formula, T denotes Fe or the one in which a part of Fe is substituted with one or more kinds among Co, Ni and Cr, R denotes one or more kinds of Or and Nd, and M denotes one or more kinds among Zr, Nb, Mo, Hf, Ta and W. By this method, the iron base alloy for a permanent magnet having an amorphous structure by >=90% and excellent in amorphousness formability can be mass-produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、Fe3B型化合
物並びにNd2Fe14B型結晶構造を有する化合物相が
共存する微細結晶型の等方性磁石の母材となる永久磁石
用鉄基合金に係り、従来、超急冷ロールを用いた液体超
急冷法ではロール周速度を15m/秒以上とする超急冷
条件でしかアモルファス組織が得られ難いPr、Ndの
1種または2種が1〜6at%のFe−B−R組成にお
いて、少量の特定添加元素を加えた組成からなる合金溶
湯を、安定した工業生産が可能なロール周速度で液体急
冷法により急冷し、実質90%以上のアモルファス組織
を得る、アモルファス生成能に優れた微細結晶永久磁石
用鉄基合金とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an iron base for a permanent magnet as a base material of a fine crystal type isotropic magnet in which a compound phase having a Fe 3 B type compound and a compound phase having an Nd 2 Fe 14 B type crystal structure coexist. Regarding the alloy, conventionally, in a liquid super-quenching method using a super-quenching roll, one or two types of Pr and Nd which are difficult to obtain an amorphous structure only under ultra-quenching conditions in which the roll peripheral speed is 15 m / sec or more are 1 to 1 In a 6 at% Fe-BR composition, a molten alloy having a composition to which a small amount of a specific additive element is added is rapidly quenched by a liquid quenching method at a roll peripheral speed at which stable industrial production is possible. The present invention relates to an iron-based alloy for a microcrystalline permanent magnet excellent in the ability to form an amorphous body and having an excellent amorphous forming ability, and a method for producing the same.

【0002】[0002]

【従来の技術】各種モーター、アクチュエーター、磁気
センサー用磁気回路並びにマグネットロールやスピーカ
ー用などに適用可能な永久磁石として、10kG以上の
残留磁束密度Brを有し、平均結晶粒径が1nm〜50
nmであるFe3B型化合物並びにNd2Fe14B型結晶
構造を有する化合物相が共存する微細結晶型の等方性永
久磁石が開発されている。
2. Description of the Related Art As a permanent magnet applicable to various motors, actuators, magnetic circuits for magnetic sensors, magnet rolls and speakers, etc., it has a residual magnetic flux density Br of 10 kG or more and an average crystal grain size of 1 nm to 50 nm.
Fine crystalline isotropic permanent magnets in which a Fe 3 B type compound having a thickness of nm and a compound phase having an Nd 2 Fe 14 B type crystal structure coexist have been developed.

【0003】かかる微細結晶型永久磁石は、特定組成の
Fe−B−R合金溶湯を液体超急冷法により、90%以
上のアモルファス組織となした後、結晶化が開始する温
度付近から600℃〜700℃の処理温度までの昇温速
度が10℃/分〜50℃/分になる結晶化熱処理を施す
ことにより作製されている。
[0003] In such a microcrystalline permanent magnet, a molten Fe-BR alloy having a specific composition is turned into an amorphous structure of 90% or more by a liquid super-quenching method, and then 600 ° C. It is manufactured by performing a crystallization heat treatment at a rate of temperature rise up to a processing temperature of 700 ° C. from 10 ° C./min to 50 ° C./min.

【0004】90%以上のアモルファス組織からなるF
e−B−R合金を得るためには、急冷ロール例えば、単
ロールを用いた液体超急冷法において、ロール周速度が
15m/秒を越える時にのみ達成できる105℃/秒以
上の合金溶湯急冷速度が必要であり、かかる急冷速度を
満足する合金溶湯の超急冷条件は極狭く、工業生産上実
用的とは言い難いものであった。
[0004] F having an amorphous structure of 90% or more
In order to obtain an eBR alloy, in a liquid quenching method using a quenching roll, for example, a single roll, a molten alloy quenching of 10 5 ° C / sec or more can be achieved only when the roll peripheral speed exceeds 15 m / sec. The speed is required, and the ultra-quenching condition of the molten alloy satisfying the quenching speed is extremely narrow, and is not practical for industrial production.

【0005】[0005]

【発明が解決しようとする課題】105℃/秒以上の合
金溶湯急冷速度を得るために、上述の単ロールを用いた
液体超急冷法において、ロール周速度が15m/秒を越
えると、ロールの回転による雰囲気ガスの巻き込みが大
きくなり、合金溶湯とロール面の間に巻き込んだガスに
て急冷速度がばらつくのみならず、ロール上で溶湯が跳
ね飛ばされて安定的に急冷薄帯を作製することができな
い。
In order to obtain a quenching speed of the alloy melt of 10 5 ° C / sec or more, in the above-mentioned liquid super-quenching method using a single roll, if the roll peripheral speed exceeds 15 m / sec, the The entrainment of the atmosphere gas due to the rotation of the roll increases, and not only the quenching speed fluctuates due to the gas entrapped between the molten alloy and the roll surface, but also the molten metal is splashed on the roll to stably produce a quenched ribbon. Can not do.

【0006】また、合金溶湯の急冷に際して生じる溶湯
によるロール表面の損傷は、ロール周速度と比例して増
大するため、15m/秒を越えるロール周速度の急冷処
理を長時間継続した場合、ロール表面の損傷により急冷
条件が一定しないという問題がある。
Further, damage to the roll surface caused by the molten alloy during the quenching of the molten alloy increases in proportion to the roll peripheral speed. There is a problem that the quenching condition is not constant due to the damage of the steel.

【0007】さらに、105℃/秒以上の合金溶湯急冷
速度を得るためには、ロール面の単位面積当たりの合金
溶湯の急冷量を700gr/秒以下にする必要が有り、
処理量を増大するには液体急冷装置の大型化を余儀なく
され、製造コストを上昇させることになる。
Further, in order to obtain a quenching rate of the alloy melt of 10 5 ° C / sec or more, it is necessary to set the quenching rate of the alloy melt per unit area of the roll surface to 700 gr / sec or less.
In order to increase the throughput, the size of the liquid quenching device must be increased, which increases the manufacturing cost.

【0008】この発明は、Fe3B型化合物並びにNd2
Fe14B型結晶構造を有する化合物相が共存する微細結
晶型の等方性磁石の母材となる90%以上のアモルファ
ス組織からなる永久磁石用鉄基合金の製造方法におい
て、液体急冷法の急冷条件が厳しく工業生産上実用的で
ないことに鑑み、急冷ロールを用いた液体急冷法におけ
るロール周速度を工業生産上安定的に急冷薄帯を作製す
ることができる10m/秒以下にして、90%以上のア
モルファス組織からなるかかる永久磁石用鉄基合金を得
ることが可能な微細結晶永久磁石用鉄基合金とその製造
方法の提供を目的としている。
The present invention relates to Fe 3 B type compounds and Nd 2
In a method for producing an iron-based alloy for a permanent magnet having an amorphous structure of 90% or more and serving as a base material of a fine crystal type isotropic magnet in which a compound phase having an Fe 14 B type crystal structure coexists, a quenching method of a liquid quenching method is used. In view of the fact that the conditions are severe and impractical for industrial production, the roll peripheral speed in the liquid quenching method using a quenching roll is set to 10 m / sec or less at which a quenched ribbon can be stably produced for industrial production, and 90% An object of the present invention is to provide an iron-based alloy for a microcrystalline permanent magnet capable of obtaining such an iron-based alloy for a permanent magnet having the above-mentioned amorphous structure, and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】発明者らは、10kG以
上の残留磁束密度Brを有する微細結晶型の等方性磁石
の母材となる永久磁石用鉄基合金の製造に際し、液体急
冷法における急冷条件を緩和して安定した工業生産が可
能な方法を目的に、ロール周速度を10m/秒以下にし
て、90%以上のアモルファス組織からなる微細結晶合
金を得る方法について、種々検討した結果、Pr、Nd
の1種または2種が1〜6at%のFe−B−R組成に
おいて、Zr、Nb、Mo、Hf、Ta、Wの1種また
は2種以上の少量の特定添加元素を加えた組成となすこ
とにより、安定した工業生産が可能な10m/秒以下の
ロール周速度で合金溶湯を液体急冷法により急冷して、
90%以上のアモルファス組織を得ることができ、アモ
ルファス生成能に優れた微細結晶永久磁石用鉄基合金が
得られることを知見し、この発明を完成した。
Means for Solving the Problems In producing an iron-based alloy for a permanent magnet, which is a base material of a microcrystalline isotropic magnet having a residual magnetic flux density Br of 10 kG or more, the present inventors have employed a liquid quenching method. For the purpose of a method capable of stabilizing industrial production by relaxing the quenching condition, various studies were conducted on a method of obtaining a microcrystalline alloy having an amorphous structure of 90% or more with a roll peripheral speed of 10 m / sec or less. Pr, Nd
Is a composition in which one or two or more of Zr, Nb, Mo, Hf, Ta, and W are added to a small amount of a specific additive element in an Fe-BR composition of 1 to 6 at%. Thereby, the alloy melt is quenched by a liquid quenching method at a roll peripheral speed of 10 m / sec or less that enables stable industrial production,
The present inventors have found that an amorphous structure of 90% or more can be obtained, and that an iron-based alloy for a microcrystalline permanent magnet having excellent amorphous forming ability can be obtained, and the present invention has been completed.

【0010】すなわち、この発明は、組成式をT
100-x-yxyz(但し、TはFeまたはFeの一部を
Co、NiまたはCrの1種もしくは2種以上にて置
換、RはPr、Ndの1種または2種、MはZr、N
b、Mo、Hf、Ta、Wの1種または2種以上)と表
し、組成範囲を限定する記号x、y、zが下記値を満足
し、実質的に90%以上アモルファス組織を有し、結晶
化熱処理することにより、微細結晶永久磁石になる微細
結晶永久磁石用鉄基合金である。 15≦x≦30at% 1≦y≦6at% 1≦z≦5at%
That is, in the present invention, the composition formula is represented by T
100-xy B x R y M z (where T is Fe or a part of Fe is replaced by one or more of Co, Ni or Cr, R is one or two of Pr and Nd, M Is Zr, N
b, Mo, Hf, Ta, W, or more), and the symbols x, y, and z that limit the composition range satisfy the following values and have an amorphous structure of substantially 90% or more, This is an iron-based alloy for microcrystalline permanent magnets that becomes a microcrystalline permanent magnet by crystallization heat treatment. 15 ≦ x ≦ 30 at% 1 ≦ y ≦ 6 at% 1 ≦ z ≦ 5 at%

【0011】また、この発明は、組成式をT100-x-yx
yz(但し、TはFeまたはFeの一部をCo、Ni
またはCrの1種もしくは2種以上にて置換、RはP
r、Ndの1種または2種、MはZr、Nb、Mo、H
f、Ta、Wの1種または2種以上)と表し、組成範囲
を限定する記号x、y、zが上記値を満足する合金溶湯
を、急冷ロールを用いた液体急冷法により、ロール周速
度を2m/秒〜10m/秒にして急冷し、実質的に90
%以上アモルファス組織を有し、600℃〜700℃で
結晶化熱処理することにより、微細結晶永久磁石になる
微細結晶永久磁石用鉄基合金の製造方法である。
Further, the present invention provides a composition formula of T 100-xy B x
R y M z (where, T is a part of Fe or Fe Co, Ni
Or substituted by one or more types of Cr, R is P
one or two of r and Nd, M is Zr, Nb, Mo, H
f, Ta, W, or two or more), and the symbols x, y, and z, which limit the composition range, satisfy the above values. The roll peripheral speed is determined by a liquid quenching method using a quenching roll. Is rapidly cooled to 2 m / sec to 10 m / sec, and substantially cooled to 90 m / sec.
This is a method for producing an iron-based alloy for a microcrystalline permanent magnet, which has an amorphous structure of at least% and is subjected to a crystallization heat treatment at 600 ° C. to 700 ° C. to become a microcrystalline permanent magnet.

【0012】[0012]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

組成の限定理由 希土類元素Rは、Pr、Ndの1種または2種とし、R
が1at%未満ではNd2Fe14B型結晶構造を有する
化合物相が結晶化熱処理時に析出せず、2kOe以上の
iHcが得られない、また6at%を越えると10kG
以上の残留磁束密度Brが得られないため、1at%〜
6at%の範囲とする。好ましくは、2at%〜5at
%が良い。
Reasons for Limiting Composition Rare earth element R is one or two of Pr and Nd.
Is less than 1 at%, a compound phase having an Nd 2 Fe 14 B type crystal structure does not precipitate during crystallization heat treatment, iHc of 2 kOe or more cannot be obtained, and if it exceeds 6 at%, 10 kG
Since the above residual magnetic flux density Br cannot be obtained, 1 at% to
The range is 6 at%. Preferably, 2 at% to 5 at
% Is good.

【0013】Bは、15at%未満では超急冷法を用い
ても90%以上のアモルファス組織を得ることができ
ず、熱処理を施しても1kOe未満のiHcしか得られ
ず、また30at%を越えると減磁曲線の角型性が著し
く低下し10kG以上のBrが得られないため、15a
t%〜30at%の範囲とする。好ましくは、15at
%〜20at%が良い。
When B is less than 15 at%, an amorphous structure of 90% or more cannot be obtained even by using the ultra-quenching method, iHc of less than 1 kOe can be obtained even by heat treatment, and when it exceeds 30 at%, Since the squareness of the demagnetization curve is significantly reduced and Br of 10 kG or more cannot be obtained,
t% to 30 at%. Preferably, 15 at
% To 20 at% is good.

【0014】Zr、Nb、Mo、Hf、Ta、Wの1種
または2種以上は、本系合金のアモルファス生成能の向
上に大きく貢献し、90%以上のアモルファス組織を得
るのに急冷ロールを用いた液体急冷法においてロール周
速度を2m/秒〜10m/秒に低速化することができる
が、含有量が1at%未満ではかかる効果を得ることが
できず、5at%を越えると結晶化熱処理温度が準安定
相であるNd2Fe14B型化合物相の分解温度以上とな
ってiHcが得られないため、1at%〜5at%の範
囲とする。好ましくは、1at%〜2at%が良い。
One or more of Zr, Nb, Mo, Hf, Ta, and W greatly contribute to the improvement of the amorphous forming ability of the present alloy, and a quenching roll is required to obtain an amorphous structure of 90% or more. In the liquid quenching method used, the peripheral speed of the roll can be reduced to 2 m / sec to 10 m / sec. However, if the content is less than 1 at%, such an effect cannot be obtained. If the content exceeds 5 at%, crystallization heat treatment is performed. Since the temperature becomes higher than the decomposition temperature of the Nd 2 Fe 14 B type compound phase which is a metastable phase and iHc cannot be obtained, the range is 1 at% to 5 at%. Preferably, 1 at% to 2 at% is good.

【0015】上述の元素の含有残余をFeで占め、ま
た、Feの一部をCo、およびNiで置換することによ
り減滋曲線の角形性が改善され、最大エネルギー積(B
H)max、および耐熱性の向上が得られ、また、Cr
で置換することによりiHcの大きな向上が得られる。
The occupancy of the above elements is occupied by Fe, and by replacing a part of Fe with Co and Ni, the squareness of the depletion curve is improved and the maximum energy product (B
H) An improvement in max and heat resistance can be obtained.
Substantially improves iHc.

【0016】製造条件の限定理由 この発明における液体急冷法とは、急冷ロールによる液
体急冷法及び合金鋳造法であるストリップキャスト法を
含むものである。上述の特定組成の合金溶湯を液体急冷
法で、好ましくは減圧不活性ガス雰囲気中にて、ロール
周速度を2m/秒〜10m/秒にして、合金溶湯冷却速
度102℃/秒〜105℃/秒を実現することにより、好
適な急冷組織と安定した品質の急冷薄帯を生成でき、9
0%以上のアモルファス組織を得ることができる。
Reasons for Limiting Manufacturing Conditions The liquid quenching method in the present invention includes a liquid quenching method using a quenching roll and a strip casting method which is an alloy casting method. The alloy melt having the above specific composition is cooled by a liquid quenching method, preferably in a reduced-pressure inert gas atmosphere, at a roll peripheral speed of 2 m / sec to 10 m / sec, and a cooling speed of the alloy melt of 10 2 ° C / sec to 10 5. C./sec. Can produce a quenched ribbon with a suitable quenched structure and stable quality.
An amorphous structure of 0% or more can be obtained.

【0017】急冷ロールにCu製ロールを用いた場合、
ロール周速度が2m/s未満では、実質的に90%以上
のアモルファス組織を得ることができず、ロール周速度
が10m/秒を越えると、回転ロールによる雰囲気ガス
の巻き込みが大きく、回転ロールと合金溶湯の間に雰囲
気ガスが入り込み、急冷条件の均一性が失われ、また、
ロール上で溶湯が跳ね飛ばされて安定的に急冷薄帯を作
製することができないため、ロール周速度を2m/s〜
10m/sに限定する。さらに好ましいロール周速度は
3m/s〜10m/sである。
When a Cu roll is used as the quenching roll,
When the roll peripheral speed is less than 2 m / s, an amorphous structure of substantially 90% or more cannot be obtained, and when the roll peripheral speed exceeds 10 m / sec, entrainment of atmospheric gas by the rotating roll is large, and Atmospheric gas enters between the molten alloys, losing uniformity of quenching conditions,
Since the molten metal is splashed off on the roll and a quenched ribbon cannot be produced stably, the roll peripheral speed is 2 m / s or more.
Limited to 10 m / s. A more preferable roll peripheral speed is 3 m / s to 10 m / s.

【0018】磁石化方法 上述のごとく、特定組成の合金溶湯を液体急冷法で、実
質的に90%以上のアモルファス組織からなる金属組織
となし、その後、結晶化が開始する温度付近から600
℃〜700℃の処理温度までの昇温速度が10℃/分〜
50℃/分になる結晶化熱処理を施すことにより、軟磁
性を有するFe3B型化合物並びにα−FeとNd2Fe
14B型結晶構造を有する硬磁性化合物相が同一粉末中に
共存し、各構成相の平均結晶粒径が1nm〜50nmで
あり、固有保磁力iHc≧2kOe、残留磁束密度Br
≧10kGの磁気特性を有する微細結晶永久磁石を得る
ことができる。
Magnetization Method As described above, a molten alloy having a specific composition is converted into a metal structure having substantially 90% or more of an amorphous structure by a liquid quenching method.
From 10 ° C / min to the processing temperature of
By performing the crystallization heat treatment at 50 ° C./min, the Fe 3 B-type compound having soft magnetism, α-Fe and Nd 2 Fe
14 A hard magnetic compound phase having a B-type crystal structure coexists in the same powder, each constituent phase has an average crystal grain size of 1 nm to 50 nm, an intrinsic coercive force iHc ≧ 2 kOe, and a residual magnetic flux density Br.
A microcrystalline permanent magnet having magnetic properties of ≧ 10 kG can be obtained.

【0019】[0019]

【実施例】【Example】

実施例1 表1のNo.1〜No.6の組成となるように、純度9
9.5%以上のFe、Zr、Nb、Mo、Hf、Ta、
W、Ni、Co、Cr、B、Nd、Prの金属を用い、
総量が30gとなるように秤量し、底部に直径0.8m
mのオリフィスを有する石英るつぼ内に投入し、圧力5
6cmHgに保持したAr雰囲気中で高周波加熱により
溶解し、溶解温度を1300℃にした後、湯面をArガ
スにより加圧して室温にて、表1に示すロール周速度に
て回転するCu製急冷単ロールの外周面に0.7mmの
高さから溶湯を噴出させて幅2mm〜3mm、厚み70
μm〜180μmの急冷合金薄帯を作製した。
Example 1 No. 1 in Table 1. 1 to No. Purity 9 so as to have a composition of 6.
9.5% or more of Fe, Zr, Nb, Mo, Hf, Ta,
Using metals of W, Ni, Co, Cr, B, Nd and Pr,
Weigh so that the total amount is 30 g, and the diameter is 0.8 m at the bottom.
m orifice into a quartz crucible and pressure 5
Melting is performed by high frequency heating in an Ar atmosphere maintained at 6 cmHg, and after the melting temperature is set to 1300 ° C., the molten metal surface is pressurized with Ar gas, and rapidly cooled at room temperature at a roll peripheral speed shown in Table 1 by a Cu quenching. The molten metal is spouted from the height of 0.7 mm on the outer peripheral surface of the single roll to obtain a width of 2 mm to 3 mm and a thickness of 70 mm.
A rapidly quenched alloy ribbon of μm to 180 μm was produced.

【0020】得られた急冷薄帯は、Cu−Kαの特性X
線による調査の結果、実質的に組織の90%以上がアモ
ルファスであることを確認した。又、構成相は、Fe3
B相、Nd2Fe14B相が混在する多相組織であり、Z
r、Nb、Mo、Hf、Ta、W、Ni、Co、Crは
これらの各相でFeの一部と置換されている。各相の平
均結晶粒径はいずれも30nm以下であった。
The obtained quenched ribbon has the characteristic X of Cu-Kα.
As a result of examination by a line, it was confirmed that substantially 90% or more of the structure was amorphous. The constituent phase is Fe 3
B is a multi-phase structure in which B phase and Nd 2 Fe 14 B phase are mixed.
In each of these phases, r, Nb, Mo, Hf, Ta, W, Ni, Co, and Cr are replaced with part of Fe. The average crystal grain size of each phase was 30 nm or less.

【0021】この急冷薄帯をArガス中で、580℃〜
600℃以上を20℃/分の昇温速度で昇温加熱し、表
1に示す熱処理温度に7分間保持し、その後、室温まで
冷却して、薄帯を取り出し、幅2mm〜3mm、厚み2
0μm〜40μm、長さ3mm〜5mmの試料を作製
し、VSMを用いて磁気特性を測定した結果を表2に示
す。
The quenched ribbon is heated to 580 ° C. in Ar gas.
600 ° C. or more was heated at a heating rate of 20 ° C./min, kept at the heat treatment temperature shown in Table 1 for 7 minutes, then cooled to room temperature, and the ribbon was taken out, and the width was 2 mm to 3 mm and the thickness was 2 mm.
Table 2 shows the results of preparing samples having a length of 0 μm to 40 μm and a length of 3 mm to 5 mm, and measuring the magnetic characteristics using a VSM.

【0022】比較例 実施例1と同様条件で、表1のNo.7〜No.9の組
成となるように純度99.5%のFe、B、Rを用いて
急冷合金薄帯を作製した。試料のCu−Kαの特性X線
による調査の結果、得られたNo.7の急冷薄帯は、α
−Feを主相としFe3B相とNd2Fe14B相が混在す
る金属組織であり、No.8とNo.9の急冷薄帯は、
α−Fe相とアモルファスの混在組織であった。
Comparative Example Under the same conditions as in Example 1, No. 7-No. A quenched alloy ribbon was prepared using Fe, B, and R having a purity of 99.5% so as to obtain a composition of No. 9. As a result of an examination of the sample by the characteristic X-ray of Cu-Kα, No. The quenched ribbon of 7 is α
No.-Fe as a main phase, a metal structure in which Fe 3 B phase and Nd 2 Fe 14 B phase are mixed. 8 and no. 9 quenched ribbons
It was a mixed structure of an α-Fe phase and amorphous.

【0023】No.7〜No.9の急冷薄帯を、実施例
1と同条件で熱処理した後、VSMを用いて磁気特性を
測定した。測定結果を表2に示す。なお、熱処理後の金
属組織はいずれの試料もα−Feを主相としFe3B相
とNd2Fe14B相が混在する金属組織であり、その平
均結晶粒径は100nm程度と、実施例のNo.1〜N
o.6に比べて粗大であった。
No. 7-No. After heat-treating the quenched ribbon No. 9 under the same conditions as in Example 1, the magnetic properties were measured using VSM. Table 2 shows the measurement results. In addition, the metal structure after heat treatment was a metal structure in which each sample contained α-Fe as a main phase and a Fe 3 B phase and an Nd 2 Fe 14 B phase were mixed, and the average crystal grain size was about 100 nm. No. 1 to N
o. 6 was coarser.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】実施例に明らかなように、この発明によ
る90%以上のアモルファス組織からなる微細結晶永久
磁石用鉄基合金は、結晶化が開始する温度付近から60
0℃〜700℃の処理温度までの昇温速度が10℃/分
〜50℃/分になる結晶化熱処理を施すことにより、軟
磁性を有するFe3B型化合物並びにα−FeとNd2
14B型結晶構造を有する硬磁性化合物相が同一粉末中
に共存し、各構成相の平均結晶粒径が1nm〜50nm
であり、固有保磁力iHc≧2kOe、残留磁束密度B
r≧10kGの磁気特性を有する微細結晶永久磁石を得
ることができる。
As is clear from the examples, the iron-based alloy for a microcrystalline permanent magnet having an amorphous structure of 90% or more according to the present invention has a temperature of about 60% from the temperature at which crystallization starts.
By performing a crystallization heat treatment at a heating rate of 10 ° C./min to 50 ° C./min to a treatment temperature of 0 ° C. to 700 ° C., a Fe 3 B-type compound having soft magnetism, α-Fe and Nd 2 F
The hard magnetic compound phase having the e 14 B type crystal structure coexists in the same powder, and the average crystal grain size of each constituent phase is 1 nm to 50 nm.
And the specific coercive force iHc ≧ 2 kOe, the residual magnetic flux density B
A microcrystalline permanent magnet having magnetic characteristics of r ≧ 10 kG can be obtained.

【0027】すなわち、この発明は、Pr、Ndの1種
または2種が1〜6at%のFe−B−R組成におい
て、Zr、Nb、Mo、Hf、Ta、Wの1種または2
種以上の少量の特定添加元素を加えた組成となすことに
より、安定した工業生産が可能な10m/秒以下のロー
ル周速度で合金溶湯を液体急冷法により急冷して、90
%以上のアモルファス組織を得ることができ、Fe3
型化合物並びにNd2Fe14B型結晶構造を有する化合
物相が共存する微細結晶型の等方性磁石の母材となるア
モルファス生成能に優れた永久磁石用鉄基合金を、安定
した工業生産で量産でき、安価に提供できる。
That is, in the present invention, one or two of Zr, Nb, Mo, Hf, Ta, and W are used in a Fe—BR composition in which one or two of Pr and Nd are 1 to 6 at%.
By making a composition to which at least one or more kinds of specific additive elements are added, the molten alloy is quenched by a liquid quenching method at a roll peripheral speed of 10 m / sec or less, which enables stable industrial production, and
% Or more of an amorphous structure, and Fe 3 B
-Based alloys for permanent magnets with excellent amorphous forming ability, which are the base materials of isotropic magnets of the fine crystal type in which the compound phase and the compound phase having the Nd 2 Fe 14 B type crystal structure coexist, in a stable industrial production It can be mass-produced and offered at low cost.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 組成式をT100-x-yxyz(但し、T
はFeまたはFeの一部をCo、Ni又はCrの1種も
しくは2種にて置換、RはPr、Ndの1種または2
種、MはZr、Nb、Mo、Hf、Ta、Wの1種また
は2種以上)と表し、組成範囲を限定する記号x、y、
zが下記値を満足し、実質的に90%以上アモルファス
組織を有し、結晶化熱処理することにより、微細結晶永
久磁石になる微細結晶永久磁石用鉄基合金。 15≦x≦30at% 1≦y≦6at% 1≦z≦5at%
1. The composition formula is represented by T 100-xy B x R y M z (where T
Is Fe or a part of Fe substituted with one or two of Co, Ni or Cr, and R is one or two of Pr and Nd.
Species, M is one or more of Zr, Nb, Mo, Hf, Ta, W), and symbols x, y,
An iron-based alloy for a microcrystalline permanent magnet, wherein z satisfies the following values, has an amorphous structure of substantially 90% or more, and becomes a microcrystalline permanent magnet by crystallization heat treatment. 15 ≦ x ≦ 30 at% 1 ≦ y ≦ 6 at% 1 ≦ z ≦ 5 at%
【請求項2】 組成式をT100-x-yxyz(但し、T
はFeまたはFeの一部をCo、Ni又はCrの1種も
しくは2種にて置換、RはPr、Ndの1種または2
種、MはZr、Nb、Mo、Hf、Ta、Wの1種また
は2種以上)と表し、組成範囲を限定する記号x、y、
zが下記値を満足する合金溶湯を、急冷ロールを用いた
液体急冷法により、ロール周速度を2m/秒〜10m/
秒にして急冷し、実質的に90%以上アモルファス組織
を有し、600℃〜700℃で結晶化熱処理することに
より、微細結晶永久磁石になる微細結晶永久磁石用鉄基
合金の製造方法。 15≦x≦30at% 1≦y≦6at% 1≦z≦5at%
2. The composition formula is represented by T 100-xy B x R y M z (where T
Is Fe or a part of Fe substituted with one or two of Co, Ni or Cr, and R is one or two of Pr and Nd.
Species, M is one or more of Zr, Nb, Mo, Hf, Ta, W), and symbols x, y,
The molten alloy whose z satisfies the following values was rolled at a roll peripheral speed of 2 m / sec to 10 m /
A method for producing an iron-based alloy for a fine crystal permanent magnet, which is rapidly cooled in seconds, has an amorphous structure of substantially 90% or more, and is subjected to a crystallization heat treatment at 600 ° C. to 700 ° C. to become a fine crystal permanent magnet. 15 ≦ x ≦ 30 at% 1 ≦ y ≦ 6 at% 1 ≦ z ≦ 5 at%
JP27720396A 1996-09-26 1996-09-26 Method for producing iron-based alloy for fine crystal permanent magnet Expired - Lifetime JP3720489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27720396A JP3720489B2 (en) 1996-09-26 1996-09-26 Method for producing iron-based alloy for fine crystal permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27720396A JP3720489B2 (en) 1996-09-26 1996-09-26 Method for producing iron-based alloy for fine crystal permanent magnet

Publications (2)

Publication Number Publication Date
JPH10102215A true JPH10102215A (en) 1998-04-21
JP3720489B2 JP3720489B2 (en) 2005-11-30

Family

ID=17580252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27720396A Expired - Lifetime JP3720489B2 (en) 1996-09-26 1996-09-26 Method for producing iron-based alloy for fine crystal permanent magnet

Country Status (1)

Country Link
JP (1) JP3720489B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6471786B1 (en) * 1999-09-16 2002-10-29 Sumitomo Special Metals Co., Ltd. Method for preparing nanocomposite magnet powder and method for producing nanocomposite magnet
JP2002343660A (en) * 2001-05-18 2002-11-29 Sumitomo Special Metals Co Ltd Permanent magnet having a plurality of ferromagnetic phases and manufacturing method therefor
WO2003001541A1 (en) * 2001-06-22 2003-01-03 Sumitomo Special Metals Co., Ltd. Rare earth magnet and method for production thereof
KR100414462B1 (en) * 2000-05-30 2004-01-07 세이코 엡슨 가부시키가이샤 Magnetic material manufacturing method, ribbon-shaped magnetic materials, powdered magnetic materials and bonded magnets
JP4529198B2 (en) * 1999-03-19 2010-08-25 日立金属株式会社 Iron-based permanent magnet containing a small amount of rare earth metal and method for producing the same
CN106024244A (en) * 2016-07-21 2016-10-12 江西理工大学 High-heat-stability nanocrystal rare-earth permanent-magnet material and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4529198B2 (en) * 1999-03-19 2010-08-25 日立金属株式会社 Iron-based permanent magnet containing a small amount of rare earth metal and method for producing the same
US6471786B1 (en) * 1999-09-16 2002-10-29 Sumitomo Special Metals Co., Ltd. Method for preparing nanocomposite magnet powder and method for producing nanocomposite magnet
KR100414462B1 (en) * 2000-05-30 2004-01-07 세이코 엡슨 가부시키가이샤 Magnetic material manufacturing method, ribbon-shaped magnetic materials, powdered magnetic materials and bonded magnets
JP2002343660A (en) * 2001-05-18 2002-11-29 Sumitomo Special Metals Co Ltd Permanent magnet having a plurality of ferromagnetic phases and manufacturing method therefor
JP4670179B2 (en) * 2001-05-18 2011-04-13 日立金属株式会社 Permanent magnet having a plurality of ferromagnetic phases and method for producing the same
WO2003001541A1 (en) * 2001-06-22 2003-01-03 Sumitomo Special Metals Co., Ltd. Rare earth magnet and method for production thereof
US7258751B2 (en) 2001-06-22 2007-08-21 Neomax Co., Ltd. Rare earth magnet and method for production thereof
US7867343B2 (en) 2001-06-22 2011-01-11 Hitachi Metals, Ltd. Rare earth magnet and method for production thereof
CN106024244A (en) * 2016-07-21 2016-10-12 江西理工大学 High-heat-stability nanocrystal rare-earth permanent-magnet material and preparation method thereof

Also Published As

Publication number Publication date
JP3720489B2 (en) 2005-11-30

Similar Documents

Publication Publication Date Title
JP4169074B2 (en) Iron-based rare earth nanocomposite magnet and manufacturing method thereof
EP2513917B1 (en) Rare earth magnet and manufacturing method therefor
JPH0128489B2 (en)
US6280536B1 (en) Fe based hard magnetic alloy having super-cooled liquid region
US6386269B1 (en) Method of manufacturing thin plate magnet having microcrystalline structure
JP4766045B2 (en) Iron-based rare earth nanocomposite magnet and manufacturing method thereof
JP5916983B2 (en) Alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component
US6329894B1 (en) Thin plate magnet having microcrystalline structure
US20020003006A1 (en) Alloy for high-performance rare earth permanent magnet and manufacturing method thereof
JP4687662B2 (en) Iron-based rare earth alloy magnet
JPH0574618A (en) Manufacture of rare earth permanent magnet
CN110246645B (en) Rare earth permanent magnet
US6168673B1 (en) Sheet magnet having microcrystalline structure and method of manufacturing the same, and method of manufacturing isotropic permanent magnet powder
JP2010182827A (en) Production method of high-coercive force magnet
JP2024020341A (en) Anisotropic rare earth sintered magnet and its manufacturing method
JPH10265915A (en) Production of microcruystalline permanent magnet alloy and permanent magnet powder
JPH10102215A (en) Iron base alloy for fine crystal permanent magnet and its production
JP3264664B1 (en) Permanent magnet having a plurality of ferromagnetic phases and manufacturing method thereof
JP2005270988A (en) Method for producing rare-earth-metal alloy thin sheet, rare-earth-metal alloy thin sheet and rare-earth-metal magnet
JP4715245B2 (en) Iron-based rare earth nanocomposite magnet and method for producing the same
JP3777225B2 (en) Isotropic permanent magnet powder having high magnetic flux density and method for producing the same
JP2017166018A (en) Neodymium-iron-boron-based alloy
JP4670179B2 (en) Permanent magnet having a plurality of ferromagnetic phases and method for producing the same
JP2002064009A (en) Iron-based rare earth alloy magnet and method of manufacturing the same
JP3763774B2 (en) Quenched alloy for iron-based rare earth alloy magnet and method for producing iron-based rare earth alloy magnet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

EXPY Cancellation because of completion of term