JPH10101411A - Production of fine powder of yttrium aluminum garnet - Google Patents

Production of fine powder of yttrium aluminum garnet

Info

Publication number
JPH10101411A
JPH10101411A JP8274165A JP27416596A JPH10101411A JP H10101411 A JPH10101411 A JP H10101411A JP 8274165 A JP8274165 A JP 8274165A JP 27416596 A JP27416596 A JP 27416596A JP H10101411 A JPH10101411 A JP H10101411A
Authority
JP
Japan
Prior art keywords
yttrium
salt
aluminum
urea
yag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8274165A
Other languages
Japanese (ja)
Other versions
JP3692188B2 (en
Inventor
Takakimi Yanagiya
高公 柳谷
Hideki Yagi
秀喜 八木
Hiroo Yamazaki
裕生 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOUNOSHIMA KAGAKU KOGYO KK
Konoshima Chemical Co Ltd
Original Assignee
KOUNOSHIMA KAGAKU KOGYO KK
Konoshima Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOUNOSHIMA KAGAKU KOGYO KK, Konoshima Chemical Co Ltd filed Critical KOUNOSHIMA KAGAKU KOGYO KK
Priority to JP27416596A priority Critical patent/JP3692188B2/en
Publication of JPH10101411A publication Critical patent/JPH10101411A/en
Application granted granted Critical
Publication of JP3692188B2 publication Critical patent/JP3692188B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce YAG fine particle powder excellent in dispersibility with low coagulation without using urea. SOLUTION: A mineral acid salt aqueous solution containing a mixture of a yttrium salt and an aluminum salt so that these yttrium and aluminum salts may give the garnet composition are admixed to an aqueous carbonate solution of 7.5-11.0pH by addition of an alkali to crystallize out a water-insoluble salt of yttrium ion and aluminum ion. Then, the reaction mixture is aged, filtered, washed with water, and fired to form a fine particle powder of yttrium aluminum garnet. Since this fine particle powder is less coagulable with high dispersibility, YAG fine particle powder excellent in sintering properties can be produced. Urea is not needed and the precipitation can be formed at a lowered temperature and the anions which cause the secondary particle growth can be readily removed and the environmental problems caused by liberation of ammonia or the remaining urea can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の利用分野】本発明は、レーザー用発振子、放電
ランプ用エンベロープ、サファイヤ代替用窓材、装飾品
等に用い得る透光性YAGセラミックスの製造に有用な
YAG微粉体の製造方法に関するものである。なおYA
Gの組成はY3Al5O12で、理論密度は4.55g/cm
3である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing fine YAG powder useful for producing translucent YAG ceramics which can be used for an oscillator for a laser, an envelope for a discharge lamp, a window material as a substitute for sapphire, a decorative article and the like. It is. YA
The composition of G is Y3Al5O12 and the theoretical density is 4.55 g / cm.
3

【0002】[0002]

【従来技術】透光性YAGセラミックスの製造方法とし
ては、これまでにホットプレスによるもの(米国特許:
3767,745)や、酸化物微粉末のボールミル混合
とCIP成形(静水圧成形)による直接焼結法(特開平
3−218963号)が開示されている。ホットプレス
法では、装置が高価なうえ量産性に乏しく、またセラミ
ックスの重要な特徴である複雑形状品の製造が困難であ
る。酸化物微粉末混合法では透光性の良い焼結体が得ら
れるが、反応性を増し、かつ混合時の比重差によるイッ
トリアとアルミナとの分離を抑制するため、イットリア
の超微粉体を用いる必要がある。このためイットリアと
アルミナを別々に製造する必要がある。また超微粉体を
用いるため成形密度が低く、その結果、焼結時の収縮が
増加し、寸法精度が低下する。さらに量産法として押し
出し成形法や射出成形法を適用した場合、成形圧力が高
くなりニーダーやスクリューの摩耗による汚染が増加
し、この結果、良質のセラミックスが得られない。
2. Description of the Related Art Translucent YAG ceramics have been produced by hot pressing (US Patent:
No. 3,767,745), and a direct sintering method by ball mill mixing of oxide fine powder and CIP molding (hydrostatic molding) (Japanese Patent Application Laid-Open No. 3-218963). In the hot press method, the equipment is expensive and the mass productivity is poor, and it is difficult to manufacture a complex-shaped product which is an important feature of ceramics. The oxide fine powder mixing method can provide a sintered body with good translucency.However, in order to increase the reactivity and suppress the separation of yttria and alumina due to the difference in specific gravity during mixing, ultrafine yttria powder is used. Must be used. Therefore, it is necessary to produce yttria and alumina separately. Further, since the ultrafine powder is used, the molding density is low, and as a result, shrinkage during sintering increases, and dimensional accuracy decreases. Further, when an extrusion molding method or an injection molding method is applied as a mass production method, the molding pressure is increased, and contamination due to wear of a kneader or a screw is increased. As a result, high quality ceramics cannot be obtained.

【0003】また単一相YAG微粉末の製造方法として
は、これまでにゾルゲル法や水酸化物沈澱法等が報告さ
れているが、透光性焼結体が得られる程度の焼結性は有
していない。これは前駆体の沈澱粒子がゲル状の微細な
粒子で、乾燥凝集の結果、仮焼時の粒子同士の焼き付き
や粒成長が著しくなり、一次粒子の分散性が低下するた
めである。この点を改善した例として、硫酸塩の直接分
解法(特開昭59−207555号)が開示されてい
る。しかしながらこの方法では分解生成する亜硫酸ガス
による大気汚染が生じるため、亜硫酸ガスの回収が必要
である。さらに硫酸根を大量に含むため、高温で硫酸根
を分解せねばならず、仮焼時の一次粒子の成長が著しく
なる。このため、MgOやSiO2の焼結助剤なしでは
良好な透光性焼結体が得られない。
As a method for producing a single-phase YAG fine powder, a sol-gel method and a hydroxide precipitation method have been reported so far. I do not have. This is because the precipitated particles of the precursor are gel-like fine particles, and as a result of drying and agglomeration, seizure and grain growth of the particles during calcination become remarkable, and the dispersibility of the primary particles decreases. As an example in which this point is improved, a direct decomposition method of sulfate (JP-A-59-207555) is disclosed. However, this method causes air pollution due to sulfur dioxide gas generated by decomposition, so that it is necessary to recover sulfur dioxide gas. Furthermore, since it contains a large amount of sulfate, the sulfate must be decomposed at a high temperature, and the growth of primary particles during calcination becomes remarkable. Therefore, a good translucent sintered body cannot be obtained without a sintering aid such as MgO or SiO2.

【0004】このような問題点を均一沈澱法の一種であ
る尿素法により解決したものとして、特開平2−928
17号公報がある。これによれば、YAG組成に混合し
た鉱酸塩の混合物水溶液に硫酸イオンを添加し、これに
尿素を加えて加熱し、尿素の加水分解によって生じるア
ンモニアで粒状沈澱を生成させる。得られた沈澱は粒状
で、これを濾過、水洗、乾燥、焼成して分散性の良いY
AG微粉体とする。しかしながらこの方法では、金属イ
オンの加水分解を加速するため、中和に必要な量の7倍
以上の尿素を必要とする。そして発生するアンモニアは
悪臭を伴い、また排水中に含まれる未分解尿素は環境を
汚染する。
[0004] Such a problem was solved by a urea method, which is a kind of uniform precipitation method, as disclosed in Japanese Patent Laid-Open No. 2-928.
No. 17 publication. According to this, sulfate ions are added to an aqueous solution of a mixture of mineral salts mixed with a YAG composition, urea is added thereto, and the mixture is heated, and a granular precipitate is formed by ammonia generated by hydrolysis of urea. The resulting precipitate is in the form of granules, which are filtered, washed with water, dried and calcined to obtain Y having good dispersibility.
AG fine powder. However, in this method, in order to accelerate the hydrolysis of metal ions, urea is required at least 7 times the amount required for neutralization. The generated ammonia has a bad smell, and the undecomposed urea contained in the wastewater pollutes the environment.

【0005】[0005]

【発明の課題】この発明の課題は、尿素を用いず、凝集
性が低く分散性に優れたYAG微粉体を製造することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to produce a YAG fine powder having low cohesiveness and excellent dispersibility without using urea.

【0006】[0006]

【発明の構成】この発明は、アルカリを加えてpH7.
5〜11.0とした炭酸塩の水溶液中に、イットリウム
塩とアルミニウム塩とをガーネット組成となるように混
合した鉱酸塩水溶液を添加してイットリウムイオンとア
ルミニウムイオンとの水不溶性塩を晶出させ、この後反
応液を熟成し、濾過、水洗、焼成してイットリウムアル
ミニウムガーネット微粉体とすることを特徴とする。
According to the present invention, an alkali is added to pH 7.
A mineral salt aqueous solution in which a yttrium salt and an aluminum salt are mixed so as to have a garnet composition is added to an aqueous carbonate solution having a concentration of 5 to 11.0 to crystallize a water-insoluble salt of yttrium ion and aluminum ion. Thereafter, the reaction solution is aged, filtered, washed with water, and calcined to obtain fine yttrium aluminum garnet powder.

【0007】好ましくは熟成を少なくとも反応液のpH
が一定値に達するまで行い、また好ましくは、鉱酸塩水
溶液でのイットリウム塩とアルミニウム塩の合計濃度
を、0.005〜1.0mol/Lとする。
Preferably, the aging is performed at least by the pH of the reaction solution.
Is reached, and preferably the total concentration of the yttrium salt and the aluminum salt in the aqueous mineral salt solution is 0.005 to 1.0 mol / L.

【0008】この発明で得られるイットリウムアルミニ
ウムガーネット微粉体(以下YAG微粉体)は、凝集が
少なく、一次粒子の平均粒径が例えば0.01〜0.2μ
mで、分散性に優れるため、透明なYAG焼結体の製造
に用いることができる。なおこの明細書において、粒径
は平均粒径を意味する。
The yttrium aluminum garnet fine powder (hereinafter referred to as YAG fine powder) obtained by the present invention has little aggregation and the average primary particle size is, for example, 0.01 to 0.2 μm.
m and excellent dispersibility, it can be used for producing a transparent YAG sintered body. In this specification, the particle size means an average particle size.

【0009】この発明で得られる沈澱(水不溶性塩)は
結晶学的にはアモルファスであるが、形態は粒子状で、
尿素法によって得られる粒子状沈澱と同様に濾過、水洗
が容易である。また沈澱の組成は炭酸塩ないし塩基性炭
酸塩で、水酸化物の沈澱でないため、二次粒子成長の要
因となる原料母塩に含まれているCl-やNO3-等の無関
係陰イオンの除去が容易である。なお発明者らは別の実
験で、沈澱中の無関係陰イオン、即ち沈澱から遊離した
陰イオンが、仮焼時の二次粒子成長を促進し、YAG微
粉体の焼結性を阻害することを見い出した。また沈澱中
の無関係陰イオン濃度は、水洗後の値で、2000wt
ppm以下が好ましい。
The precipitate (water-insoluble salt) obtained in the present invention is crystallographically amorphous, but the form is particulate,
Filtration and washing with water are easy as in the case of the particulate precipitate obtained by the urea method. The composition of the precipitate with carbonate or basic carbonate, because it is not a precipitation of hydroxides, Cl are contained in the raw material base salt causes of secondary grain growth - the removal of such extraneous anions - and NO3 Is easy. In another experiment, the inventors found that irrelevant anions in the precipitate, that is, anions released from the precipitate, promoted secondary particle growth during calcination and hindered the sinterability of the YAG fine powder. I found it. The concentration of irrelevant anions in the precipitate is the value after washing with water, 2000 wt.
ppm or less is preferred.

【0010】この発明では沈澱生成に尿素を用いないた
め、沈澱反応を室温でも行うことができ、さらに尿素の
場合のように沈澱反応に直接関与しない大過剰の沈澱剤
を用いる必要はない。同様にアンモニアによる悪臭も少
なく、排水中の尿素により環境への影響もない。
In the present invention, since urea is not used for precipitation, the precipitation reaction can be carried out at room temperature, and there is no need to use a large excess of a precipitating agent which does not directly participate in the precipitation reaction as in the case of urea. Similarly, there is little odor due to ammonia, and there is no environmental impact due to urea in wastewater.

【0011】この発明では、イットリウムとアルミニウ
ムの塩酸や硝酸、硫酸等の無機酸塩、即ち鉱酸塩を水に
溶解する。そして例えばこれらの溶液を、イットリウム
とアルミニウムの合計金属イオン濃度が例えば0.00
5〜1.0mol/Lとなるように、YAG組成に合わせて混
合する。金属イオン濃度がこれより高い場合、沈澱生成
時の粒子同士の接触が増加するため仮焼により粒子同士
の焼き付きが生じ、分散性が低い粉末となる。また金属
イオン濃度は0.005mol/Lよりも低くても良いが、生
産性が低下するので0.005mol/L以上が好ましい。
In the present invention, inorganic salts of yttrium and aluminum, such as hydrochloric acid, nitric acid, and sulfuric acid, that is, mineral salts are dissolved in water. Then, for example, these solutions are prepared by adjusting the total metal ion concentration of yttrium and aluminum to, for example, 0.00.
Mix according to the YAG composition so as to be 5 to 1.0 mol / L. When the metal ion concentration is higher than the above range, the contact between the particles during the precipitation is increased, so that the particles are seized by calcination, resulting in a powder having low dispersibility. The metal ion concentration may be lower than 0.005 mol / L, but is preferably 0.005 mol / L or more because productivity is reduced.

【0012】アルカリを加えてpH7.5〜11.0に調
整した炭酸塩の水溶液中に、上記の鉱酸塩溶液を、例え
ば攪拌下に滴下して添加する。添加の方法は滴下に限ら
ず、炭酸塩水溶液中に鉱酸塩水溶液を徐々に添加するも
のであれば良い。炭酸塩の水溶液は特に限定するもので
はないが、炭酸アンモニウム、炭酸水素アンモニウム、
炭酸カルバミン酸水素アンモニウム、炭酸ナトリウム、
炭酸水素ナトリウム等の水溶液が挙げられる。滴下終了
後、30分〜100時間攪拌下に熟成する。炭酸塩水溶
液のpHは、イットリウムとアルミニウムの鉱酸塩水溶
液を滴下するにつれて低下するが、その後徐々に上昇し
て一定値となる。そのため熟成は少なくともpHが上昇
して一定値となるまで行えば良く、さらに長時間熟成を
行っても焼結性に差異はない。また熟成温度は特に限定
しないが、温度が高すぎると急速に熟成が進み、得られ
る沈澱粒子の粒度分布が広くなる傾向があるため、5℃
〜60℃が好ましい。熟成の機構に付いては定かではな
いが、滴下直後は粒子径が小さく、熟成することなく製
造したYAG原料粉末は乾燥凝集の結果、仮焼時の粒子
同士の焼き付きが増加し、分散性の低いものとなる。
The above mineral salt solution is added dropwise, for example, with stirring to an aqueous solution of carbonate adjusted to pH 7.5 to 11.0 by adding an alkali. The method of addition is not limited to dropping, and any method may be used as long as a mineral salt aqueous solution is gradually added to a carbonate aqueous solution. The aqueous solution of the carbonate is not particularly limited, but ammonium carbonate, ammonium hydrogen carbonate,
Ammonium hydrogen carbonate, sodium carbonate,
An aqueous solution such as sodium hydrogencarbonate can be used. After completion of the dropwise addition, the mixture is aged for 30 minutes to 100 hours with stirring. The pH of the carbonate aqueous solution decreases as the yttrium and aluminum mineral salt aqueous solution is dropped, and thereafter gradually increases to a constant value. Therefore, the aging may be performed at least until the pH rises and reaches a constant value, and there is no difference in the sinterability even after aging for a long time. The ripening temperature is not particularly limited. However, if the temperature is too high, the ripening proceeds rapidly, and the particle size distribution of the resulting precipitated particles tends to be widened.
~ 60 ° C is preferred. The mechanism of aging is not clear, but the particle size is small immediately after dropping, and the YAG raw material powder produced without aging increases the seizure of particles during calcination as a result of dry agglomeration and dispersibility. It will be low.

【0013】熟成後得られた沈澱は、濾過、水洗を例え
ば数回繰り返した後に乾燥する。この際、Cl-やNO
3-、SO42-等の無関係陰イオン濃度が2000wtp
pm以上では仮焼時の二次粒子成長が著しくなるため、
この濃度以下になるまで充分に洗浄を行うのが好まし
い。得られた沈澱を例えば乾燥後に仮焼して、YAG微
粉末を得る。仮焼温度については特に限定しないが、6
50℃以下の温度では沈澱が充分に分解されず、また1
500℃以上の温度では粒子同士の焼結が進みボールミ
ルによる粉砕によっても分散が困難となる。従って、6
50〜1500℃で仮焼するのが適当である。かくして
得られたYAG微粉末は、凝集が少なく、一次粒子の平
均粒径が例えば0.01〜0.2μmの分散性に優れたも
のである。
The precipitate obtained after aging is dried after repeating filtration and washing with water, for example, several times. At this time, Cl - or NO
Concentration of irrelevant anions such as 3 - and SO4 2- is 2000wtp
pm or more, secondary particle growth during calcination becomes remarkable,
It is preferable to sufficiently perform washing until the concentration becomes lower than this concentration. The obtained precipitate is calcined, for example, after drying to obtain a YAG fine powder. The calcination temperature is not particularly limited.
If the temperature is lower than 50 ° C., the precipitate is not sufficiently decomposed.
At a temperature of 500 ° C. or higher, sintering of the particles progresses and dispersion becomes difficult even by pulverization by a ball mill. Therefore, 6
It is appropriate to calcine at 50 to 1500 ° C. The YAG fine powder thus obtained has less agglomeration and an average primary particle size of, for example, 0.01 to 0.2 μm and is excellent in dispersibility.

【0014】本発明によれば、透光性YAGセラミック
スの原料として有用な、凝集が少なく分散性が良いため
焼結性に優れたYAG微粉末を、簡便な工程で低コスト
で製造できる。さらにアンモニアによる悪臭や過剰尿素
による排水の汚染等の問題がない。以下に実施例を説明
するが、これらに限定されるものではない。
According to the present invention, a YAG fine powder which is useful as a raw material of a translucent YAG ceramic and has excellent sinterability due to its low agglomeration and good dispersibility can be produced by a simple process at a low cost. Further, there are no problems such as a bad smell due to ammonia and contamination of waste water due to excess urea. Examples will be described below, but the present invention is not limited to these examples.

【0015】[0015]

【実施例1】0.5mol/Lの硝酸イットリウム水溶液30
0mlと0.5mol/Lの硝酸アルミニウム水溶液500mlを
1Lビーカーにとり混合し、YAG組成の混合溶液とし
た。この溶液を、アンモニア水を加えてpH8.0とし
た2Mの炭酸水素アンモニウム水溶液800ml中に28
ml/分の速度で滴下した。この際、YAG組成の混合溶
液と、炭酸水素アンモニウム水溶液は共に恒温漕中で2
5℃に維持した。滴下の途中でのpHの最小値は7.0
で、滴下終了後3時間程度でpHは一定値の8.0に達
した。滴下終了後、25℃で24時間熟成した後、濾
過、水洗を4回繰り返した。なお実施例ではpHが一定
になった後も熟成(養生)を続行したが、pHが一定に
なれば熟成を打ち切っても良い。濾過と水洗の繰り返し
により、沈澱中の無関係陰イオン,ここでは硝酸イオン
と遊離の炭酸イオン、の濃度は2000wtppm以下
に低下した。水洗後の沈澱はアモルファスであるが、形
態は粒状で濾過や水洗が容易にでき、組成は炭酸塩ない
し塩基性炭酸塩である。
Example 1 0.5 mol / L yttrium nitrate aqueous solution 30
0 ml and 500 ml of a 0.5 mol / L aqueous solution of aluminum nitrate were placed in a 1 L beaker and mixed to obtain a mixed solution having a YAG composition. This solution was added to 800 ml of a 2M aqueous solution of ammonium bicarbonate adjusted to pH 8.0 by adding aqueous ammonia.
It was added dropwise at a rate of ml / min. At this time, the mixed solution of the YAG composition and the aqueous solution of ammonium bicarbonate were both placed in a thermostatic oven for 2 hours.
Maintained at 5 ° C. The minimum value of the pH during the dropping is 7.0.
After about 3 hours from the completion of the dropwise addition, the pH reached a constant value of 8.0. After completion of the dropping, the mixture was aged at 25 ° C. for 24 hours, and then filtered and washed with water four times. In the embodiment, ripening (curing) is continued even after the pH becomes constant, but the ripening may be stopped when the pH becomes constant. By repeated filtration and washing with water, the concentrations of irrelevant anions, in this case, nitrate ions and free carbonate ions, in the precipitate were reduced to 2000 wtppm or less. The precipitate after washing with water is amorphous, but the form is granular and can be easily filtered and washed with water, and the composition is carbonate or basic carbonate.

【0016】このアモルファス沈澱を空気中120℃で
乾燥した後に、空気中1300℃で3時間仮焼すること
により、分散性に優れた一次粒子で平均粒径0.1μ
m、2次粒子で0.18μmのYAG微粒子が得られ
た。得られたYAG微粒子2gを、20φ金型を用いて
100kgf/cm2の圧力で一次成形した後、2To
n/cm2の圧力でCIP成形し、1650℃にて3時
間真空焼結した。焼結体は理論密度に達しており、焼結
体の両面を厚さ2mmとして鏡面研磨した後、波長60
0nmにおける光直線透過率を測定すると79%であっ
た。
After drying the amorphous precipitate in air at 120 ° C., it is calcined in air at 1300 ° C. for 3 hours to obtain primary particles having excellent dispersibility and an average particle size of 0.1 μm.
YAG fine particles of 0.18 μm in secondary particles were obtained. After 2 g of the obtained YAG fine particles were primarily molded at a pressure of 100 kgf / cm 2 using a 20φ mold, 2To
CIP molding was performed at a pressure of n / cm 2 and vacuum sintering was performed at 1650 ° C. for 3 hours. The sintered body has reached the theoretical density, and both sides of the sintered body are mirror-polished to a thickness of 2 mm.
The measured linear light transmittance at 0 nm was 79%.

【0017】[0017]

【実施例2〜16】塩化イットリウム水溶液と塩化アル
ミニウム水溶液を所定濃度のYAG組成となるように混
合した。この混合溶液10Lを、アンモニア水を加えて
所定のpHに調整した炭酸塩水溶液8L中に150ml/
分の速度で滴下した。
Examples 2 to 16 An aqueous yttrium chloride solution and an aqueous aluminum chloride solution were mixed so as to have a YAG composition having a predetermined concentration. 10 L of the mixed solution was added to 8 L of an aqueous carbonate solution adjusted to a predetermined pH by adding aqueous ammonia to a volume of 150 ml / ml.
It was dropped at a rate of minutes.

【0018】以下の操作は特に指摘した点以外は実施例
1と同様にし、金属イオン濃度、炭酸塩の種類及び濃
度、pH、熟成時間、仮焼温度を種々変更してYAG微
粉末を作製し(表1,表2)、1650℃で1時間真空
焼結した。得られた試料の光直線透過率を表2に示す。
なお各沈澱は濾過と水洗を4回繰り返し、いずれも沈澱
中の無関係陰イオン濃度を2000wtppm以下とし
た。また各試料は、鉱酸塩の滴下の過程で一旦pHが低
下した後、pHが再度上昇して定常値に達した。比較例
5は、実施例1での熟成時間を短縮して、pHが定常値
に達する前に熟成を打ち切ったものである。
The following operations were carried out in the same manner as in Example 1 except for the points specifically pointed out, and YAG fine powder was prepared by variously changing the metal ion concentration, the kind and concentration of carbonate, pH, aging time and calcination temperature. (Tables 1 and 2) were vacuum-sintered at 1650 ° C. for 1 hour. Table 2 shows the linear transmittance of the obtained sample.
In addition, filtration and washing were repeated four times for each precipitate, and the concentration of irrelevant anions in the precipitate was set to 2000 wtppm or less. In addition, in each sample, the pH once decreased during the course of the dropping of the mineral salt, and then increased again to reach a steady value. In Comparative Example 5, the aging time in Example 1 was shortened, and the aging was stopped before the pH reached a steady value.

【0019】表1,表2から明らかなように、鉱酸塩の
水溶液の滴下時のpHを7.5より低くしても(比較例
1,2)、11.0より高くしても(比較例3,4)、
透明な焼結体は得られない。またpHが定常値に達する
まで熟成しないと(比較例5)光透過率が低下し、同様
に金属イオン濃度が1.0mol/Lを越えると(比較例6)
光透過率が低下する。これらのことから、鉱酸塩の水溶
液の滴下時のpHは7.5〜11.0に限られ、金属イオ
ン濃度は0.005〜1.0mol/Lが好ましく、熟成はp
Hが定常値に達するまで行うことが好ましい。
As is apparent from Tables 1 and 2, the pH of the aqueous solution of the mineral salt at the time of dropping is lower than 7.5 (Comparative Examples 1 and 2) or higher than 11.0 ( Comparative Examples 3 and 4),
A transparent sintered body cannot be obtained. If the pH is not aged until it reaches a steady value (Comparative Example 5), the light transmittance decreases. Similarly, if the metal ion concentration exceeds 1.0 mol / L (Comparative Example 6).
Light transmittance decreases. From these facts, the pH at the time of dropping the aqueous solution of the mineral acid salt is limited to 7.5 to 11.0, the metal ion concentration is preferably 0.005 to 1.0 mol / L, and the ripening is p
It is preferable to carry out until H reaches a steady value.

【0020】[0020]

【表1】 表1 YAG原料の沈澱条件* 金属イオン濃度 炭酸塩 炭酸塩濃度 pH 反応/養生 養生時間 (mol/L) の種類 (mol/L) 温度(℃) (hr) 実施例2 0.005 NH4・H・CO3 1.0 7.5 35 12 実施例3 0.008 NH4・H・CO3 2.0 9.0 35 12 実施例4 0.008 (NH4)2・CO3 2.0 9.0 35 48 実施例5 0.008 (NH4)2・CO3 2.0 10.5 35 8 実施例6 0.025 NH4・H・CO3 1.5 10.0 10 24 実施例7 0.025 NH4・H・CO3 1.5 10.0 10 48 実施例8 0.025 NH4・H・CO3 1.5 10.0 10 100 実施例9 0.025 Na2CO3 2.0 7.9 60 4 実施例10 0.025 NaHCO3 2.0 7.9 60 12 実施例11 0.025 NaHCO3 2.0 9.2 60 12 実施例12 0.025 NaHCO3 2.0 10.0 60 12 実施例13 0.3 NH4・H・CO3 1.0 8.0 35 24 実施例14 1.0 NH4・H・CO3 1.0 8.0 35 72 実施例15 0.6 (NH4)2・CO3 2.0 8.0 35 24 実施例16 0.3 (NH4)2・CO3 2.5 8.0 35 24 比較例1 0.02 NH4・H・CO3 1.0 5.5 35 72 比較例2 0.02 NaHCO3 1.5 6.2 35 72 比較例3 0.02 NaHCO3 2.0 12.0 5 36 比較例4 0.02 NH4・H・CO3 2.5 12.0 5 36 比較例5 0.5 NH4・H・CO3 2.0 8.0 25 1/3 比較例6 2.0 NH4・H・CO3 2.0 8.0 35 72 * 金属イオン濃度はイットリウムイオンとアルミニウムイオンとの合計濃度. * (NH4)2・CO3は実際には炭酸カルバミン酸水素アンモニウム. * pHはイットリウム塩とアルミニウム塩の混合水溶液の滴下前の値. * 養生は熟成を意味し、比較例5を除き、いずれもpHが定常値に達するまで 熟成.Table 1 Precipitation conditions for YAG raw material * Metal ion concentration Carbonate Carbonate concentration pH Reaction / curing Curing time (mol / L) Type (mol / L) Temperature (° C) (hr) Example 2 0.005 NH4・ H ・ CO3 1.0 7.5 35 12 Example 3 0.008 NH4 ・ H ・ CO3 2.0 9.0 35 12 Example 4 0.008 (NH4) 2 ・ CO3 2.0 9.0 35 48 Example 5 0.008 (NH4) 2 ・ CO3 2.0 10.5 35 8 Example 6 0.025 NH4 ・ H ・ CO3 1.5 10.0 10 24 Example 7 0.025 NH4 ・ H ・ CO3 1.5 10.0 10 48 Example 8 0.025 NH4 ・ H ・ CO3 1.5 10.0 10 100 Example 9 0.025 Na2CO3 2.0 7.9 60 4 Example 10 0.025 NaHCO3 2.0 7.9 60 12 Example 11 0.025 NaHCO3 2.0 9.2 60 12 Example 12 0.025 NaHCO3 2.0 10.0 60 12 Example 13 0.3 NH4 ・ H ・ CO3 1.0 8.0 35 24 Example 14 1.0 NH4 ・ H ・ CO3 1.0 8.0 35 72 Example 15 0.6 (NH4) 2 ・ CO3 2.0 8.0 35 24 Example 16 0.3 (NH4) 2 ・ CO3 2.5 8.0 35 24 Comparative Example 1 0.02 NH4 ・ H ・ CO3 1.0 5.5 35 72 Comparative Example 2 0.02 NaHCO3 1.5 6.2 35 72 Comparative Example 3 0.02 NaHCO3 2.0 12.0 5 36 Comparative Example 4 0.02 NH4 ・ H ・ CO3 2.5 12.0 5 36 Comparative Example 5 0.5 NH 4 ・ H ・ CO3 2.0 8.0 25 1/3 Comparative Example 6 2.0 NH4 ・ H ・ CO3 2.0 8.0 35 72 * The metal ion concentration is the total concentration of yttrium ions and aluminum ions. * (NH4) 2.CO3 is actually ammonium hydrogen carbonate carbamate. * pH is the value before dropping the mixed aqueous solution of yttrium salt and aluminum salt. * Curing means ripening, except for Comparative Example 5, ripening until the pH reaches a steady value.

【0021】[0021]

【表2】 表2 YAG微粉末のセラミック特性* 仮焼温度 一次粒子 二次粒子 焼結密度 透過率 (℃) 径(μm) 径(μm) (g/cm3) (%) 実施例2 1150 0.16 0.21 理論密度 60.2 実施例3 1150 0.11 0.18 〃 69.9 実施例4 800 0.04 0.35 〃 69.9 実施例5 1150 0.11 0.19 〃 67.4 実施例6 1300 0.07 0.30 〃 71.3 実施例7 1300 0.09 0.25 〃 72.6 実施例8 1300 0.09 0.14 〃 72.6 実施例9 1200 0.18 0.25 〃 65.3 実施例10 1200 0.18 0.25 〃 65.3 実施例11 1300 0.15 0.21 〃 62.2 実施例12 1500 0.20 0.28 〃 59.9 実施例13 1150 0.15 0.23 〃 61.1 実施例14 1150 0.15 0.21 〃 62.0 実施例15 650 0.01 0.35 〃 68.8 実施例16 1150 0.14 0.19 〃 69.2 比較例1 1200 0.008 0.98 4.21 0 比較例2 1150 0.009 1.21 4.33 0 比較例3 1350 0.03 0.92 4.23 0 比較例4 800 0.008 1.51 4.20 0 比較例5 1300 0.008 0.62 4.55 35.5 比較例6 1300 0.008 0.70 4.55 30.2 * 粒子径はTEM観察により評価. * 理論密度 4.55g/cm3. * 光直線透過率は波長600nmにて測定.Table 2 Ceramic properties of YAG fine powder * Calcination temperature Primary particles Secondary particles Sintered density Transmittance (° C) Diameter (μm) Diameter (μm) (g / cm 3 ) (%) Example 2 1150 0.16 0.21 Theoretical density 60.2 Example 3 1150 0.11 0.18 〃 69.9 Example 4 800 0.04 0.35 〃 69.9 Example 5 1150 0.11 0.19 〃 67.4 Example 6 1300 0.07 0.30 〃 71.3 Example 7 1300 0.09 0.25 〃 72.6 Example 8 1300 0.09 0.14 〃 72.6 Example 9 1200 0.18 0.25 〃 65.3 Example 10 1200 0.18 0.25 〃 65.3 Example 11 1300 0.15 0.21 〃 62.2 Example 12 1500 0.20 0.28 〃 59.9 Example 13 1150 0.15 0.23 〃 61.1 Example 14 1150 0.15 0.21 〃 62.0 Example 15 650 0.01 0.35 〃 68.8 Example 16 1150 0.14 0.19 〃 69.2 Comparative Example 1 1200 0.008 0.98 4.21 0 Comparative Example 2 1150 0.009 1.21 4.33 0 Comparative Example 3 1350 0.03 0.92 4.23 0 Comparative Example 4 800 0.008 1.51 4.20 0 Compare Example 5 1300 0.008 0.62 4.55 35.5 Comparative Example 6 1300 0.008 0.70 4.55 30.2 * Particle size was evaluated by TEM observation. * Theoretical density 4.55 g / cm 3 . * The linear light transmittance is measured at a wavelength of 600 nm.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アルカリを加えてpH7.5〜11.0と
した炭酸塩の水溶液中に、イットリウム塩とアルミニウ
ム塩とをガーネット組成となるように混合した鉱酸塩水
溶液を添加してイットリウムイオンとアルミニウムイオ
ンとの水不溶性塩を晶出させ、この後反応液を熟成し、
濾過、水洗、焼成してイットリウムアルミニウムガーネ
ット微粉体とする、ことを特徴とするイットリウムアル
ミニウムガーネット微粉体の製造方法。
1. A mineral salt aqueous solution in which a yttrium salt and an aluminum salt are mixed so as to have a garnet composition is added to an aqueous carbonate solution adjusted to pH 7.5 to 11.0 by adding an alkali to form a yttrium ion. And crystallize a water-insoluble salt with aluminum ions, and then the reaction solution is aged,
A method for producing fine yttrium aluminum garnet powder, comprising filtering, washing with water, and firing to obtain fine yttrium aluminum garnet powder.
【請求項2】 前記熟成を、少なくとも反応液のpHが
一定値に達するまで行うことを特徴とする、請求項1の
イットリウムアルミニウムガーネット微粉体の製造方
法。
2. The method for producing fine yttrium aluminum garnet powder according to claim 1, wherein the aging is performed at least until the pH of the reaction solution reaches a certain value.
【請求項3】 前記鉱酸塩水溶液でのイットリウム塩と
アルミニウム塩の合計濃度を、0.005〜1.0mol/L
としたことを特徴とする、請求項1のイットリウムアル
ミニウムガーネット微粉体の製造方法。
3. The total concentration of the yttrium salt and the aluminum salt in the aqueous mineral salt solution is 0.005 to 1.0 mol / L.
The method for producing fine yttrium aluminum garnet powder according to claim 1, characterized in that:
JP27416596A 1996-09-24 1996-09-24 Method for producing fine yttrium aluminum garnet powder Expired - Lifetime JP3692188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27416596A JP3692188B2 (en) 1996-09-24 1996-09-24 Method for producing fine yttrium aluminum garnet powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27416596A JP3692188B2 (en) 1996-09-24 1996-09-24 Method for producing fine yttrium aluminum garnet powder

Publications (2)

Publication Number Publication Date
JPH10101411A true JPH10101411A (en) 1998-04-21
JP3692188B2 JP3692188B2 (en) 2005-09-07

Family

ID=17537947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27416596A Expired - Lifetime JP3692188B2 (en) 1996-09-24 1996-09-24 Method for producing fine yttrium aluminum garnet powder

Country Status (1)

Country Link
JP (1) JP3692188B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158620A (en) * 1999-09-20 2001-06-12 Shin Etsu Chem Co Ltd Rare earth-aluminum-garnet fine powder, method for producing the same and sintered compact using the same powder
JP2003095735A (en) * 2001-09-19 2003-04-03 Toshiba Ceramics Co Ltd Plasma resisting member, and production method therefor
US7022262B2 (en) 2003-11-25 2006-04-04 Ues, Inc. Yttrium aluminum garnet powders and processing
US7566408B2 (en) 2003-11-25 2009-07-28 Ues, Inc. YAG lasing systems and methods
US7691765B2 (en) 2005-03-31 2010-04-06 Fujifilm Corporation Translucent material and manufacturing method of the same
JP4688307B2 (en) * 2000-07-11 2011-05-25 コバレントマテリアル株式会社 Plasma-resistant member for semiconductor manufacturing equipment
WO2012066909A1 (en) * 2010-11-17 2012-05-24 三井金属鉱業株式会社 Aqueous dispersion and method for producing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158620A (en) * 1999-09-20 2001-06-12 Shin Etsu Chem Co Ltd Rare earth-aluminum-garnet fine powder, method for producing the same and sintered compact using the same powder
JP4688307B2 (en) * 2000-07-11 2011-05-25 コバレントマテリアル株式会社 Plasma-resistant member for semiconductor manufacturing equipment
JP2003095735A (en) * 2001-09-19 2003-04-03 Toshiba Ceramics Co Ltd Plasma resisting member, and production method therefor
US7022262B2 (en) 2003-11-25 2006-04-04 Ues, Inc. Yttrium aluminum garnet powders and processing
US7566408B2 (en) 2003-11-25 2009-07-28 Ues, Inc. YAG lasing systems and methods
US7691765B2 (en) 2005-03-31 2010-04-06 Fujifilm Corporation Translucent material and manufacturing method of the same
WO2012066909A1 (en) * 2010-11-17 2012-05-24 三井金属鉱業株式会社 Aqueous dispersion and method for producing same

Also Published As

Publication number Publication date
JP3692188B2 (en) 2005-09-07

Similar Documents

Publication Publication Date Title
Chen et al. Reactive cerium (IV) oxide powders by the homogeneous precipitation method
TWI401211B (en) Indium oxide powder and method for producing same
JPH01153530A (en) Crystalline zirconium oxide powder, method for its manufacture and method for manufacturing sintered ceramic
JPH10101411A (en) Production of fine powder of yttrium aluminum garnet
KR20030059091A (en) Zirconia in Fine Powder Form, Zirconia Hydroxycarbonate and Methods for Preparing Same
JP3798482B2 (en) Method for producing fine yttrium aluminum garnet powder
JPH05254830A (en) Finely divided particles of rare earth oxides excellent in dispersibility and production process thereof
JPH0323213A (en) Production of powder of oxide of rare earth element
JP3906352B2 (en) Method for producing YAG transparent sintered body
JP2868176B2 (en) Method for producing rare earth element oxide powder
JP2843909B2 (en) Method for producing yttrium oxide transparent sintered body
JP2011256088A (en) Gallium oxide powder
JP3877922B2 (en) Method for producing rare earth compound
JPH10114519A (en) Production of yttrium aluminum garnet powder
JP3563464B2 (en) Method for producing yttrium-aluminum-garnet powder and yttrium-aluminum-garnet sintered body using the same
JP3801275B2 (en) Method for producing yttrium aluminum garnet raw material powder
US3469942A (en) Production of iron oxide for oxidic sintered shaped bodies
JP4359531B2 (en) Zirconium-based oxide production method and automobile exhaust gas purification catalyst
US3471259A (en) Method of manufacturing a magnesia clinker
RU2721548C1 (en) Complex method of producing low-agglomerated high-stoichiometric nano-sized precursor powders based on yttrium-aluminium garnet with rare-earth element oxides
RU2707840C1 (en) Method of producing highly stoichiometric nano-sized precursor for synthesis of solid solutions of yttrium-aluminium garnet with rare-earth element oxides
RU2700074C1 (en) Method of reducing particle size and degree of agglomeration at stage of initial precursors synthesis when producing yttrium aluminium garnet
JPS62270418A (en) Manufacture of stabilized zirconia less than micron size from zirconium fluorosulfide
JPS60215527A (en) Production of zirconium oxide fine powder
JP2004083350A (en) Method for manufacturing rare earth oxide fine powder having 100 nm or less primary particle size, and rare earth oxide fine powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 9

EXPY Cancellation because of completion of term