JPH1010048A - New style hydrogen detecting element, its manufacture and gas sensor - Google Patents

New style hydrogen detecting element, its manufacture and gas sensor

Info

Publication number
JPH1010048A
JPH1010048A JP16490296A JP16490296A JPH1010048A JP H1010048 A JPH1010048 A JP H1010048A JP 16490296 A JP16490296 A JP 16490296A JP 16490296 A JP16490296 A JP 16490296A JP H1010048 A JPH1010048 A JP H1010048A
Authority
JP
Japan
Prior art keywords
hydrogen
metal
detector
thin layer
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16490296A
Other languages
Japanese (ja)
Inventor
Hirohisa Sakuma
博久 佐久間
Hiroshi Kikuchi
啓 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP16490296A priority Critical patent/JPH1010048A/en
Publication of JPH1010048A publication Critical patent/JPH1010048A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PROBLEM TO BE SOLVED: To reconcile high responsiveness and high sensitivity regardless of the presence or absence of oxygen content of a gas, and improve the detecting performance by discretely adhering a catalytic metal in dot form on a transparent base to form a thin layer. SOLUTION: A dotted catalytic metal thin layer 11 in which a catalytic metal is discretely adhered as a dotted pattern is formed on a transparent base 12 having transparency and optical homogeneity such as glass. As the catalytic metal forming the thin layer 11, a metal or metal, oxide called hydrogenated catalyst is used, and palladium as pure metal and a binary alloy of Pd with a IB group metal of the periodic table are more preferably used. For the formation of the thin layer 11, sputtering method of sputtering the catalytic metal as a target on the base 12, or evaporation method of adhering the catalytic metal vapor onto the base is used. The resulting hydrogen detecting element 10 is used, by which the responsiveness and sensitivity of a gas sensor can be improved, and the life of the detecting element 10 can be extended.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市ガスの導管や
燃焼装置、石油化学プラント等に設置して水素ガスの濃
度を信頼性高く検知する光学的水素センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical hydrogen sensor which is installed in a city gas pipe, a combustion apparatus, a petrochemical plant, or the like, and detects the concentration of hydrogen gas with high reliability.

【0002】[0002]

【従来の技術】一般に、可燃性ガスセンサとして接触燃
焼式、半導体式、固体電解質式及び光学的センサが知ら
れている。この中で、前三者はいずれも無酸素中では作
動しないので、酸素を含有しない通常の都市ガス導管中
の水素濃度測定はできない。一方、光学的センサは都市
ガスのように水素と他の可燃性ガスが混在する気体中の
水素検知に関しては、酸素含有の有無に係らず選択性の
良い検知に有用であり、また空気と混合すると爆発性の
混合気体を生成し易いガスの検知には、防爆対策上、無
酸素中でも作動する光学的センサが特に適している。
2. Description of the Related Art In general, catalytic combustion type, semiconductor type, solid electrolyte type and optical sensors are known as combustible gas sensors. Of these, none of the three operate in anoxic conditions, and therefore cannot measure the hydrogen concentration in a normal city gas conduit containing no oxygen. Optical sensors, on the other hand, are useful for detecting hydrogen in gases that contain hydrogen and other flammable gases, such as city gas, regardless of the presence or absence of oxygen. Then, an optical sensor that operates even in the absence of oxygen is particularly suitable for explosion-proof measures for detecting a gas that easily generates an explosive mixed gas.

【0003】一般に光学的センサの主要部は、ガスと接
触して着色または透過光或いは反射光の変化などを生じ
る検出子、検出子に光束を投射する光源、検出子を経由
した光束を検出する光検出器、光検出器から発する信号
を計測して受光量として表示する測定計器、検出子にガ
スを導入するガス流路等より構成されている。
In general, a main part of an optical sensor detects a detector which generates a change in coloring or transmitted light or reflected light upon contact with a gas, a light source which projects a light beam on the detector, and detects a light beam passing through the detector. It comprises a photodetector, a measuring instrument for measuring a signal emitted from the photodetector and displaying it as a received light amount, a gas flow path for introducing gas to the detector, and the like.

【0004】従来、水素ガス検知用の光学的センサに用
いる光学的検出子として例えば特公平3−15975号
公報には、水素分子を吸着し原子状水素に解離する作用
を持つ触媒金属、例えばパラジウム(Pd)の薄膜を表
面層とし、この解離した原子状水素によって化学的に還
元される酸化物、例えば酸化タングステン(WO3 )を
下地層として、基板上に積層して構成した検出子が開示
されている。WO3 は解離した水素と反応して呈色する
ので、この着色による光透過率の変化を測定して水素ガ
スを検知する。しかし、WO3 は極めて耐水性が悪いの
で実用上問題がある。
[0004] Conventionally, as an optical detector used for an optical sensor for detecting hydrogen gas, for example, Japanese Patent Publication No. 3-15975 discloses a catalytic metal having an action of adsorbing hydrogen molecules and dissociating it into atomic hydrogen, for example, palladium. A detector is disclosed in which a thin film of (Pd) is used as a surface layer, and an oxide chemically reduced by the dissociated atomic hydrogen, for example, tungsten oxide (WO 3 ) is used as a base layer and stacked on a substrate. Have been. WO 3 reacts with the dissociated hydrogen to form a color, and the change in light transmittance due to the coloring is measured to detect hydrogen gas. However, WO 3 has a practical problem since it has extremely poor water resistance.

【0005】別の光学的水素検出子として、基体上に上
記の触媒金属、例えばPdの薄膜を形成したものが特開
平5−196569号公報に開示されている。これは解
離した水素の作用によって起こるPd膜の光透過率また
は光反射率の変化を測定して水素ガスを検知するもので
あり、酸化物を用いる検出子より応答時間が一桁以上速
く、また検知性能の経時的安定性が良い。
As another optical hydrogen detector, an optical hydrogen detector formed by forming a thin film of the above-mentioned catalytic metal, for example, Pd on a substrate is disclosed in Japanese Patent Application Laid-Open No. 5-196569. This is to detect hydrogen gas by measuring the change in light transmittance or light reflectance of the Pd film caused by the action of dissociated hydrogen, and the response time is one order of magnitude faster than that of a detector using oxide. Good detection performance over time.

【0006】上記のPd膜を用いる検出子は、水素雰囲
気中で薄膜状Pdが水素化物を生成することにより薄膜
表面の光反射率が減少し、これに対応してPd膜自体の
光透過率が増大することを原理とするものとされてい
る。従って、水素がPd膜内へ拡散する距離が短いほど
可逆的水素化反応の反応速度が速くなり、検知の応答性
が速くなる。即ちPd膜の厚みを薄くするほど応答性が
向上する。
In the detector using the above-mentioned Pd film, the light reflectance of the thin film surface is reduced by the hydride generation of the thin film Pd in a hydrogen atmosphere, and the light transmittance of the Pd film itself is correspondingly reduced. Is to be increased. Therefore, the shorter the distance that hydrogen diffuses into the Pd film, the faster the reaction rate of the reversible hydrogenation reaction and the faster the response of detection. That is, the responsiveness improves as the thickness of the Pd film decreases.

【0007】しかし、従来の技術によってPd膜を薄く
すると、或る水素濃度以下では検知対象ガス中に水素が
存在することにより増大する光透過率の増分が微小にな
り検知困難となる。即ち、Pd膜を薄くすると、水素を
検知できる光透過率の変化が次第に小さくなり、この意
味で検知感度が著しく低下し、実用上問題である。
However, when the Pd film is thinned by the conventional technique, when the hydrogen concentration is lower than a certain level, the increase in the light transmittance, which increases due to the presence of hydrogen in the gas to be detected, becomes very small, and the detection becomes difficult. That is, when the Pd film is made thin, the change in the light transmittance at which hydrogen can be detected gradually decreases, and in this sense, the detection sensitivity is significantly reduced, which is a practical problem.

【0008】逆にPd膜を厚くすると、検知感度は向上
するものの、水素が検出子表面に到達してから検出子が
検知信号を発するまでのいわゆる応答時間が長くなり、
この意味で検知応答性が悪化し、従来技術によるPd膜
を用いる検出子では実用上問題である。
Conversely, if the Pd film is thickened, the detection sensitivity is improved, but the so-called response time from when hydrogen reaches the detector surface to when the detector emits a detection signal becomes longer,
In this sense, the detection responsiveness deteriorates, which is a practical problem in the detector using the Pd film according to the related art.

【0009】[0009]

【発明が解決しようとする課題】そこで本発明は、触媒
金属を用いた光学的水素検出子について、都市ガスの如
く水素と他の可燃性ガスが混在するガス中の水素を定量
的に検知するに際して、該ガスの酸素含有の有無に係ら
ず、また水素含有率が低い範囲においても、高応答性と
高感度を両立させて検知性能を著しく向上させることを
課題とするものである。
SUMMARY OF THE INVENTION Accordingly, the present invention provides an optical hydrogen detector using a catalytic metal, which quantitatively detects hydrogen in a mixed gas of hydrogen and other flammable gas such as city gas. In this case, it is an object of the present invention to achieve both high responsiveness and high sensitivity and to significantly improve detection performance regardless of the presence or absence of oxygen in the gas and in a range where the hydrogen content is low.

【0010】また、従来のPd膜を用いる検出子では、
Pdが水素を化学吸着して水素化物を生成する際の体積
膨脹と水素を脱着して再びPdに戻る際の体積収縮が発
生する。即ち、従来技術の検出子では、本質的にPd膜
が膨脹と収縮の繰り返し応力により損傷を起こすことを
避けられない。Pd膜の損傷を低減するためにPd膜の
厚みを薄くすると、前記の通り、水素を検知する感度が
低下して実用上問題である。
In a conventional detector using a Pd film,
Volume expansion occurs when Pd chemically absorbs hydrogen to generate hydrides, and volume contraction occurs when Pd desorbs hydrogen and returns to Pd again. That is, in the conventional detector, it is essentially unavoidable that the Pd film is damaged by the repeated stress of expansion and contraction. When the thickness of the Pd film is reduced in order to reduce the damage to the Pd film, as described above, the sensitivity for detecting hydrogen decreases, which is a practical problem.

【0011】そこで本発明のもう一つの課題は、触媒金
属を用いた光学的水素検出子の検知感度を実用的な水準
に維持しつつ、検出子の寿命を飛躍的に長寿命化するこ
とである。
Therefore, another object of the present invention is to dramatically increase the life of the optical hydrogen detector while maintaining the detection sensitivity of the optical hydrogen detector using a catalytic metal at a practical level. is there.

【0012】[0012]

【課題を解決するための手段】本発明者等はPd膜を用
いた光学的水素センサについて全く新たな発想のもとに
研究を進め、透明基板上に形成するPd膜の厚みを次第
に薄くし、金属のPdがもはや連続的な薄膜の形態をと
らずに斑点模様のように離散して被着した状態の薄層を
形成したものは、空気中と水素中とで従来技術のPd膜
に比べて正反対の光透過率変化を示すことを見出した。
またこのようにPdを基板上に離散して被着したものは
水素の吸着と脱着で生じる繰り返し応力を緩和すること
ができるため、検出子の寿命が飛躍的に長くなることに
着目し、このような全く新たな原理を用いて本発明を完
成した。
Means for Solving the Problems The present inventors have studied on an optical hydrogen sensor using a Pd film based on a completely new idea, and have gradually reduced the thickness of a Pd film formed on a transparent substrate. In the case where a thin layer in which metal Pd is no longer in the form of a continuous thin film but is discretely applied like a spot pattern is formed, the Pd film of the prior art is formed in air and in hydrogen. It has been found that the light transmittance changes in the exact opposite direction.
In addition, since Pd is discretely deposited on the substrate in this manner, the repetitive stress generated by the adsorption and desorption of hydrogen can be reduced, so that the life of the detector is dramatically increased. The present invention has been completed using such a completely new principle.

【0013】換言すれば、透明基板上に金属のPdを離
散的に被着した薄層を水素雰囲気中に曝すと、光透過率
が水素濃度に対応して空気中の透過率よりも低下するこ
とが新たな知見として得られ、この現象を利用して水素
濃度を応答性良く且つ高感度で検知でき、しかも著しく
長寿命の検出子を構成することができた。
In other words, when a thin layer in which metal Pd is discretely applied on a transparent substrate is exposed to a hydrogen atmosphere, the light transmittance becomes lower than the air transmittance in accordance with the hydrogen concentration. As a new finding, a hydrogen concentration can be detected with good responsiveness and high sensitivity by utilizing this phenomenon, and a detector having an extremely long life can be constructed.

【0014】即ち本発明は、水素を吸着し解離する触媒
金属(ア)により薄層(ウ)を透明基板(イ)上に形成
してなる水素検出子において、上記薄層(ウ)は上記触
媒金属(ア)が上記基板(イ)の表面に斑点状に離散し
て被着してなることを特徴とする光学的水素検出子の発
明である。
That is, the present invention relates to a hydrogen detector comprising a thin layer (c) formed on a transparent substrate (a) by a catalytic metal (a) which adsorbs and dissociates hydrogen. An invention of an optical hydrogen detector, wherein a catalytic metal (A) is discretely deposited on the surface of the substrate (A) in a spot-like manner.

【0015】また、本発明は上記触媒金属(ア)を斑点
状に離散し被着してなる薄層(ウ)を上記透明基板
(イ)の表裏両面に形成してなることを特徴とする光学
的水素検出子の発明である。このように検出子を構成す
ることにより、水素検知についての高感度と高応答性を
両立させると共に検出子の長寿命化を達成することがで
きた。
Further, the present invention is characterized in that a thin layer (c) formed by dispersing and applying the above-mentioned catalyst metal (a) in spots is formed on both the front and back surfaces of the transparent substrate (a). It is an invention of an optical hydrogen detector. By configuring the detector in this way, it was possible to achieve both high sensitivity and high responsiveness with respect to hydrogen detection and to achieve a longer life of the detector.

【0016】本発明の検出子の構成について詳しく説明
する。まず本発明に使用する透明基板(イ)は、単に触
媒金属の薄層を保持するための固体であるが、材質は解
離水素と実質的に反応しないものであることが必須条件
であり、また透過光量の変化により水素の存在を検知し
易い透明性及び光学的均質性を有することが必須であ
る。具体的にはガラス、ポリカーボネート樹脂等の合成
樹脂を例示することができる。形状は、光が効率良く透
過するために表面が平滑な平板状或いは集光レンズ状で
あることが好ましい。
The structure of the detector according to the present invention will be described in detail. First, the transparent substrate (a) used in the present invention is a solid simply for holding a thin layer of the catalyst metal, but it is essential that the material does not substantially react with dissociated hydrogen. It is essential to have transparency and optical homogeneity in which the presence of hydrogen can be easily detected by a change in the amount of transmitted light. Specifically, synthetic resins such as glass and polycarbonate resin can be exemplified. The shape is preferably a flat plate shape or a condensing lens shape with a smooth surface in order to transmit light efficiently.

【0017】また本発明に用いる触媒金属(ア)は、水
素化触媒と通常呼ばれる金属或いは金属酸化物を使用で
きる。金属では、純金属または高純度水素精製に用いる
合金を使用できる。純金属では、白金族金属が好まし
い。より好ましくはパラジウムが使用される。また合金
としては、Pdと周期表Ib族金属との2元合金(例え
ば、Pd70重量%、Ag30重量%など)、PdとI
b族金属との3元合金(例えばPd75重量%、Ag2
0重量%、Au5重量%など)、PdとIb族及びXIII
との3元合金(例えばPd70重量%、Au25重量
%、Pt5重量%など)、同4元合金(例えば、Pd6
5重量%、Ag28重量%、Au5重量%、Ru2重量
%など)等を使用できる。
The catalyst metal (A) used in the present invention may be a metal or metal oxide commonly called a hydrogenation catalyst. As the metal, a pure metal or an alloy used for high-purity hydrogen purification can be used. Of the pure metals, platinum group metals are preferred. More preferably, palladium is used. Examples of the alloy include binary alloys of Pd and Group Ib metal of the periodic table (for example, Pd 70% by weight, Ag 30% by weight, etc.), and Pd and Id
A ternary alloy with a group b metal (for example, Pd 75% by weight, Ag2
0% by weight, 5% by weight of Au), Pd and Ib and XIII
(For example, 70% by weight of Pd, 25% by weight of Au, 5% by weight of Pt), and a quaternary alloy (for example, Pd6)
5% by weight, Ag 28% by weight, Au 5% by weight, Ru 2% by weight) and the like.

【0018】次に本発明の構成要素である薄層(ウ)
は、上記のような触媒金属(ア)を基板(イ)に被着す
る際に触媒金属(ア)が斑点模様のように離散して二次
元的に被着したものである。このような斑点状の被着
は、被着した金属を薄層ととらえてその平均的厚みの計
算値を求めるとPdとガラス基板を用いる場合は経験的
に2nmより薄くなっているが、被着量の上限は使用す
る金属と基板の材質及び被着方法にも拠るものであり、
一概に数値的に規定することはできない。
Next, a thin layer (c) which is a component of the present invention.
Is such that when the above-mentioned catalyst metal (A) is applied to the substrate (A), the catalyst metal (A) is discretely applied like a spot pattern and two-dimensionally applied. Such a spot-like deposition is empirically thinner than 2 nm when using Pd and a glass substrate when calculating the average thickness of the deposited metal as a thin layer. The upper limit of the deposition amount also depends on the metal used and the material of the substrate and the method of deposition,
It cannot be specified numerically.

【0019】触媒金属(ア)の被着量の下限についても
数値で表現し難いが、薄層を水素と接触させる時に水素
化物が膨脹して斑点間の空隙を実質的に充填できれば有
効であり、空隙充填の結果として光の透過率が減少する
ので、検出子を透過する透過光の強度の変化を検知でき
る下限の被着量が即ちガスセンサとしての被着量の下限
値となる。
Although it is difficult to express numerically the lower limit of the amount of catalyst metal (a) deposited, it is effective if the hydride expands when the thin layer is brought into contact with hydrogen to substantially fill the gaps between the spots. Since the light transmittance is reduced as a result of the gap filling, the lower limit of the amount of deposition that can detect a change in the intensity of the transmitted light passing through the detector is the lower limit of the amount of deposition as the gas sensor.

【0020】薄層(ウ)は、透明基板(イ)の片面のみ
に被着したものであっても良く、また表裏両面に被着し
たものであっても良い。両面に被着することにより、被
着むらを平均化することができるので、検知性能の偏差
が小さくなり、検出子の品質が安定する。また、透過光
の強度の変化量も増幅されるので感度も向上することに
なる。
The thin layer (c) may be applied to only one surface of the transparent substrate (a), or may be applied to both front and back surfaces. By applying the coating on both sides, uneven coating can be averaged, so that the deviation of the detection performance is reduced and the quality of the detector is stabilized. Further, since the amount of change in the intensity of the transmitted light is also amplified, the sensitivity is also improved.

【0021】上記の薄層を形成する方法としては、触媒
金属をターゲットとして基板にスパッタを行うスパッタ
リング法、或いは触媒金属を真空中で溶融し発生する蒸
気を基板に付着させる蒸着法を、当業界が常用する周知
の原材料や条件下で使用することができる。
As a method of forming the thin layer, a sputtering method in which a catalyst metal is sputtered on a substrate using a target as a target, or a vapor deposition method in which a catalyst metal is melted in a vacuum and vapor generated is attached to the substrate, is used in the art. Can be used under well-known raw materials and conditions commonly used.

【0022】本発明で触媒金属(ア)が斑点状に離散し
て被着してなる薄層(ウ)を用いることの作用は次のよ
うに考えられる。即ち、透明基板(イ)表面に斑点状に
離散して被着している触媒金属(ア)は検知対象ガス中
に水素が存在しない場合はなんら物理的或いは化学的変
化を起こさないので、光は斑点状金属と斑点状金属の間
の間隙を直接通過して光検出器により検知される。この
時の光透過率をTとする。
The effect of using the thin layer (c) in which the catalytic metal (a) is discretely applied in spots in the present invention is considered as follows. That is, the catalyst metal (A) discretely deposited on the surface of the transparent substrate (A) in the form of spots does not cause any physical or chemical change when hydrogen does not exist in the gas to be detected. Is directly passed through the gap between the speckled metals and detected by the photodetector. The light transmittance at this time is T.

【0023】しかし検知対象ガス中に水素が混在する場
合は、触媒金属(ア)が水素と化学的に反応して水素化
物を生成するため、斑点状であった触媒金属(ア)が水
素の濃度に対応して体積膨脹を起こし、上記金属斑点と
金属斑点の間の間隙を減少させ、或いは間隙を塞ぐに至
る。この状態では斑点状の金属を透過した光が光検出器
により検出されるので、光透過率は水素濃度の増加に対
して単調減少関数的に減少する。この光透過率減少分を
△Tとすると、水素が存在する場合には光透過率T−△
Tが計測される。特定の金属薄層(ウ)においては斑点
状の金属の膨脹作用に因る光透過率の減少分△Tは水素
濃度に1対1で対応しているので、水素が存在しない場
合のTと水素が存在する場合のT−△Tとの差を計測す
ることにより、従来技術とは全く異なる新たな原理を利
用して水素濃度を検知する検出子を構成することができ
たものである。
However, when hydrogen is mixed in the gas to be detected, the catalytic metal (A) chemically reacts with hydrogen to generate hydride, and thus the spotted catalytic metal (A) is converted to hydrogen. The concentration causes volume expansion corresponding to the concentration, which leads to a reduction in the gap between the metal spots and the closing of the gap. In this state, the light transmitted through the spot-like metal is detected by the photodetector, so that the light transmittance decreases monotonically with increasing hydrogen concentration. Assuming that this light transmittance decrease is ΔT, the light transmittance T− △ when hydrogen is present.
T is measured. In a specific thin metal layer (c), the decrease ΔT in light transmittance due to the expansion action of the spot-like metal corresponds to the hydrogen concentration on a one-to-one basis, and therefore, T in the absence of hydrogen. By measuring the difference from T−ΔT in the presence of hydrogen, a detector that detects the hydrogen concentration using a new principle completely different from the prior art could be constructed.

【0024】[0024]

【発明の実施の形態】本発明の検出子の一例を図1に示
す。検出子10は透明基板12の表面に金属Pdを斑点
状の薄層11に形成して被着したものである。また図2
は請求項2記載の検出子の一実施態様を示したものであ
り、金属Pdの斑点状薄層11を透明基板12の表裏両
面に被着し、両面の薄層が検知対象ガス8の流れに曝さ
れると共に光束が両面の薄層を透過するように構成した
ものである。
FIG. 1 shows an example of a detector according to the present invention. The detector 10 is formed by forming metal Pd on the surface of a transparent substrate 12 in the form of a spot-like thin layer 11 and attaching it. FIG. 2
Shows an embodiment of the detector according to claim 2, in which a spot-like thin layer 11 of metal Pd is applied to both front and back surfaces of a transparent substrate 12, and the thin layers on both sides are the flow of the gas 8 to be detected. And the light flux is transmitted through the thin layers on both sides.

【0025】以上説明した構成を基本形として、請求項
1及び2記載の本発明の検出子は、次に記す実施態様を
含む。 [実施態様1] 触媒金属(ア)が白金族金属である請
求項1または2記載の光学的水素検出子。
The detector according to the first and second aspects of the present invention based on the configuration described above includes the following embodiments. [Embodiment 1] The optical hydrogen detector according to claim 1 or 2, wherein the catalyst metal (A) is a platinum group metal.

【0026】[実施態様2] 触媒金属(ア)がパラジ
ウムである請求項1または2記載の光学的水素検出子。
[Embodiment 2] The optical hydrogen detector according to claim 1 or 2, wherein the catalytic metal (a) is palladium.

【0027】さらに、本発明の検出子を用いて構成した
ガスセンサの一例を図3に示す。ガラス窓24を設けた
開口23に臨むように固定した光学的水素検出子10を
内蔵する透光室22に検知対象ガス8を導入し、半導体
レーザーを使用した光源1から発する光束2をビームス
プリッター3により分割した一方を検出子10に照射
し、その透過光5と前記ビームスプリッター3により分
割されミラー9により進路を変えて透明基板12を透過
したもう片方の光とをスキャナー6で捕捉し、両者の強
度の差をマルチメーター7に表示する。ガスセンサに
は、例えば環境温度の変化による光源1の発光強度の変
化、或はガス流路配管21内の微細な塵による検出子1
0やガラス窓24の光透過率の低下等を原因として、ノ
イズが発生する。そこで本発明の光学的ガスセンサで
は、参照用として薄層の被着の無い透明基板12を検出
子10の近傍に配置してノイズを取り除くことにより、
一層精度良く透過光の変化を測定できるように構成して
いる。
FIG. 3 shows an example of a gas sensor using the detector of the present invention. A gas 8 to be detected is introduced into a light-transmitting chamber 22 containing an optical hydrogen detector 10 fixed so as to face an opening 23 provided with a glass window 24, and a light beam 2 emitted from a light source 1 using a semiconductor laser is split by a beam splitter. The one split by 3 is irradiated on the detector 10, and the transmitted light 5 and the other light split by the beam splitter 3, changed the course by the mirror 9, and transmitted through the transparent substrate 12 are captured by the scanner 6. The difference between the two intensities is displayed on the multimeter 7. The gas sensor includes, for example, a change in emission intensity of the light source 1 due to a change in environmental temperature, or a detector 1 due to fine dust in the gas flow pipe 21.
Noise is generated due to 0 or a decrease in the light transmittance of the glass window 24. Therefore, in the optical gas sensor of the present invention, the transparent substrate 12 having no thin layer adhered is disposed near the detector 10 for reference to remove noise,
The configuration is such that the change in transmitted light can be measured with higher accuracy.

【0028】本発明の光学的水素検出子10の製造方
法、及びこれを用いた本発明のガスセンサによる水素の
検出性能テストの結果を実施例として記す。
The manufacturing method of the optical hydrogen detector 10 of the present invention and the result of a hydrogen detection performance test by the gas sensor of the present invention using the same will be described as examples.

【実施例】【Example】

[実施例1] 本発明の検出子10の製造方法 高周波マグネトロンスパッタリング装置を用いて、Pd
金属をターゲットとして1mTorrのアルゴンガス雰
囲気中でガラス基板面に対してスパッタを行った。高周
波の出力は20W、スパッタレートは0.12nm/s
ec、薄層生成時間は10秒であった。この被着条件で
ガラス基板の片面に金属Pdの薄層を形成した。Pd薄
層の平均厚みは1.2nmであった。
Example 1 Method for Manufacturing Detector 10 of the Present Invention Pd was produced using a high-frequency magnetron sputtering apparatus.
Using a metal as a target, sputtering was performed on the glass substrate surface in an argon gas atmosphere at 1 mTorr. High frequency output: 20 W, sputter rate: 0.12 nm / s
ec, the thin layer generation time was 10 seconds. Under this condition, a thin layer of metal Pd was formed on one side of the glass substrate. The average thickness of the Pd thin layer was 1.2 nm.

【0029】光透過率及び応答時間の測定 図3に示したガスセンサを使用し、ガス流路配管21に
最初に100%の窒素ガス(N2 )を流し、半導体レー
ザーを光源とする波長780nmの光を用いて検出子1
0の光透過率Tをマルチメーター7により測定した。次
いでH2 5体積%とN2 95体積%との混合ガスに切り
換えて約5分間ガスを流しつつ、光透過率T−△T及び
応答速度を測定し、再び100%N2 に切り換えて光透
過率Tと応答経過を測定した。測定結果を図4に示し
た。H2 導入に対する応答も、導入停止によるTの回復
経過も、共に3秒以内で完了していることが判る。
Measurement of Light Transmittance and Response Time Using the gas sensor shown in FIG. 3, a 100% nitrogen gas (N 2 ) is first flowed through the gas flow pipe 21 and a wavelength of 780 nm using a semiconductor laser as a light source. Detector 1 using light
The light transmittance T of 0 was measured by the multimeter 7. Then while flowing about 5 minutes gas is switched to a mixed gas of H 2 5 vol% and N 2 95 vol%, the light transmittance T-△ T and measuring the response speed, the light is switched back to 100% N 2 The transmittance T and the response course were measured. The measurement results are shown in FIG. It can be seen that both the response to the introduction of H 2 and the recovery of T due to the suspension of the introduction are completed within 3 seconds.

【0030】光透過率及び応答時間の繰り返し特性 上記のようにして100%N2 ガスとH2 5体積%混合
ガスとの5分間ごとの切り換えサイクルを繰り返すこと
による性能への影響を、検知子の使用開始初期と100
0回繰り返し使用後の光透過率及び応答時間について、
図5(a)及び(b)に示した。両者を対比すると、本
発明の検出子は繰り返し使用後も実質的にこれらの性能
の劣化が見られず、長寿命であることが判る。
Repetition Characteristics of Light Transmittance and Response Time As described above, the effect on performance caused by repeating the switching cycle of 100% N 2 gas and H 2 5% by volume mixed gas every 5 minutes was examined by the detector. Initial start of use and 100
About the light transmittance and response time after repeated use 0 times,
These are shown in FIGS. 5A and 5B. Comparing the two, it can be seen that the detector of the present invention does not substantially deteriorate in its performance even after repeated use, and has a long life.

【0031】[比較例1]上記と同様にして成膜時間4
0秒で、平均膜厚約4.8nmのPd金属連続薄膜を有
する検出子を製造し、使用初期の応答特性T+△T及び
1000回繰り返し使用後の特性を測定し、結果を図6
及び図7に示した。この結果から、連続薄膜から構成し
た従来型の水素検出子は、使用初期にはH2 導入に対し
て瞬間的に応答し応答時間が実施例1と同程度に短かっ
たものが、1000回繰り返し使用後には応答時間が1
分乃至2分程度に増加し明らかに性能が劣化し、寿命に
ついては本発明の検知子の方がはるかに優れていること
が判る。
[Comparative Example 1] Film forming time 4
At 0 seconds, a detector having a Pd metal continuous thin film having an average film thickness of about 4.8 nm was manufactured, and the response characteristics T + ΔT at the initial stage of use and the characteristics after repeated use 1000 times were measured.
And FIG. From these results, the conventional hydrogen detector composed of a continuous thin film responded instantaneously to the introduction of H 2 in the initial stage of use, and the response time was as short as that of Example 1. Response time after use is 1
It can be seen that the performance of the detector of the present invention is much better than that of the detector according to the present invention in terms of the life.

【0032】[0032]

【発明の効果】新規な構成を有する本発明の水素検出子
は、感度(光透過率の変化△T)及び応答性(応答時
間)において従来型の検出子と遜色ないことが図4と図
6の比較から判る。その上、連続薄膜から構成した従来
型の水素検出子は、使用初期にはH2 導入に対して瞬間
的に応答し応答性が極めて良かったものが、図7に示す
ように多数回の繰り返し使用後には応答時間が著しく増
加して明らかに性能の劣化が見られるのに対し、本発明
の検出子は図5(a)、(b)に示すように繰り返し使
用後も性能が使用初期の水準に維持され、顕著に長寿命
化が達成されたことが判る。
FIG. 4 and FIG. 4 show that the hydrogen detector of the present invention having a novel configuration is not inferior to the conventional detector in sensitivity (change in light transmittance ΔT) and responsiveness (response time). 6 can be seen from the comparison. In addition, the conventional hydrogen detector composed of a continuous thin film responded instantaneously to the introduction of H 2 in the early stage of use and had extremely good response, but as shown in FIG. After use, the response time is remarkably increased and the performance is clearly deteriorated. On the other hand, as shown in FIGS. It can be seen that the service life was maintained at a level and the life was significantly prolonged.

【0033】[0033]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の水素検出子の構成を説明するための模
式図。
FIG. 1 is a schematic diagram for explaining a configuration of a hydrogen detector according to the present invention.

【0034】[0034]

【図2】本発明の水素検出子の別の構成を示すための模
式図。
FIG. 2 is a schematic view showing another configuration of the hydrogen detector of the present invention.

【0035】[0035]

【図3】本発明のガスセンサの構成を説明するための模
式図。
FIG. 3 is a schematic diagram for explaining a configuration of a gas sensor of the present invention.

【0036】[0036]

【図4】本発明の水素検出子の感度(ガス切り換えによ
る光透過率の変化)及び応答特性(ガス切り換えの瞬間
から光透過率の新水準到達迄の時間)を示す図。
FIG. 4 is a diagram showing sensitivity (change in light transmittance due to gas switching) and response characteristics (time from the moment of gas switching to reaching a new level of light transmittance) of the hydrogen detector of the present invention.

【0037】[0037]

【図5】本発明の水素検出子の使用初期の感度及び応答
特性の値(a)、及び1000回繰り返し使用後の値
(b)を示す図。
FIG. 5 is a diagram showing values (a) of sensitivity and response characteristics at the initial stage of use of the hydrogen detector of the present invention and values (b) after repeated use 1000 times.

【0038】[0038]

【図6】従来型水素検出子の感度及び応答特性の初期値
を示す図。
FIG. 6 is a diagram showing initial values of sensitivity and response characteristics of a conventional hydrogen detector.

【0039】[0039]

【図7】従来型水素検出子の1000回繰り返し使用後
の感度及び応答特性の劣化状況を示す図。
FIG. 7 is a diagram showing the deterioration of sensitivity and response characteristics after repeated use of a conventional hydrogen detector 1000 times.

【0040】[0040]

【符号の説明】[Explanation of symbols]

1・・・光源 2・・・光束 3・・・ビームスプリッター 4・・・フォトダイオ−ド 5・・・透過光 6・・・スキャナー 7・・・マルチメーター 8・・・検知対象ガス 9・・・参照光用ミラー 10・・水素検出子 11・・斑点状触媒金属薄層 12・・透明基板 21・・ガス流路配管 22・・透光室 23・・開口 24・・ガラス窓 DESCRIPTION OF SYMBOLS 1 ... Light source 2 ... Light beam 3 ... Beam splitter 4 ... Photodiode 5 ... Transmitted light 6 ... Scanner 7 ... Multimeter 8 ... Detection target gas 9. ··· Reference light mirror 10 ··· Hydrogen detector 11 ··· Spotted catalyst metal thin layer 12 ··· Transparent substrate 21 ··· Gas flow pipe 22 ··· Translucent chamber 23 ··· Opening 24 ··· Glass window

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水素を吸着し解離する触媒金属(ア)に
より薄層(ウ)を透明基板(イ)上に形成してなる水素
検出子であって、上記薄層(ウ)は上記触媒金属(ア)
が上記基板(イ)の表面に斑点状に離散して被着してな
ることを特徴とする光学的水素検出子。
1. A hydrogen detector formed by forming a thin layer (c) on a transparent substrate (b) with a catalytic metal (a) that adsorbs and dissociates hydrogen, wherein the thin layer (c) is formed of the catalyst Metal (A)
Wherein the optical hydrogen detector is applied in a spot-like manner on the surface of the substrate (a).
【請求項2】 触媒金属(ア)を斑点状に離散して被着
してなる薄層(ウ)を基板(イ)の両面に形成してなる
ことを特徴とする請求項1記載の光学的水素検出子。
2. The optical device according to claim 1, wherein a thin layer (c) formed by dispersing and depositing the catalyst metal (a) in spots is formed on both surfaces of the substrate (a). Hydrogen detector.
【請求項3】 薄層(ウ)をスパッタリング法または蒸
着法により形成することを特徴とする請求項1または2
記載の光学的水素検出子の製造方法。
3. The method according to claim 1, wherein the thin layer is formed by a sputtering method or an evaporation method.
A method for producing the optical hydrogen detector according to the above.
【請求項4】 請求項1または2記載の光学的水素検出
子を用いることを特徴とするガスセンサ。
4. A gas sensor using the optical hydrogen detector according to claim 1 or 2.
JP16490296A 1996-06-25 1996-06-25 New style hydrogen detecting element, its manufacture and gas sensor Pending JPH1010048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16490296A JPH1010048A (en) 1996-06-25 1996-06-25 New style hydrogen detecting element, its manufacture and gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16490296A JPH1010048A (en) 1996-06-25 1996-06-25 New style hydrogen detecting element, its manufacture and gas sensor

Publications (1)

Publication Number Publication Date
JPH1010048A true JPH1010048A (en) 1998-01-16

Family

ID=15802046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16490296A Pending JPH1010048A (en) 1996-06-25 1996-06-25 New style hydrogen detecting element, its manufacture and gas sensor

Country Status (1)

Country Link
JP (1) JPH1010048A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329592A (en) * 2002-05-08 2003-11-19 Shinji Okazaki Method for manufacturing film for gas sensor
JP2005300339A (en) * 2004-04-12 2005-10-27 Hitachi Cable Ltd Optical gas sensor
WO2007116919A1 (en) * 2006-04-04 2007-10-18 Japan Atomic Energy Agency Hydrogen gas detecting material and method for coating same
WO2013108087A1 (en) * 2012-01-18 2013-07-25 Jawaharlal Nehru Centre For Advanced Scientific Research A system and a method to detect hydrogen leakage using nano-crystallised palladium gratings
US8785924B2 (en) 2011-12-12 2014-07-22 Korea Institute Of Science And Technology High-sensitivity transparent gas sensor and method for manufacturing the same
US9285332B2 (en) 2011-12-12 2016-03-15 Korea Institute Of Science And Technology Low power consumption type gas sensor and method for manufacturing the same
JP2020134388A (en) * 2019-02-22 2020-08-31 功 村上 Hydrogen gas detector

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329592A (en) * 2002-05-08 2003-11-19 Shinji Okazaki Method for manufacturing film for gas sensor
JP2005300339A (en) * 2004-04-12 2005-10-27 Hitachi Cable Ltd Optical gas sensor
WO2007116919A1 (en) * 2006-04-04 2007-10-18 Japan Atomic Energy Agency Hydrogen gas detecting material and method for coating same
US8052898B2 (en) 2006-04-04 2011-11-08 Japan Atomic Energy Agency Hydrogen gas detecting material and the coating method
US8785924B2 (en) 2011-12-12 2014-07-22 Korea Institute Of Science And Technology High-sensitivity transparent gas sensor and method for manufacturing the same
US9285332B2 (en) 2011-12-12 2016-03-15 Korea Institute Of Science And Technology Low power consumption type gas sensor and method for manufacturing the same
WO2013108087A1 (en) * 2012-01-18 2013-07-25 Jawaharlal Nehru Centre For Advanced Scientific Research A system and a method to detect hydrogen leakage using nano-crystallised palladium gratings
JP2020134388A (en) * 2019-02-22 2020-08-31 功 村上 Hydrogen gas detector

Similar Documents

Publication Publication Date Title
Slaman et al. Fiber optic hydrogen detectors containing Mg-based metal hydrides
EP0768525B1 (en) Method of detecting a gas phase molecular species in the chamber effluent of a semiconductor processing chamber, and semiconductor processing system incorporating the same
Slaman et al. Optimization of Mg-based fiber optic hydrogen detectors by alloying the catalyst
JP2006317196A (en) Hydrogen gas sensor
Träger et al. Infrared-Laser Photoacoustic Spectroscopy for Surface Studies: S F 6 Interaction with Silver Films
JP2009517668A (en) Hydrogen sensor
JPH1010048A (en) New style hydrogen detecting element, its manufacture and gas sensor
JP4164574B2 (en) Hydrogen sensor, hydrogen detection method and detection apparatus using optical reflectivity change
JP4599593B2 (en) Hydrogen sensor using magnesium-palladium alloy thin film
Arai et al. An optical biosensor based on localized surface plasmon resonance of silver nanostructured films
Slaman et al. Optical hydrogen sensors based on metal-hydrides
JP3769614B2 (en) Hydrogen sensor using magnesium-nickel alloy thin film and method for measuring hydrogen concentration
JP2002365210A (en) Method of detecting living-body molecule
WO2004066415A2 (en) Thin film semi-permeable membranes for gas sensor and catalytic applications
JP2007057233A (en) Optical gas sensor
JPH10503859A (en) Switching device and its use
Ishida et al. Raman microprobe analysis of thin films formed on the surface of silver electrical contacts utilizing the surface-enhanced Raman scattering effect
JPH05196569A (en) Hydrogen sensor
JP3962807B2 (en) Hydrogen sensor using magnesium thin film and method for measuring hydrogen concentration
JP2002277397A (en) Molecular sensor, and raman spectroscopy
US11215558B2 (en) Nanostructure array, hydrogen detection element, and hydrogen detection device
JPS61501762A (en) optical information storage
Craighead et al. Microscopically textured optical storage media
Yoshimura et al. Room-temperature hydrogen sensor based on Pd-capped Mg2Ni thin film
JPH09236547A (en) Hydrogen detecting element and its manufacturing method