JPH05196569A - Hydrogen sensor - Google Patents

Hydrogen sensor

Info

Publication number
JPH05196569A
JPH05196569A JP893692A JP893692A JPH05196569A JP H05196569 A JPH05196569 A JP H05196569A JP 893692 A JP893692 A JP 893692A JP 893692 A JP893692 A JP 893692A JP H05196569 A JPH05196569 A JP H05196569A
Authority
JP
Japan
Prior art keywords
hydrogen
light
detector
sensor
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP893692A
Other languages
Japanese (ja)
Inventor
Masasuke Takada
雅介 高田
Yuichi Watanabe
裕一 渡辺
Koichi Nishizawa
紘一 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP893692A priority Critical patent/JPH05196569A/en
Publication of JPH05196569A publication Critical patent/JPH05196569A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To obtain a sensor very quick in response speed and little in degrada tion due to repeated use by measuring the light intensity penetrating a catalytic metal layer or reflected from the catalytic metal surface. CONSTITUTION:A sensor has a catalytic metal layer 12 absorbing and separating hydrogen and gas including hydrogen compounds and a detector 10 constituted of, for example, platinum or paradium formed on the base 11. In the middle of a channel pipe 21 for the sensor gas, a light penetration chamber 22 is provided, openings 23 are provided on the penetration chamber 22 and the openings are sealed air-tight with glass windows 24. Inside of the one of the glass windows 24, a hydrogen detector 10 is fixed as to expose the catalytic metal layer 12 to the hydrogen gas side. On the outside of the hydrogen gas channel pipe 21, a light source 1 to cast a light beam 2 for penetrating the glass window 24 is arranged and on the opposit side, a light detector 3 to receive the light beam 2 is arranged. The received light intensity is measured with a meter 4 connected with the light detector 3. If hydrogen density increases, the penetration light intensity increases and the reflection light intensity decreases.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、石油精製プラントや水
素ガスを扱う機器、装置において水素ガスの存在を光学
的な手段により安全な状態で検知するセンサーに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sensor for detecting the presence of hydrogen gas in an oil refining plant or equipment or device handling hydrogen gas in a safe state by optical means.

【0002】[0002]

【従来の技術】従来、ガスセンサーとして、接触燃焼方
式あるいは半導体方式が広く利用されている。接触燃焼
方式は、白金やパラジウムの細線をヒーターとして予め
加熱しておき、そこに水素ガスが接触、反応して生じる
導電率の変化を電気的に検出することで水素ガスの存在
を知る方法である。
2. Description of the Related Art Conventionally, a catalytic combustion system or a semiconductor system has been widely used as a gas sensor. The catalytic combustion method is a method in which a thin wire of platinum or palladium is preheated as a heater, and the presence of hydrogen gas is detected by electrically detecting the change in conductivity caused by the contact and reaction of hydrogen gas. is there.

【0003】一方、半導体方式では、絶縁基板に酸化物
半導体である酸化錫や酸化亜鉛の層を形成し、その上に
一定の間隔をおいて対向させた一対の電極を設けた検出
器を用いる。この検出器に水素ガスが接触すると酸化物
との間で電子の授受が生じ、その結果半導体層のキャリ
アが増加して電気抵抗が減少して電極間の電流が増加す
る。すなわち、この電流変化を検出すれば水素ガスの存
在を知ることができる。但しこの方式は、水素ガスの検
知に際して絶縁基板の裏面から予め加熱しておく必要が
ある。
On the other hand, in the semiconductor system, a detector is used in which a layer of oxide semiconductor such as tin oxide or zinc oxide is formed on an insulating substrate, and a pair of electrodes opposed to each other with a constant interval are provided thereon. .. When hydrogen gas comes into contact with this detector, electrons are exchanged with the oxide, and as a result, the carriers in the semiconductor layer increase, the electric resistance decreases, and the current between the electrodes increases. That is, the presence of hydrogen gas can be known by detecting this change in current. However, in this method, it is necessary to preheat from the back surface of the insulating substrate when detecting hydrogen gas.

【0004】上述したいずれの方法でも、水素ガスの検
出に当たっては予めセンサーを加熱しておく必要がある
ため、水素ガスのような可燃性ガスの雰囲気下では安全
防爆対策が必須であり、また素子を絶えず加熱している
ため劣化が速く、信頼性にも問題がある。
In any of the above-mentioned methods, it is necessary to heat the sensor in advance in order to detect hydrogen gas. Therefore, safety and explosion-proof measures are indispensable in an atmosphere of a flammable gas such as hydrogen gas. Since it is constantly heated, its deterioration is fast and there is a problem in reliability.

【0005】これらの問題を解決する手段として最近、
光学的に水素ガスを検出する方法が提案されている。こ
の方法では、水素ガスを吸着解離する作用を持つ触媒金
属、例えばパラジウムの薄膜を表面層とし、この解離水
素によって還元される酸化物、例えば酸化タングステン
の薄膜を下地層として蒸着法などで基体上に積層してセ
ンサーを構成する。
Recently, as a means for solving these problems,
A method of optically detecting hydrogen gas has been proposed. In this method, a thin film of a catalytic metal having a function of adsorbing and dissociating hydrogen gas, for example, palladium is used as a surface layer, and an oxide that is reduced by the dissociated hydrogen, for example, a thin film of tungsten oxide is used as a base layer on a substrate by vapor deposition or the like. To form a sensor.

【0006】このセンサーに水素ガスが接触すると、ま
ず表面のパラジウム層で水素が吸着解離され、次いで発
生した原子状水素が下の酸化タングステン層に拡散反応
して着色を起こす。この着色による光透過率の変化を測
定して水素ガスを検知する。このような光学方式は、加
熱などの手段を必要としないため本質的に安全性が高
く、かつ水素ガス検知に対する選択性がよく水素ガスと
いう可燃性ガスの検知方法としては優れた方法である。
When hydrogen gas comes into contact with this sensor, hydrogen is first adsorbed and dissociated in the palladium layer on the surface, and then the generated atomic hydrogen diffuses into the underlying tungsten oxide layer to cause coloring. Hydrogen gas is detected by measuring the change in light transmittance due to this coloring. Such an optical system is essentially safe because it does not require any means such as heating, has good selectivity for detecting hydrogen gas, and is an excellent method for detecting flammable gas called hydrogen gas.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、酸化タ
ングステンは極めて耐水性が悪く、センサーの寿命を長
くすることが困難であり、かつ水素ガスに対する反応特
性の経時変化が著しいため、実用上問題があった。
However, since tungsten oxide has extremely poor water resistance, it is difficult to prolong the life of the sensor, and the reaction characteristics with respect to hydrogen gas change remarkably over time, which poses a practical problem. It was

【0008】[0008]

【課題を解決するための手段】本発明者らは、前述した
光学検知方式の水素センサーを研究する過程で、触媒金
属層に水素が接触するとこの触媒金属層自体の光透過性
が水素濃度に比例して増加し、しかもこの透過率変化が
極めて迅速に生じるとともに、現象の繰り返し再現性が
非常に高く、従って触媒金属層の光透過率または反射率
の変化を直接測定することにより、水素検知を高感度、
高速応答性で行うことができることを見いだした。本発
明はこの知見に基づくものである。
Means for Solving the Problems In the process of studying the above-mentioned hydrogen sensor of the optical detection system, when the hydrogen comes into contact with the catalyst metal layer, the light transmittance of the catalyst metal layer itself is changed to the hydrogen concentration. In addition to the proportional increase, this change in transmittance occurs very rapidly, and the reproducibility of the phenomenon is extremely high. Therefore, hydrogen change can be detected by directly measuring the change in light transmittance or reflectance of the catalytic metal layer. High sensitivity,
I found that I can do it with fast responsiveness. The present invention is based on this finding.

【0009】すなわち本発明の水素センサは、水素また
は含水素化合物ガスを吸着解離する触媒金属の層、例え
ば白金あるいはパラジウムを基体上に形成してなる検出
子と、この触媒金属層に光を入射させる光源と、この触
媒金属層を透過する光量または(及び)触媒金属層表面
から反射される光量を測定する受光量検出器とから成
る。
That is, in the hydrogen sensor of the present invention, a catalyst metal layer that adsorbs and dissociates hydrogen or a hydrogen-containing compound gas, for example, a detector formed by forming platinum or palladium on a substrate, and light is incident on this catalyst metal layer. And a received light amount detector for measuring the amount of light transmitted through the catalytic metal layer and / or the amount of light reflected from the surface of the catalytic metal layer.

【0010】本発明で使用する基体は、単に触媒金属層
を保持するためのものであり、解離水素と実質的に反応
しない材質のものなら特に材質、形状に制限はなく、ガ
ラス等の誘電体、有機物質、金属など一般の安価な材料
が使用できる。
The substrate used in the present invention is merely for holding the catalytic metal layer and is not particularly limited in material and shape as long as it is a material that does not substantially react with dissociated hydrogen, and a dielectric such as glass. General inexpensive materials such as organic substances and metals can be used.

【0011】ただし本発明センサで透過光量を測定する
方式をとる場合は、上記基体として透明体を用いる必要
がある。反射光量を測定する方式であれば基体は透明体
でも不透明体でもよい。
However, if the sensor of the present invention is used to measure the amount of transmitted light, it is necessary to use a transparent body as the substrate. The substrate may be a transparent body or an opaque body as long as it is a method of measuring the amount of reflected light.

【0012】[0012]

【作用】本発明で、水素の接触によって触媒金属層の光
透過率が増大する(反射率が減少する)理由について
は、充分に解明されたわけではないが、次のように推測
される。
The reason why the light transmittance of the catalytic metal layer is increased (the reflectance is decreased) by the contact with hydrogen in the present invention has not been fully clarified, but it is presumed as follows.

【0013】すなわち、触媒金属層の表面上で接触した
水素ガスは吸着解離され、発生した原子状水素が層内に
拡散し、当該金属との水素化物を形成することにより表
面の反射率が減少し、その分光透過率が増大する。この
場合の当該金属の水素化物は水素分圧に極めて強く依存
しており、水素ガスの濃度により反射率の減少割合が比
例している。また水素ガスとの接触が絶たれると水素化
物が分解して元の反射率に戻り、反射率の増加または透
過光の減少として検出される。
That is, the hydrogen gas contacted on the surface of the catalytic metal layer is adsorbed and dissociated, and the generated atomic hydrogen diffuses into the layer to form a hydride with the metal, thereby reducing the surface reflectance. However, the spectral transmittance increases. The hydride of the metal in this case depends extremely strongly on the hydrogen partial pressure, and the rate of decrease in reflectance is proportional to the concentration of hydrogen gas. When the contact with hydrogen gas is cut off, the hydride decomposes and returns to the original reflectance, which is detected as an increase in reflectance or a decrease in transmitted light.

【0014】一般にパラジウム等の触媒金属は、耐水性
などの耐環境性も優れており、本発明のセンサーの検出
子はこの触媒金属層とこれを保持するための基体のみで
構成でき、悪環境下でも極めて良好な耐候性を有してい
る。
In general, a catalytic metal such as palladium is also excellent in environmental resistance such as water resistance, and the detector of the sensor of the present invention can be constituted only by this catalytic metal layer and a substrate for holding the catalytic metal layer. Even below, it has extremely good weather resistance.

【0015】[0015]

【実施例】図1は本発明の水素センサーに使用する水素
検出子の例を示す。検出子10は、ガラス等の透明基板
11の表面に、水素または含水素化合物ガスを吸着解離
する触媒金属から成る薄膜層12、一例としてパラジウ
ム(Pd)の層を蒸着、スパッタリング等周知の薄膜形
成方法を用いて密着形成したものである。
EXAMPLE FIG. 1 shows an example of a hydrogen detector used in the hydrogen sensor of the present invention. The detector 10 includes a thin film layer 12 made of a catalytic metal that adsorbs and dissociates hydrogen or a hydrogen-containing compound gas, for example, a layer of palladium (Pd) is formed on the surface of a transparent substrate 11 such as glass by vapor deposition, sputtering, or other known thin film formation. It was formed in close contact using the method.

【0016】図2は上記の検出子10を用いて本発明の
水素センサーを構成した一例を示す。図において、21
は水素ガスの流路配管であり、この流路の途中に透光室
22が設けてある。この透光室22には水素ガスの流路
を挟んだ対向側壁にそれぞれ開口23が設けてあり、開
口23はガラス窓24で気密に封止してあるとともに、
一方のガラス窓24の内側に図1で説明した水素検出子
10を、その触媒金属層12を水素ガス側に暴露して取
り付けてある。
FIG. 2 shows an example in which the hydrogen sensor of the present invention is constructed by using the above detector 10. In the figure, 21
Is a hydrogen gas flow passage pipe, and a translucent chamber 22 is provided in the middle of this flow passage. The translucent chamber 22 is provided with openings 23 on opposite side walls sandwiching a hydrogen gas passage, and the openings 23 are hermetically sealed by a glass window 24.
Inside one of the glass windows 24, the hydrogen detector 10 described in FIG. 1 is attached by exposing the catalytic metal layer 12 to the hydrogen gas side.

【0017】そして水素ガス流路配管の外側には、上記
両ガラス窓24、24を通るように光束2を投射する光
源1が配置してあり、かつ透光室22を挟んだ反対側に
は上記光束2を受光する光検出器3が配置してあり、こ
の光検出器3に接続した測定機4で受光量を計測する。
A light source 1 for projecting the light flux 2 is arranged outside the hydrogen gas flow passage pipe so as to pass through the glass windows 24, 24, and on the opposite side of the transparent chamber 22. A photodetector 3 for receiving the light flux 2 is arranged, and a measuring device 4 connected to the photodetector 3 measures the amount of received light.

【0018】図3の(A)に本発明のセンサーを用いた
水素検知の実験の結果を示す。図3(A)のグラフは、
本発明の検出子を取り付けた室内に、水素濃度100%
のガスを導入し一定時間経過後導入を断ち、再び導入す
るという操作を一定間隔で繰り返し行い、その間、検出
子の光透過率を波長780nmの光を用いて連続測定し
た結果を示している。同図中、矢印で「H2入」と記載
した箇所が水素ガス導入の時点で、「H2断」と記載し
た箇所が導入を断った時点である。
FIG. 3A shows the result of an experiment for hydrogen detection using the sensor of the present invention. The graph in FIG. 3 (A) is
100% hydrogen concentration in the room equipped with the detector of the present invention.
The operation of introducing the gas of (3), interrupting the introduction after a lapse of a certain time, and introducing again was repeated at a constant interval, and during that period, the light transmittance of the detector was continuously measured using light having a wavelength of 780 nm. In the figure, the portion marked with “H 2 in” by the arrow is the time when hydrogen gas was introduced, and the portion marked “H 2 disconnected” was the time when the introduction was stopped.

【0019】また比較例として従来の光学式水素ガスセ
ンサ、すなわち基板上に酸化タングステン(WO3)被
膜を設け、この被膜上にパラジウム被膜を設けた二層被
膜構造のセンサーを用いて、パラジウム膜での水素解離
に起因するWO3の着色による透過率変化を測定した結
果を図3の(B)に示した。
As a comparative example, a conventional optical hydrogen gas sensor, that is, a sensor having a two-layer film structure in which a tungsten oxide (WO 3 ) film is provided on a substrate and a palladium film is provided on the film, is used. The change in transmittance due to the coloring of WO 3 due to the hydrogen dissociation of was measured and the result is shown in FIG. 3 (B).

【0020】図3(A)のように、本発明の水素検出子
では水素ガスの接触と共に瞬時に反応が起こり、出力光
の透過率の増加として検出される。また水素ガスとの接
触を断つと速やかに元の状態に戻る。
As shown in FIG. 3A, in the hydrogen detector of the present invention, a reaction occurs instantaneously with the contact of hydrogen gas, which is detected as an increase in the transmittance of output light. Also, when the contact with hydrogen gas is cut off, the original state is quickly restored.

【0021】そして図3の(A)と(B)の比較で明ら
かなように、従来の着色型の光センサーに比べて本発明
の方が応答反応は1桁以上速い。
As is clear from the comparison between FIGS. 3A and 3B, the response response of the present invention is one digit or more faster than that of the conventional colored photosensor.

【0022】図4に、本発明の検出子の光透過率と水素
濃度との関係の数値例を示す。同図において縦軸は光透
過率を光学濃度、すなわち出射光量を入射光量で除した
値の対数値の絶対値で表してあり、横軸は水素ガス濃度
を対数で表している。
FIG. 4 shows a numerical example of the relationship between the light transmittance and hydrogen concentration of the detector of the present invention. In the figure, the vertical axis represents the optical density of the light transmittance, that is, the absolute value of the logarithmic value of the value obtained by dividing the amount of emitted light by the amount of incident light, and the horizontal axis represents the hydrogen gas concentration in logarithm.

【0023】同図のように絶対感度はパラジウムの膜厚
に比例している。パラジウム膜厚80nmとした時、1
000ppm程度の水素ガス濃度でも光透過率は2%の
変化を示す。
As shown in the figure, the absolute sensitivity is proportional to the film thickness of palladium. When the palladium film thickness is 80 nm, 1
Even at a hydrogen gas concentration of about 000 ppm, the light transmittance changes by 2%.

【0024】図5及び図6に、本発明の検出子と上記従
来の着色型センサーについて、繰り返し再現精度の比較
実験を行った結果を示している。図5から判るように、
水素ガスの導入の繰り返し回数が100回を越えても本
発明の検出子は劣化を示さないが、従来の着色型センサ
ーは図6に示されるように著しい劣化を示す。
FIG. 5 and FIG. 6 show the results of repeated reproducibility comparison experiments for the detector of the present invention and the conventional colored sensor. As you can see from Figure 5,
Although the detector of the present invention does not show deterioration even when the number of times of introducing hydrogen gas exceeds 100 times, the conventional colored sensor shows remarkable deterioration as shown in FIG.

【0025】さらに図7の(A)(B)は、図5、図6
と同じ評価を経過時間による透過率の変化で示したもの
である。同図から明らかなように、本発明の検出子は1
000時間経過しても応答性の変化が認められないのに
対し、従来の着色型センサーでは応答性の劣化を生じて
いる。
Further, FIGS. 7A and 7B show FIGS.
The same evaluation as is shown by the change in transmittance with time. As is clear from the figure, the detector of the present invention is 1
The responsiveness does not change even after 000 hours, whereas the conventional colored sensor deteriorates the responsiveness.

【0026】図8ないし図11に、本発明の検出子を用
いて水素センサを構成する場合の種々の例を示す。
8 to 11 show various examples in which a hydrogen sensor is constructed by using the detector of the present invention.

【0027】これらのうち、図8と図9は透過型の例で
あり、図8では離れた所にある光源1の光を光ファイバ
30Aで水素ガス流路に導き、ファイバからの出射光を
屈折率分布型レンズ等の光学レンズ31Aで平行光束に
変換した後、水素ガス流路中に配置した本発明の水素検
出子10に投射し、透過光を他方のレンズ31Bで集光
して光ファイバ30Bに入射させ、離れた箇所にある光
検出器3に導くように構成している。
Of these, FIGS. 8 and 9 are examples of the transmission type. In FIG. 8, the light of the light source 1 located at a distant place is guided to the hydrogen gas flow path by the optical fiber 30A, and the light emitted from the fiber is emitted. After being converted into a parallel light flux by an optical lens 31A such as a gradient index lens, the parallel light flux is projected onto the hydrogen detector 10 of the present invention arranged in the hydrogen gas flow path, and the transmitted light is condensed by the other lens 31B. It is configured such that it is incident on the fiber 30B and is guided to the photodetector 3 located at a remote place.

【0028】また図9の例では、例えばガラス基板11
中にイオン交換等により、周囲よりも屈折率の大な領域
からなる導波路32を形成し、この導波路の上面にパラ
ジウム層12を形成し、光源1からの光を光ファイバ3
0Aを通して導波路32に入射させ、導波路32からの
出射光を光ファイバ30Bで光検出器3に導くようにし
ている。本構造の場合、導波路32を通る光のエバネッ
セント波がパラジウム層12と接触して該層の透過率変
化の影響を受け、導波路からの出射光量が変化する。
Further, in the example of FIG. 9, for example, the glass substrate 11
A waveguide 32 composed of a region having a refractive index larger than that of the surroundings is formed by ion exchange or the like, and a palladium layer 12 is formed on the upper surface of the waveguide, so that the light from the light source 1 is transmitted through the optical fiber 3
The light emitted from the waveguide 32 is guided to the photodetector 3 by the optical fiber 30B. In the case of this structure, the evanescent wave of the light passing through the waveguide 32 comes into contact with the palladium layer 12 and is affected by the change in the transmittance of the palladium layer 12, and the amount of light emitted from the waveguide changes.

【0029】図10と図11は、反射型のセンサーを構
成した例である。図10のものは、水素ガス流路内の一
方の側壁面に本発明の検出子10を配置し、対向する他
方の側壁に入射用の光ファイバ30Aとレンズ31A、
及び出射用光ファイバ30Bとレンズ31Bの対を配置
し、検出子10の表面パラジウム層12に光源光を投射
するとともに、該面で反射された光を受光するように構
成している。
FIG. 10 and FIG. 11 show an example in which a reflection type sensor is constructed. In FIG. 10, the detector 10 of the present invention is arranged on one side wall surface in the hydrogen gas flow path, and the incident optical fiber 30A and the lens 31A are arranged on the other side wall opposite thereto.
A pair of the output optical fiber 30B and the lens 31B is arranged so that the light source light is projected onto the surface palladium layer 12 of the detector 10 and the light reflected by the surface is received.

【0030】また図11の例では、検出子10の基体1
1として4分の1ピッチ長の屈折率分布型レンズを用
い、このレンズの一方の面にパラジウム層12を設け、
この面を水素ガス流路(図示せず)内に露出させ、レン
ズの他方の面に、中心軸対称に入射用光ファイバ30A
と出射用光ファイバ30Bの端部をそれぞれ接続してい
る。本構造では、入射用ファイバ30Aから拡散出射し
た光は、平行光束としてパラジウム層12の内表面に入
射し、反射後に集光されて出射用ファイバ30Bに入
る。
Further, in the example of FIG. 11, the substrate 1 of the detector 10 is
A 1/4 pitch length gradient index lens is used as 1, and a palladium layer 12 is provided on one surface of the lens,
This surface is exposed in a hydrogen gas flow path (not shown), and the other side of the lens has an optical fiber for incidence 30A symmetrical about the central axis.
And the ends of the output optical fiber 30B are connected to each other. In this structure, the light diffused and emitted from the incidence fiber 30A is incident on the inner surface of the palladium layer 12 as a parallel light flux, is condensed after being reflected, and enters the emission fiber 30B.

【0031】以上に示した例のうち図9と図11の構成
は、他の例のように検出用の光が水素ガスあるいは空気
を通らないので、塵埃等による光学的な悪影響を受けな
い利点がある。
Among the examples shown above, the configurations of FIGS. 9 and 11 have an advantage that the detection light does not pass through hydrogen gas or air as in the other examples, so that it is not adversely affected by dust or the like. There is.

【0032】<実施例>高周波マグネトロンスパッタ装
置を用いて、パラジウム金属をターゲットとして1mT
orrのアルゴンガス雰囲気中でガラス基板面に対して
スッパタを行い、パラジウム薄膜を10〜20nmの厚
さまで形成した。この時の高周波のパワーは100W
で、スパッタレートは4nm/secであった。
<Example> Using a high-frequency magnetron sputtering device, palladium metal as a target of 1 mT
Sputtering was performed on the glass substrate surface in an argon gas atmosphere of orr to form a palladium thin film with a thickness of 10 to 20 nm. The high frequency power at this time is 100W
The sputter rate was 4 nm / sec.

【0033】こうして得られた水素検出子を用いて図2
のようなセンサーを構成し、所定の水素濃度を持つ被検
出水素ガス気体は、乾燥空気で100%の水素ガスを希
釈することによって生成させ、気密セルの中に導入し
た。検出子の光透過率変化を測定したところ、図3
(A)および図5に示した応答特性が得られた。
Using the hydrogen detector thus obtained, FIG.
A hydrogen gas to be detected having a predetermined hydrogen concentration was produced by diluting 100% hydrogen gas with dry air and introduced into an airtight cell. When the change in light transmittance of the detector was measured, it was shown in FIG.
The response characteristics shown in (A) and FIG. 5 were obtained.

【0034】次に、基板としてプラスチック(ポリカー
ボネート)基板を用い、同様のスパッタリング法を適用
して、薄膜層構造を持つ検出子を形成した。この場合
は、基板の温度を100℃以下にしなければならないた
め、蒸着温度を下げて成膜を行った。
Next, a plastic (polycarbonate) substrate was used as a substrate and the same sputtering method was applied to form a detector having a thin film layer structure. In this case, since the temperature of the substrate must be 100 ° C. or lower, the vapor deposition temperature was lowered to form the film.

【0035】いずれの場合も水素ガスとの接触を行うと
透過率が増加し、水素ガスを絶つと元の状態に復帰し
た。
In all cases, the contact rate with hydrogen gas increased the transmittance, and when the hydrogen gas was cut off, the original state was restored.

【0036】[0036]

【発明の効果】本発明によるセンサは、水素ガスを全て
反射率の変化や透過率の変化という光の信号として検知
でき、小型化、高信頼化、耐電磁誘導、耐火、防爆など
光の持つ特徴を充分生かすことができる。
The sensor according to the present invention can detect all hydrogen gas as a light signal such as a change in reflectance and a change in transmittance, and has a small size, high reliability, electromagnetic induction resistance, fire resistance, explosion proof, and the like. The characteristics can be fully utilized.

【0037】また、従来の着色型の光学的水素検知セン
サのように、触媒金属層での水素解離、それによる下方
の酸化物の着色変化という多段階の反応を利用するので
はなく、触媒金属層の表面における水素化物生成による
光反射率低減(透過率増)という表面現象を利用してい
るため、応答速度が極めて速く、可逆的で極めて安定で
ある。
Further, unlike the conventional colored type optical hydrogen detection sensor, rather than utilizing the multi-step reaction of hydrogen dissociation in the catalytic metal layer and the resulting color change of the oxide below, the catalytic metal is not used. Since the surface phenomenon of reducing the light reflectance (increasing the transmittance) due to hydride generation on the surface of the layer is utilized, the response speed is extremely fast, reversible and extremely stable.

【0038】さらに、構造が簡単で量産性にも富んでお
り、従来光学式センサが高価であるという先入観を払底
した点でも画期的なセンサーということができる。
Further, it can be said to be an epoch-making sensor in that the structure is simple and the mass productivity is high, and the conventional optical sensor is expensive, and the preconceived idea is not taken into consideration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のセンサーに使用する検出子の一例を示
す断面図
FIG. 1 is a sectional view showing an example of a detector used in a sensor of the present invention.

【図2】本発明の第1実施例を示す断面図FIG. 2 is a sectional view showing a first embodiment of the present invention.

【図3】本発明検出子(A)と従来の光学式水素センサ
(B)の応答特性の比較を示すグラフ
FIG. 3 is a graph showing a comparison of response characteristics between the detector of the present invention (A) and a conventional optical hydrogen sensor (B).

【図4】本発明検出子の水素濃度に対する特性を示すグ
ラフ
FIG. 4 is a graph showing characteristics of the detector of the present invention with respect to hydrogen concentration.

【図5】本発明検出子の繰り返し使用による再現精度を
回数で見た結果を示すグラフ
FIG. 5 is a graph showing the results of the number of times the reproducibility of the detector of the present invention is repeatedly used.

【図6】従来の光学式水素検知センサの繰り返し使用に
よる再現精度を回数で見た結果を示すグラフ
FIG. 6 is a graph showing the results of the number of times the reproducibility of a conventional optical hydrogen detection sensor is repeatedly used.

【図7】本発明検出子(A)と従来の光学式水素検知セ
ンサ(B)の繰り返し使用による再現精度を経過時間で
見た結果を示すグラフ
FIG. 7 is a graph showing the results of reproducibility of the detector of the present invention (A) and the conventional optical hydrogen detection sensor (B) repeatedly used over time.

【図8】本発明の第2実施例を示す断面図FIG. 8 is a sectional view showing a second embodiment of the present invention.

【図9】本発明の第3実施例を示す断面図FIG. 9 is a sectional view showing a third embodiment of the present invention.

【図10】本発明の第4実施例を示す断面図FIG. 10 is a sectional view showing a fourth embodiment of the present invention.

【図11】本発明の第5実施例を示す断面図FIG. 11 is a sectional view showing a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 光源 2 光束 3 光検出器 4 受光量測定機 10 検出子 11 基体 12 パラジウム(触媒金属)層 21 水素ガス流路 22 透光室 23 開口 24 ガラス窓 30A、30B 光ファイバ 31A、31B レンズ 32 導波路 DESCRIPTION OF SYMBOLS 1 light source 2 light flux 3 photodetector 4 light receiving amount measuring instrument 10 detector 11 substrate 12 palladium (catalyst metal) layer 21 hydrogen gas flow path 22 translucent chamber 23 opening 24 glass window 30A, 30B optical fiber 31A, 31B lens 32 guide Waveguide

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水素または含水素化合物ガスを吸着解離
する触媒金属の層を基体上に形成してなる検出子と、該
触媒金属層に光を入射させる光源と、この触媒金属層を
透過する光量または(及び)触媒金属層表面から反射さ
れる光量を測定する受光量検出器とから成る水素セン
サ。
1. A detector formed by forming a catalyst metal layer for adsorbing and dissociating hydrogen or a hydrogen-containing compound gas on a substrate, a light source for making light incident on the catalyst metal layer, and transmitting through the catalyst metal layer. A hydrogen sensor comprising: a light receiving amount detector for measuring a light amount or / and a light amount reflected from the surface of the catalytic metal layer.
【請求項2】 請求項1において、前記触媒金属がパラ
ジウム(Pd)である水素センサ。
2. The hydrogen sensor according to claim 1, wherein the catalytic metal is palladium (Pd).
JP893692A 1992-01-22 1992-01-22 Hydrogen sensor Pending JPH05196569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP893692A JPH05196569A (en) 1992-01-22 1992-01-22 Hydrogen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP893692A JPH05196569A (en) 1992-01-22 1992-01-22 Hydrogen sensor

Publications (1)

Publication Number Publication Date
JPH05196569A true JPH05196569A (en) 1993-08-06

Family

ID=11706557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP893692A Pending JPH05196569A (en) 1992-01-22 1992-01-22 Hydrogen sensor

Country Status (1)

Country Link
JP (1) JPH05196569A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995030889A1 (en) * 1994-05-09 1995-11-16 Unisearch Limited Method and device for optoelectronic chemical sensing
US6493086B1 (en) 1995-10-10 2002-12-10 American Air Liquide, Inc. Chamber effluent monitoring system and semiconductor processing system comprising absorption spectroscopy measurement system, and methods of use
EP1775578A1 (en) * 2005-10-17 2007-04-18 Kabushiki Kaisha Atsumitec Hydrogen gas visualization device
JP2007132889A (en) * 2005-11-14 2007-05-31 Japan Atomic Energy Agency Optical hydrogen sensing material using ion irradiation and its manufacturing method
JP2007225299A (en) * 2006-02-21 2007-09-06 Japan Atomic Energy Agency Hydrogen detecting material and its manufacturing method
JP2009081127A (en) * 2007-09-05 2009-04-16 Atsumi Tec:Kk Ion conductive electrolyte membrane and inspection method for ion conductive electrolyte membrane-hydrogen electrode assembly
JP2010148692A (en) * 2008-12-25 2010-07-08 National Cardiovascular Center Method and apparatus for detecting surface gas
JP2011085576A (en) * 2009-09-15 2011-04-28 Mitsubishi Cable Ind Ltd Optical fiber hydrogen sensor, and optical fiber hydrogen sensor system with the same
US20110126515A1 (en) * 2008-08-05 2011-06-02 Deutsches Zentrum Fuer Luft-Und Raumfahrt E.V. Sensor-integrated device
WO2013108087A1 (en) * 2012-01-18 2013-07-25 Jawaharlal Nehru Centre For Advanced Scientific Research A system and a method to detect hydrogen leakage using nano-crystallised palladium gratings
JP2020134388A (en) * 2019-02-22 2020-08-31 功 村上 Hydrogen gas detector

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995030889A1 (en) * 1994-05-09 1995-11-16 Unisearch Limited Method and device for optoelectronic chemical sensing
US6493086B1 (en) 1995-10-10 2002-12-10 American Air Liquide, Inc. Chamber effluent monitoring system and semiconductor processing system comprising absorption spectroscopy measurement system, and methods of use
US7687030B2 (en) 2005-10-17 2010-03-30 Kabushiki Kaisha Atsumitec Hydrogen gas visualization device
EP1775578A1 (en) * 2005-10-17 2007-04-18 Kabushiki Kaisha Atsumitec Hydrogen gas visualization device
JP2007132889A (en) * 2005-11-14 2007-05-31 Japan Atomic Energy Agency Optical hydrogen sensing material using ion irradiation and its manufacturing method
JP2007225299A (en) * 2006-02-21 2007-09-06 Japan Atomic Energy Agency Hydrogen detecting material and its manufacturing method
JP2009081127A (en) * 2007-09-05 2009-04-16 Atsumi Tec:Kk Ion conductive electrolyte membrane and inspection method for ion conductive electrolyte membrane-hydrogen electrode assembly
US20110126515A1 (en) * 2008-08-05 2011-06-02 Deutsches Zentrum Fuer Luft-Und Raumfahrt E.V. Sensor-integrated device
US8524181B2 (en) * 2008-08-05 2013-09-03 Deutsches Zentrum Fuer Luft-Und Raumfahrt E.V. Sensor-integrated device
JP2010148692A (en) * 2008-12-25 2010-07-08 National Cardiovascular Center Method and apparatus for detecting surface gas
JP2011085576A (en) * 2009-09-15 2011-04-28 Mitsubishi Cable Ind Ltd Optical fiber hydrogen sensor, and optical fiber hydrogen sensor system with the same
WO2013108087A1 (en) * 2012-01-18 2013-07-25 Jawaharlal Nehru Centre For Advanced Scientific Research A system and a method to detect hydrogen leakage using nano-crystallised palladium gratings
JP2020134388A (en) * 2019-02-22 2020-08-31 功 村上 Hydrogen gas detector

Similar Documents

Publication Publication Date Title
US4661320A (en) Gas sensor
EP0570445B1 (en) Analytical device
JPH05196569A (en) Hydrogen sensor
US7978331B2 (en) Attenuated total reflection optical probe and apparatus therewith for spectroscopic measurement of aqueous solution
Harrick et al. Internal reflection spectroscopy
US8491766B2 (en) Gas sensor for determining hydrogen or hydrogen compounds
Slaman et al. Optimization of Mg-based fiber optic hydrogen detectors by alloying the catalyst
Devendiran et al. Design of aluminium oxide (Al2O3) fiber optic gas sensor based on detection of refracted light in evanescent mode from the side-polished modified clad region
Eguchi Optical gas sensors
JPH0223826B2 (en)
JPH0875639A (en) Light-absorption-spectrum measuring apparatus making use of slab optical waveguide
Hollowell Current instrumentation for continuous monitoring for SO2
OH et al. A novel palladium thin film hydrogen-detector
JPH0513458B2 (en)
JPS60209149A (en) Hydrogen detector
JPH0210374B2 (en)
Shinbo et al. Ammonia Gas Detection under Various Humidity Conditions Using Waveguide Surface Plasmon Resonance Spectroscopy
JPH1096699A (en) Gas detection element and gas-measuring apparatus
US11815452B2 (en) Gas sensor device and method of manufacturing the same
US3430041A (en) Far ultraviolet non-dispersive analyzer utilizing resonant radiant energy from the periphery of the vapor cloud of the source
JPH09236547A (en) Hydrogen detecting element and its manufacturing method
Yamasaku et al. Response Characteristics of Silicon Microring Resonator Hydrogen Gas Sensor
JPS61201140A (en) Hydrogen detecting optical sensor
JPH0210375B2 (en)
JPH0481738B2 (en)