JP2007225299A - Hydrogen detecting material and its manufacturing method - Google Patents

Hydrogen detecting material and its manufacturing method Download PDF

Info

Publication number
JP2007225299A
JP2007225299A JP2006043558A JP2006043558A JP2007225299A JP 2007225299 A JP2007225299 A JP 2007225299A JP 2006043558 A JP2006043558 A JP 2006043558A JP 2006043558 A JP2006043558 A JP 2006043558A JP 2007225299 A JP2007225299 A JP 2007225299A
Authority
JP
Japan
Prior art keywords
hydrogen
palladium
palladium oxide
detection material
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006043558A
Other languages
Japanese (ja)
Other versions
JP4639344B2 (en
Inventor
Haruya Yamamoto
春也 山本
Katsumasa Takano
勝昌 高野
Yoshitomo Inoue
愛知 井上
Masato Yoshikawa
正人 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2006043558A priority Critical patent/JP4639344B2/en
Publication of JP2007225299A publication Critical patent/JP2007225299A/en
Application granted granted Critical
Publication of JP4639344B2 publication Critical patent/JP4639344B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen detecting material changed in its optical characteristics when exposed to an atmosphere containing a hydrogen gas, and its manufacturing method. <P>SOLUTION: The hydrogen detecting material changed in its optical characteristics when exposed to the atmosphere containing the hydrogen gas and its manufacturing method are characterized in that (1) the main component of the hydrogen detecting material is palladium oxide (PdO) and the shape of the hydrogen detecting material is a thin film, (2) a catalytic metal layer is formed on the surface of the hydrogen detecting material, (3) either one of palladium (Pd), platinum (Pt) and gold (Au) is used in the catalytic metal layer and (4) the palladium oxide film is obtained by heat-treating palladium vapor-deposited on a transparent substrate comprising quartz glass or the like at 500-700°C in air or an oxygen atmosphere to form palladium oxide (PdO). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本願発明は、酸化パラジウム薄膜を用いた水素検知材料とその作製方法に関するものである。   The present invention relates to a hydrogen detection material using a palladium oxide thin film and a method for producing the same.

近年、化石燃料の大量消費に伴い温室効果ガス(CO2など)放出による地球温暖化が問題となっており、化石燃料への依存を減らしたエネルギー供給システムの実現が必要とされている。特に水素燃料電池による電力供給は、環境負荷であるCO2を排出しない電力供給システムであり、その作製技術は、持続的な発展を目指す水素社会を実現する基盤システムとして、多方面で研究が進められている。しかしながら、燃料となる水素は爆発を伴う可燃性ガスであり、その取扱には十分な安全対策が必要とされる。このため漏洩する微量水素を安全に検知する安価なセンサーの開発が、水素社会を実現する上での最重要課題の一つとなっている。これまで実用化された水素センサーは、水素吸着による半導体表面の電気抵抗変化を検出に用いていたが、爆発の着火源となりうる電源回路を伴うため安全性に問題があった。 In recent years, global warming due to the release of greenhouse gases (such as CO 2 ) has become a problem with mass consumption of fossil fuels, and it is necessary to realize an energy supply system that reduces dependence on fossil fuels. In particular, the power supply by hydrogen fuel cells is a power supply system that does not emit CO 2 , which is an environmental burden, and its production technology has been studied in various fields as a basic system for realizing a hydrogen society that aims for sustainable development. It has been. However, hydrogen as a fuel is a flammable gas accompanied by an explosion, and sufficient safety measures are required for its handling. For this reason, the development of an inexpensive sensor that can safely detect leaking trace hydrogen is one of the most important issues in realizing a hydrogen society. The hydrogen sensors that have been put to practical use have been used to detect changes in the electrical resistance of the semiconductor surface due to hydrogen adsorption, but have a problem in safety because they involve a power supply circuit that can be an ignition source of an explosion.

そこで爆発の着火源となりうる電源回路を必要しない水素検知方法として、水素ガスに曝すことにより着色する酸化パラジウム水化物で被覆した酸化チタンから成る水素ガス検知用貼着テープ(特許文献1)は、目視により確認できる水素検知材料として提案されているが、屋外などの紫外線下では、酸化チタンの光触媒効果のため水素ガスの検知感度が劣化するという問題がある。   Therefore, as a hydrogen detection method that does not require a power supply circuit that can be an ignition source of an explosion, a hydrogen gas detection adhesive tape made of titanium oxide coated with palladium oxide hydrate colored by exposure to hydrogen gas (Patent Document 1) is provided. Although it has been proposed as a hydrogen detection material that can be visually confirmed, there is a problem that the detection sensitivity of hydrogen gas deteriorates due to the photocatalytic effect of titanium oxide under ultraviolet rays such as outdoors.

また、水素ガスに曝すことにより着色する酸化タングステン微粒子を主成分とする水素ガス検知用塗膜顔料を用いた水素ガス検知テープ(特許文献2)、さらに高感度に水素ガスを検知する方法としてレーザー、発光ダイオード(LED)光源とフォトダイオードなど光検出素子を利用して、水素ガスにより着色する三酸化タングステン膜の光の透過率を測定する光検知式水素センサー(特許文献3、非特許文献4)、が提案されている。しかし、水素によって光学特性が変化する三酸化タングステン膜を形成するためには、三酸化タングステンに酸素欠損を導入するなど微妙な組成制御、非晶質化などの結晶構造制御が必要であり、水素ガスに対して素早く光学特性が変化する酸化タングステンを再現性良く形成することは容易ではなかった。このため、作製時に酸素欠損量などの制御を必要としない水素検知材料が求められていた。本発明は、上記従来技術に鑑みて、作製方法が単純で再現性良く作製できる酸化パラジウムを主成分とした水素検知材料とその製造方法を提供するものである。
特開平8−253742号公報 特開2005−345338公報 特開昭60-39536号公報 K. Ito and T. Ohgami, Appl. Phys. Lett. 60 (1992) 938.
In addition, a hydrogen gas detection tape (Patent Document 2) using a coating film pigment for hydrogen gas detection mainly composed of tungsten oxide fine particles colored by exposure to hydrogen gas, and a laser as a method for detecting hydrogen gas with higher sensitivity. , A light detection type hydrogen sensor that measures light transmittance of a tungsten trioxide film colored with hydrogen gas using a light detection element such as a light emitting diode (LED) light source and a photodiode (Patent Document 3, Non-Patent Document 4) ), Has been proposed. However, in order to form a tungsten trioxide film whose optical properties are changed by hydrogen, it is necessary to perform fine composition control such as introducing oxygen vacancies in tungsten trioxide and crystal structure control such as amorphization. It has not been easy to form tungsten oxide whose optical characteristics change quickly with gas with good reproducibility. For this reason, there has been a demand for a hydrogen detection material that does not require control of the amount of oxygen vacancies or the like during production. In view of the above-described conventional technology, the present invention provides a hydrogen detection material containing palladium oxide as a main component and a method for manufacturing the same, which is simple and can be manufactured with good reproducibility.
JP-A-8-253742 JP 2005-345338 A JP 60-39536 A K. Ito and T. Ohgami, Appl. Phys. Lett. 60 (1992) 938.

表面に触媒金属としてパラジウムを堆積させた三酸化タングステンなどの金属酸化物薄膜は、水素を含んだ雰囲気に触れることにより光学的な透過率が減少する特性を有する。このため次世代の水素検知材料の最有力候補である。しかし、上記の水素検知材料を作製するためには、材料中の酸素欠損量の制御、結晶構造の制御が必要であり、作製条件の制御が複雑であった。本願発明は、このような事情に鑑みてなされたものであり、熱処理温度を制御するだけで形成できる酸化パラジウム薄膜と触媒金属から構成される水素検知材料とその製造方法を提供することを課題としている。   A metal oxide thin film such as tungsten trioxide in which palladium is deposited on the surface as a catalytic metal has a characteristic that optical transmittance is reduced by being exposed to an atmosphere containing hydrogen. For this reason, it is the most promising candidate for the next generation hydrogen detection material. However, in order to produce the above-described hydrogen detection material, it is necessary to control the amount of oxygen vacancies in the material and the crystal structure, and the production conditions are complicated to control. This invention is made | formed in view of such a situation, It aims at providing the hydrogen detection material comprised from the palladium oxide thin film and catalyst metal which can be formed only by controlling the heat processing temperature, and its manufacturing method. Yes.

本願発明は、上記の課題を解決するものとして、熱処理温度を制御するだけで形成できる酸化パラジウム薄膜と触媒金属から構成される水素検知材料とその製造方法を提供するものであり、透明基板上に蒸着したパラジウムを空気又は酸素雰囲気下で熱酸化して容易に酸化パラジウム膜を作製すること、及び酸化パラジウム表面に、パラジウム、白金、金のいずれかの触媒金属層が堆積していることを特徴とする。本願発明の水素検知材料は図1に示される断面図のように、1.触媒金属層、2.酸化パラジウム層、3.透明基板の順で構成され、触媒金属層側が水素ガス検知面となる。   The present invention provides a hydrogen detection material composed of a palladium oxide thin film and a catalyst metal that can be formed only by controlling the heat treatment temperature, and a method for producing the same, in order to solve the above-described problems. Evaporated palladium is thermally oxidized in air or oxygen atmosphere to easily produce a palladium oxide film, and a catalytic metal layer of palladium, platinum, or gold is deposited on the surface of palladium oxide. And As shown in the cross-sectional view of FIG. 1. catalytic metal layer; 2. palladium oxide layer; It consists of a transparent substrate in this order, and the catalyst metal layer side is the hydrogen gas detection surface.

本願発明によれば、水素を含んだ雰囲気に触れることにより光学的な透過率が減少する特性を利用した光学式水素検知材料について、これまでに水素検知材料として提案されていなかった酸化パラジウムを用い、その膜表面に触媒金属を堆積させることにより、水素検知が可能であることを見出している。上記酸化パラジウムを主成分とした水素検知材料は、熱処理温度を制御するだけで形成することができるため、再現性良く、しかも簡便に製造することが可能となり、水素漏洩検知器、水素センサーへの応用が期待される。   According to the present invention, for an optical hydrogen detection material that utilizes the characteristic that the optical transmittance decreases when exposed to an atmosphere containing hydrogen, palladium oxide that has not been proposed as a hydrogen detection material so far is used. It has been found that hydrogen can be detected by depositing a catalytic metal on the film surface. Since the hydrogen detection material containing palladium oxide as a main component can be formed simply by controlling the heat treatment temperature, it can be easily manufactured with good reproducibility and can be applied to hydrogen leak detectors and hydrogen sensors. Application is expected.

酸化パラジウム薄膜は、主成分が酸化タングステン(PdO)である、厚さ1μm以下の薄膜である。酸化パラジウム薄膜は、石英などの透明基板に金属パラジウムを蒸着し、その後、空気又は酸素雰囲気下で熱処理を行い、酸化パラジウムを形成する。本願発明においては、高周波スパッタリング法により金属パラジウム膜の蒸着を行うが、直流スパッタリング法、レーザーアブレーション法、真空蒸着法、ゾルゲル法等を採用してもかまわない。金属パラジウム膜の熱酸化処理は、電気炉を用いて行うが、酸素雰囲気下でパラジウムの蒸着を行い、酸化パラジウムを形成してもかまわない。酸化パラジウム薄膜の表面上に、高周波スパッタリング法を使用してパラジウム、白金、金のいずれかの触媒金属を堆積させるが、直流スパッタリング法、レーザーアブレーション法、真空蒸着法、ゾルゲル法等を採用してもかまわない。   The palladium oxide thin film is a thin film having a thickness of 1 μm or less whose main component is tungsten oxide (PdO). The palladium oxide thin film is formed by depositing metallic palladium on a transparent substrate such as quartz and then performing heat treatment in an air or oxygen atmosphere to form palladium oxide. In the present invention, the metal palladium film is deposited by a high frequency sputtering method, but a direct current sputtering method, a laser ablation method, a vacuum deposition method, a sol-gel method or the like may be employed. The thermal oxidation treatment of the metal palladium film is performed using an electric furnace, but palladium may be deposited by forming palladium in an oxygen atmosphere. On the surface of the palladium oxide thin film, a catalytic metal of palladium, platinum, or gold is deposited using a high frequency sputtering method, but a direct current sputtering method, a laser ablation method, a vacuum evaporation method, a sol-gel method, etc. are employed. It doesn't matter.

以下、実施例を示し、水素を含んだ雰囲気に触れることにより光学特性が変化する酸化パラジウムを主成分とする水素検知材料とその作製方法ついて詳しく説明する。   Hereinafter, examples will be described, and a hydrogen detection material mainly composed of palladium oxide whose optical characteristics change when exposed to an atmosphere containing hydrogen and a method for manufacturing the same will be described in detail.

高周波スパッタリング法を用いて、厚さ1 mmの石英基板表面上にパラジウム薄膜を作製する。成膜に際しては、金属パラジウムをターゲットに使用し、アルゴンガス圧133 mPa 雰囲気中で、金属タングステンターゲットを50W の電力にて3分間スパッタリングして、室温(20℃)で石英基板上にパラジウムの成膜を行った。パラジウムの膜厚さは、約91nmであった。   Using a high-frequency sputtering method, a palladium thin film is formed on the surface of a quartz substrate having a thickness of 1 mm. During film formation, metallic palladium was used as a target, and a metallic tungsten target was sputtered for 3 minutes at an electric power of 50 W in an argon gas pressure of 133 mPa, and palladium was formed on a quartz substrate at room temperature (20 ° C.). Membrane was performed. The film thickness of palladium was about 91 nm.

次に電気炉を用いて空気中で600℃、1時間の熱処理を行った。さらに、この酸化パラジウム薄膜上に高周波スパッタリング法を用いてパラジウムを約15nm堆積した。パラジウムのスパッタリングは、金属パラジウムをターゲットに使用し、電力50 W、アルゴンガス圧133 mPaの条件の下で30秒間スパッタリングした。   Next, heat treatment was performed at 600 ° C. for 1 hour in air using an electric furnace. Further, about 15 nm of palladium was deposited on the palladium oxide thin film using a high frequency sputtering method. Sputtering of palladium was performed by using metallic palladium as a target and sputtering for 30 seconds under the conditions of power 50 W and argon gas pressure 133 mPa.

水素ガスに対する光学特性の変化は、図2に示す測定装置を用いて室温(20℃)で評価した。評価に用いる水素ガスは、室温(20℃)の空気中における爆発限界の水素濃度4%を考慮し、アルゴンガスで希釈した濃度1%の水素を用いた。雰囲気を制御可能なセル中の試料に波長645 nmの赤色光を照射し、分光計測器を用いて、以下の手順で測定を行った。   The change in optical characteristics with respect to hydrogen gas was evaluated at room temperature (20 ° C.) using the measuring apparatus shown in FIG. The hydrogen gas used for the evaluation was hydrogen having a concentration of 1% diluted with argon gas in consideration of the explosion limit hydrogen concentration of 4% in air at room temperature (20 ° C.). A sample in a cell capable of controlling the atmosphere was irradiated with red light having a wavelength of 645 nm, and measurement was performed using a spectroscopic instrument in the following procedure.

(1)水素に曝す前の試料の透過光強度I0を測定する、
(2)アルゴンガスで希釈した濃度1%の水素を100ml/minの流速で、試料セル内を20分間ガス置換する、
(3)水素が吸着した後の試料の透過光強度Iを計測する、
(4)I/ I0により水素吸着による光の透過率の変化を評価した。
(1) Measure the transmitted light intensity I 0 of the sample before exposure to hydrogen.
(2) The gas in the sample cell is replaced with 20% hydrogen at a flow rate of 100 ml / min diluted with argon gas at a concentration of 1%.
(3) Measure the transmitted light intensity I of the sample after adsorption of hydrogen,
(4) Change in light transmittance due to hydrogen adsorption was evaluated by I / I 0 .

図3に水素吸着による光の透過率の時間変化を示す。図3(a)に上記で作製した水素検知材料の水素による光の透過率の時間変化を示している。水素ガスに対する暴露時間の増加と伴に、光の透過率が急激に低下し、つまり酸化パラジウム層の着色が起こり、300秒後には98%程度の透過率の変化を示した。これより十分に水素が検知できる性能が得られることがわかる。   FIG. 3 shows the time change of the light transmittance due to hydrogen adsorption. FIG. 3 (a) shows the temporal change in the light transmittance due to hydrogen of the hydrogen detection material produced as described above. As the exposure time to hydrogen gas increased, the light transmittance decreased rapidly, that is, the palladium oxide layer was colored, and the transmittance changed about 98% after 300 seconds. It turns out that the performance which can detect hydrogen sufficiently is obtained from this.

比較例1Comparative Example 1

本発明では、酸化パラジウム膜上の触媒金属が重要である。実施例1の比較例として、実施例1と同様な条件で酸化パラジウム薄膜を作製し、触媒金属であるパラジウムを堆積していない試料に対して水素吸着による光の透過率の時間変化を評価した。図3(b)に示すように、触媒金属を堆積していない酸化パラジウムでは水素による透過率はほとんど変化せず、水素を検知することはできなかった。つまり、酸化パラジウム膜を用いて水素を検知する場合には、酸化パラジウム膜上に触媒金属を堆積させることが重要な項目となる。   In the present invention, the catalyst metal on the palladium oxide film is important. As a comparative example of Example 1, a palladium oxide thin film was produced under the same conditions as in Example 1, and the temporal change in light transmittance due to hydrogen adsorption was evaluated on a sample on which palladium as a catalytic metal was not deposited. . As shown in FIG. 3 (b), in the case of palladium oxide on which no catalyst metal was deposited, the transmittance by hydrogen hardly changed, and hydrogen could not be detected. That is, when hydrogen is detected using a palladium oxide film, it is an important item to deposit a catalytic metal on the palladium oxide film.

実施例1のように作製した水素検知材料では、金属パラジウムから熱酸化により酸化パラジウムの形成するための熱処理温度が重要な項目である。実施例1に示したように作製した金属パラジウム薄膜について、300℃〜900℃の温度範囲で熱処理を行い、さらに実施例1と同様に触媒金属としてパラジウムを堆積させ、実施例1に示す評価装置を用いて水素吸着による光の透過率を測定した。   In the hydrogen detection material produced as in Example 1, the heat treatment temperature for forming palladium oxide from metallic palladium by thermal oxidation is an important item. The metal palladium thin film produced as shown in Example 1 is heat-treated in a temperature range of 300 ° C. to 900 ° C., and palladium is deposited as a catalyst metal in the same manner as in Example 1, and the evaluation apparatus shown in Example 1 Was used to measure the light transmittance by hydrogen adsorption.

図4は、各試料の水素ガスを暴露してから20分後の光の透過率と熱処理温度の関係を示している。熱処理温度が高くなるに従い、水素による光の透過率が著しく低下し、500℃〜700℃の範囲で最も低くなる。つまり、水素による着色が最も著しく起きていることがわかる。さらに800℃以上では、光の透過率の変化は起こらなくなる。これより、水素検知材料として用いることのできる酸化パラジウム膜を得るためには、透明基板上に蒸着したパラジウム膜を空気中で、好ましくは500℃〜700℃の温度範囲、最も好ましくは600℃の温度で熱処理行い、酸化パラジウムを作製することが重要である。   FIG. 4 shows the relationship between the light transmittance 20 minutes after the hydrogen gas exposure of each sample and the heat treatment temperature. As the heat treatment temperature is increased, the light transmittance due to hydrogen is remarkably lowered and is lowest in the range of 500 ° C to 700 ° C. That is, it can be seen that coloring by hydrogen is most remarkable. Furthermore, at 800 ° C. or higher, no change in light transmittance occurs. Thus, in order to obtain a palladium oxide film that can be used as a hydrogen detection material, the palladium film deposited on the transparent substrate is preferably in the temperature range of 500 ° C. to 700 ° C., most preferably 600 ° C. in the air. It is important to produce palladium oxide by heat treatment at a temperature.

実施例1のように作製した水素検知材料では、金属パラジウムから熱酸化により酸化パラジウムの形成させることが重要な項目である。実施例1に示したように作製した金属パラジウム薄膜について、熱処理無し、600℃ 1時間、900℃ 1時間、の熱処理を行った薄膜試料のX線回折パターンの測定を行い、結晶構造を調べた。   In the hydrogen detection material produced as in Example 1, it is an important item to form palladium oxide from metallic palladium by thermal oxidation. About the metal palladium thin film produced as shown in Example 1, the X-ray diffraction pattern of the thin film sample subjected to heat treatment without heat treatment, 600 ° C. for 1 hour, and 900 ° C. for 1 hour was measured, and the crystal structure was examined. .

図5に測定結果を示す。図5(a)は、蒸着後の金属パラジウムのX線回折パターンを示している。金属パラジウムからの回折ピークが観測されていることから、多結晶状の金属パラジウム膜が形成されていることが確認できる。図5(b)は、空気中で600℃、1時間の熱処理を行った薄膜試料のX線回折パターンを示している。酸化パラジウム(PdO)に対応する複数の回折ピークが観測されていることから、熱処理により多結晶状の酸化パラジウムが形成されていることが確認できる。図5(c)は、空気中で900℃、1時間の熱処理を行った薄膜試料のX線回折パターンを示している。酸化パラジウムに対応する回折ピークが無くなり、金属パラジウムに対応する回折パターンが確認できる。   FIG. 5 shows the measurement results. FIG. 5 (a) shows an X-ray diffraction pattern of metallic palladium after vapor deposition. Since a diffraction peak from metallic palladium is observed, it can be confirmed that a polycrystalline metallic palladium film is formed. FIG. 5B shows an X-ray diffraction pattern of a thin film sample that was heat-treated at 600 ° C. for 1 hour in air. Since a plurality of diffraction peaks corresponding to palladium oxide (PdO) are observed, it can be confirmed that polycrystalline palladium oxide is formed by the heat treatment. FIG. 5 (c) shows an X-ray diffraction pattern of a thin film sample subjected to heat treatment at 900 ° C. for 1 hour in air. A diffraction peak corresponding to palladium oxide disappears, and a diffraction pattern corresponding to metallic palladium can be confirmed.

これより、実施例2の図4で示したような、水素により光の透過率が著しく低下する、熱処理温度500℃〜700℃の範囲で形成される酸化パラジウムは、結晶構造が正方晶の酸化パラジウム(PdO)である。つまり、本願発明の水素検知材料として利用できる酸化パラジウムは、正方晶の酸化パラジウム(PdO)である。   Thus, as shown in FIG. 4 of Example 2, palladium oxide formed at a heat treatment temperature range of 500 ° C. to 700 ° C., in which the light transmittance is remarkably lowered by hydrogen, has a crystal structure of tetragonal crystal. Palladium (PdO). That is, the palladium oxide that can be used as the hydrogen detection material of the present invention is tetragonal palladium oxide (PdO).

本発明では、酸化パラジウム膜上の触媒金属の種類が重要である。実施例1と同様に熱処理温度600℃で作製した酸化パラジウム薄膜上に、約10nmの厚さで白金、及び金を室温(20℃)で堆積させ、水素による光の透過率の時間変化を実施例1のように測定した。   In the present invention, the type of catalytic metal on the palladium oxide film is important. As in Example 1, platinum and gold were deposited at a temperature of about 10 nm on a palladium oxide thin film produced at a heat treatment temperature of 600 ° C. at room temperature (20 ° C.), and the time change of light transmittance by hydrogen was carried out. Measured as in Example 1.

測定結果を図6に示す。図6(a)は、白金を堆積した酸化パラジウム薄膜、図6(b)は、金を堆積した酸化パラジウム薄膜、図6(c)は、触媒金属無しの酸化パラジウム薄膜の測定結果をそれぞれ示している。白金及び金を堆積した酸化パラジウム膜で、水素ガスの暴露時間の増加と伴に、光の透過率が低下していることが確認できる。また、触媒金属を堆積していない酸化パラジウムでは水素暴露に対して光の透過率はほとんど変化せず、水素を検知することはできなかった。この結果から白金、金を触媒金属として用いても、水素ガスに対して酸化パラジウム層の着色が起こり、水素検知が可能であることがわかる。しかしながら、白金及び金を触媒金属に用いた場合は、実施例1で示したようにパラジウムを触媒金属層として用いた酸化パラジウムに比べて、光の透過率の変化が遅く、つまり水素検知速度が遅くなることがわかる。   The measurement results are shown in FIG. FIG. 6 (a) shows a measurement result of a palladium oxide thin film deposited with platinum, FIG. 6 (b) shows a measurement result of a palladium oxide thin film deposited with gold, and FIG. 6 (c) shows a measurement result of a palladium oxide thin film without a catalyst metal. ing. It can be confirmed that in the palladium oxide film on which platinum and gold are deposited, the light transmittance decreases as the exposure time of hydrogen gas increases. In addition, in the case of palladium oxide on which no catalyst metal was deposited, the light transmittance hardly changed with hydrogen exposure, and hydrogen could not be detected. From this result, it can be seen that even when platinum or gold is used as a catalyst metal, the palladium oxide layer is colored with respect to hydrogen gas, and hydrogen detection is possible. However, when platinum and gold are used as the catalyst metal, the change in light transmittance is slower than that of palladium oxide using palladium as the catalyst metal layer as shown in Example 1, that is, the hydrogen detection speed is low. I can see it slows down.

以上より、酸化パラジウム膜を用いて水素を検知する場合には、酸化パラジウム膜上に触媒金属として、好ましくはパラジウム、白金、金のいずれの金属を使用することであり、最も好ましくは、触媒金属にパラジウムを使用することである。   From the above, when hydrogen is detected using a palladium oxide film, it is preferable to use any metal of palladium, platinum, and gold as the catalyst metal on the palladium oxide film, and most preferably the catalyst metal. Is to use palladium.

以上詳述したように、本発明は、酸化パラジウム薄膜と触媒金属から構成される水素検知材料とその製造方法を提供するものであり、透明基板上に蒸着したパラジウムを空気又は酸素雰囲気下で熱酸化して容易に酸化パラジウム膜を作製すること、及び酸化パラジウム表面に、パラジウム、白金、金のいずれかの触媒金属層が堆積することを特徴とする。本発明の水素検知材料を用いることにより、水素検知部に着火源となる電源回路等を伴わない水素検知が可能となり、携帯可能な水素センサー、光ファイバーを用いた水素漏洩検知システムに利用できる。本発明は、次世代の水素エネルギーの実用化技術に欠くことのできない安全性を確保した光学式水素検知材料とその製造方法を提供するものとして有用である。   As described above in detail, the present invention provides a hydrogen detection material comprising a palladium oxide thin film and a catalytic metal and a method for producing the same, and heats palladium deposited on a transparent substrate in an air or oxygen atmosphere. It is characterized by being easily oxidized to produce a palladium oxide film, and a catalytic metal layer of palladium, platinum, or gold is deposited on the surface of palladium oxide. By using the hydrogen detection material of the present invention, hydrogen detection without a power supply circuit or the like serving as an ignition source is possible in the hydrogen detection unit, and can be used for a portable hydrogen sensor and a hydrogen leak detection system using an optical fiber. INDUSTRIAL APPLICABILITY The present invention is useful for providing an optical hydrogen detection material and a method for producing the same that ensure safety that is indispensable for the practical application technology of the next-generation hydrogen energy.

本願発明の水素検知材料の断面図を示している。水素検知材料は、1.触媒金属層、2.酸化パラジウム層、3.透明基板から構成されている。The sectional view of the hydrogen detection material of the present invention is shown. Hydrogen detection materials are: 1. catalytic metal layer; 2. palladium oxide layer; It is composed of a transparent substrate. 酸化パラジウム薄膜の水素に対する光の透過率の変化を測定するための装置の概略図を示す。The schematic of the apparatus for measuring the change of the light transmittance with respect to hydrogen of a palladium oxide thin film is shown. アルゴンで希釈した1 %水素ガスに対する酸化パラジウム膜の光の透過率の時間変化を示す。(a) パラジウム(Pd)触媒層有り、(b) パラジウム(Pd)触媒層無し。The time change of the light transmittance of the palladium oxide film with respect to 1% hydrogen gas diluted with argon is shown. (a) With palladium (Pd) catalyst layer, (b) Without palladium (Pd) catalyst layer. 金属パラジウム膜を種々の温度(300℃〜900℃)で熱処理して作製した酸化パラジウム膜について、水素ガスに曝した後の光の透過率を示している。触媒金属として酸化パラジウム膜表面にパラジウムを約13nm堆積している。The figure shows the light transmittance of a palladium oxide film produced by heat-treating a metal palladium film at various temperatures (300 ° C. to 900 ° C.) after exposure to hydrogen gas. About 13 nm of palladium is deposited on the surface of the palladium oxide film as a catalyst metal. 金属パラジウム薄膜について、(a) 熱処理無し、(b) 600℃ 1時間、(c) 900℃ 1時間、熱処理を行った試料のX線回折パターンを示している。The X-ray diffraction pattern of the sample which heat-processed (a) no heat processing, (b) 600 degreeC 1 hour, (c) 900 degreeC 1 hour about the metal palladium thin film is shown. アルゴンで希釈した1 %水素ガスに対する酸化パラジウム膜の光の透過率の時間変化を示す。(a) 白金(Pt)触媒層、(b) 金(Au)触媒 (c) 触媒無し。The time change of the light transmittance of the palladium oxide film with respect to 1% hydrogen gas diluted with argon is shown. (a) Platinum (Pt) catalyst layer, (b) Gold (Au) catalyst (c) No catalyst.

Claims (5)

水素を含んだ雰囲気に曝した時の光学的な透過率の変化を計測することにより水素の検知を行う光学式水素検知材料であって、
(1)上記水素検知材料の主成分が酸化パラジウムであり、その構造が薄膜である、
(2)上記水素検知材料の表面上に触媒層が形成されている、
(3)上記酸化パラジウム膜は、透明基板上に蒸着したパラジウムを空気又は酸素雰囲気下で熱酸化して酸化パラジウムを作製する、ことを特徴とする水素検知材料とその作製方法。
An optical hydrogen detection material that detects hydrogen by measuring a change in optical transmittance when exposed to an atmosphere containing hydrogen,
(1) The main component of the hydrogen detection material is palladium oxide, and the structure is a thin film.
(2) A catalyst layer is formed on the surface of the hydrogen detection material,
(3) A hydrogen detection material and a method for producing the same, wherein the palladium oxide film is prepared by thermally oxidizing palladium deposited on a transparent substrate in an air or oxygen atmosphere.
上記酸化パラジウム薄膜が可視光域の光を透過し、700℃までの加熱に対して熱的に安定な基板上に形成されている請求項1記載の水素検知材料。   The hydrogen detection material according to claim 1, wherein the palladium oxide thin film is formed on a substrate that transmits light in a visible light region and is thermally stable to heating up to 700 ° C. 上記酸化パラジウム薄膜の厚さが1μm以下である、請求項1記載の水素検知材料。   The hydrogen detection material according to claim 1, wherein the palladium oxide thin film has a thickness of 1 μm or less. 上記酸化パラジウム薄膜の表面にパラジウム、白金、金のいずれかの触媒層が堆積されている、請求項1乃至請求項3のいずれかに記載の水素検知材料。   The hydrogen detection material according to any one of claims 1 to 3, wherein a catalyst layer of any one of palladium, platinum, and gold is deposited on a surface of the palladium oxide thin film. 上記酸化パラジウム膜は、透明基板上に蒸着したパラジウムを空気又は酸素雰囲気下で500℃〜700℃の温度で熱処理を行い、酸化パラジウム(PdO)を作製することを特徴とする請求項1乃至請求項4のいずれかに記載の水素検知材料。



The palladium oxide film is characterized in that palladium deposited on a transparent substrate is heat-treated at a temperature of 500 ° C to 700 ° C in an air or oxygen atmosphere to produce palladium oxide (PdO). Item 5. The hydrogen detection material according to any one of Items 4 to 5.



JP2006043558A 2006-02-21 2006-02-21 Hydrogen detection material and manufacturing method thereof Expired - Fee Related JP4639344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006043558A JP4639344B2 (en) 2006-02-21 2006-02-21 Hydrogen detection material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006043558A JP4639344B2 (en) 2006-02-21 2006-02-21 Hydrogen detection material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007225299A true JP2007225299A (en) 2007-09-06
JP4639344B2 JP4639344B2 (en) 2011-02-23

Family

ID=38547271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006043558A Expired - Fee Related JP4639344B2 (en) 2006-02-21 2006-02-21 Hydrogen detection material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4639344B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100959245B1 (en) * 2009-11-20 2010-05-20 권기영 Hydrogen sensor
KR101015088B1 (en) * 2008-08-04 2011-02-17 연세대학교 산학협력단 DEOXIDIZE PdO THIN FILMS USED FOR HIGH SENSITIVE SENSORS AND MANUFACTURING METHOD THEREOF
JP2013124897A (en) * 2011-12-14 2013-06-24 Japan Atomic Energy Agency Optical hydrogen gas detection element
JP2013540998A (en) * 2010-08-31 2013-11-07 ユニヴァーシティ オブ セントラル フロリダ リサーチ ファウンデーション,インコーポレーテッド Chemochromic hydrogen sensor
EP3570024A2 (en) 2018-05-14 2019-11-20 Canon Kabushiki Kaisha Reducing gas detection material and reducing gas detection sensor
JP2021014610A (en) * 2019-07-11 2021-02-12 学校法人 東洋大学 Composition for hydrogen sensor, and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05196569A (en) * 1992-01-22 1993-08-06 Nippon Sheet Glass Co Ltd Hydrogen sensor
JP2005233740A (en) * 2004-02-19 2005-09-02 Hitachi Ltd Optical detection type hydrogen detection element and hydrogen detection device
JP2005345338A (en) * 2004-06-04 2005-12-15 Matsushita Electric Ind Co Ltd Coating film pigment for hydrogen gas detection, coating film for hydrogen gas detection, and hydrogen gas detection tape

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05196569A (en) * 1992-01-22 1993-08-06 Nippon Sheet Glass Co Ltd Hydrogen sensor
JP2005233740A (en) * 2004-02-19 2005-09-02 Hitachi Ltd Optical detection type hydrogen detection element and hydrogen detection device
JP2005345338A (en) * 2004-06-04 2005-12-15 Matsushita Electric Ind Co Ltd Coating film pigment for hydrogen gas detection, coating film for hydrogen gas detection, and hydrogen gas detection tape

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101015088B1 (en) * 2008-08-04 2011-02-17 연세대학교 산학협력단 DEOXIDIZE PdO THIN FILMS USED FOR HIGH SENSITIVE SENSORS AND MANUFACTURING METHOD THEREOF
KR100959245B1 (en) * 2009-11-20 2010-05-20 권기영 Hydrogen sensor
JP2013540998A (en) * 2010-08-31 2013-11-07 ユニヴァーシティ オブ セントラル フロリダ リサーチ ファウンデーション,インコーポレーテッド Chemochromic hydrogen sensor
DE112011102881B4 (en) * 2010-08-31 2020-02-13 University Of Central Florida Research Foundation, Inc. Chemochrome hydrogen sensors
JP2013124897A (en) * 2011-12-14 2013-06-24 Japan Atomic Energy Agency Optical hydrogen gas detection element
EP3570024A2 (en) 2018-05-14 2019-11-20 Canon Kabushiki Kaisha Reducing gas detection material and reducing gas detection sensor
CN110487853A (en) * 2018-05-14 2019-11-22 佳能株式会社 Reducibility gas detects material and reducibility gas detection sensor
US11686698B2 (en) 2018-05-14 2023-06-27 Canon Kabushiki Kaisha Reducing gas detection material and reducing gas detection sensor
JP2021014610A (en) * 2019-07-11 2021-02-12 学校法人 東洋大学 Composition for hydrogen sensor, and manufacturing method thereof
JP7329236B2 (en) 2019-07-11 2023-08-18 学校法人 東洋大学 COMPOSITION FOR HYDROGEN SENSOR AND METHOD FOR MANUFACTURING SAME

Also Published As

Publication number Publication date
JP4639344B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
JP4919228B2 (en) Hydrogen gas detection membrane
JP4639344B2 (en) Hydrogen detection material and manufacturing method thereof
Leftheriotis et al. Effect of the tungsten oxidation states in the thermal coloration and bleaching of amorphous WO3 films
Noč et al. Review of the spectrally selective (CSP) absorber coatings, suitable for use in SHIP
Soleimanpour et al. Preparation of nanocrystalline nickel oxide thin films by sol–gel process for hydrogen sensor applications
Basyooni et al. Structural, optical, electrical and room temperature gas sensing characterizations of spin coated multilayer cobalt-doped tin oxide thin films
Siciliano et al. Room temperature NO2 sensing properties of reactively sputtered TeO2 thin films
Nebatti et al. Unusual application of aluminium-doped ZnO thin film developed by metalorganic chemical vapour deposition for surface temperature sensor
Liu et al. Characteristics of an optical fiber hydrogen gas sensor based on a palladium and yttrium alloy thin film
JP4599593B2 (en) Hydrogen sensor using magnesium-palladium alloy thin film
Xiang et al. Improved performance of fiber Bragg hydrogen sensors assisted by controllable optical heating system
Tanuma et al. Polycrystalline SnO2 visible‐light‐transparent CO2 sensor integrated with NiO/ZnO solar cell for self‐powered devices
JP4164574B2 (en) Hydrogen sensor, hydrogen detection method and detection apparatus using optical reflectivity change
Yaacob et al. Optical hydrogen sensing properties of nanostructured Pd/MoO3 films
KR102280816B1 (en) Apparatus and System for Fire and Operating Environmental Detection for ESS Using Multiple Sensor
JP2006003153A (en) Hydrogen gas sensing element, hydrogen gas sensor and hydrogen gas sensing method
Hu et al. Improving Surface Structures of Al-Doped Zinc Oxide Thin Films to Apply in CO Gas-Sensing Property by Designing Processes Through RF Magnetron Sputtering
Kodu et al. Structure‐Dependent CO2 Gas Sensitivity of La2O2CO3 Thin Films
JP4717522B2 (en) Fabrication method of tungsten oxide thin film for optical hydrogen detection material
RU2426193C1 (en) Method of depositing platinum layers onto substrate
JP2013124897A (en) Optical hydrogen gas detection element
US20120039767A1 (en) Sensing element for cyclic saturated hydrocarbons optical detector which uses the same
JP4625906B2 (en) Optical hydrogen detection material using ion irradiation and manufacturing method thereof
Yaacob et al. Comparative study of the gasochromic performance of Pd/WO 3 and Pt/WO 3 nanotextured thin films for low concentration hydrogen sensing
Steffes et al. A novel optical gas sensor based on sputtered InxOyNz films with gold-nano-dots

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees