JPH0999491A - Production of polymer molding - Google Patents

Production of polymer molding

Info

Publication number
JPH0999491A
JPH0999491A JP25746895A JP25746895A JPH0999491A JP H0999491 A JPH0999491 A JP H0999491A JP 25746895 A JP25746895 A JP 25746895A JP 25746895 A JP25746895 A JP 25746895A JP H0999491 A JPH0999491 A JP H0999491A
Authority
JP
Japan
Prior art keywords
molding
thermoplastic polymer
polymer
aromatic
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25746895A
Other languages
Japanese (ja)
Inventor
Hitoshi Nojiri
仁志 野尻
Koji Sezaki
好司 瀬崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP25746895A priority Critical patent/JPH0999491A/en
Publication of JPH0999491A publication Critical patent/JPH0999491A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily obtain a larger molding by performing the molding of a non-thermoplastic polymer requiring extremely high pressure heretofore under lower pressure. SOLUTION: A powder of a non-thermoplastic polymer is molded by a discharge plasma sintering method to obtain a densely molded non-thermoplastic polymer molding under surprising low pressure as compared with a conventional compression molding method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高分子成型体の製造
方法に関し、詳しくは、非熱可塑性高分子の成型をより
低圧で簡易に行うことが可能となる高分子成型体の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polymer molded body, and more particularly to a method for producing a polymer molded body which enables simple molding of a non-thermoplastic polymer at a lower pressure.

【0002】[0002]

【従来の技術】有機高分子は、概ね熱可塑性高分子、熱
硬化性高分子、非熱可塑性高分子の3種類に分類するこ
とができ、それぞれ、以下に示すような特徴と問題点を
有している。
2. Description of the Related Art Organic polymers can be roughly classified into three types, that is, thermoplastic polymers, thermosetting polymers and non-thermoplastic polymers, each of which has the following characteristics and problems. are doing.

【0003】すなわち、熱可塑性高分子は融点又は軟化
点を有し、一定温度以上に加熱することによって流動性
を生じ、種々の方法で成型することが可能である。しか
し、熱可塑性を示すということは、成型後もこの温度以
上になると軟化してしまうことを意味し、耐熱性を要求
される用途では使用することができない。
That is, a thermoplastic polymer has a melting point or a softening point, and when it is heated to a certain temperature or higher, it becomes fluid and can be molded by various methods. However, the fact that it exhibits thermoplasticity means that it softens even after molding at this temperature or higher, and it cannot be used in applications requiring heat resistance.

【0004】また、エポキシ樹脂に代表されるような熱
硬化性高分子は、もともとは比較的低分子のいわゆるオ
リゴマーが加熱により一旦溶融した後、分子鎖末端もし
くは分子鎖中の反応性基の反応により多くの場合3次元
的に高分子化し、不溶化もしくは高軟化点化するもので
ある。この場合、途中の溶融状態で非常に低粘度化する
ことや、高分子化すなわち硬化反応の過程で寸法変化を
生じること、また場合によっては反応により揮発物が生
じること等から高い寸法精度が要求されるような成型体
に用いることは不適当である。
Further, thermosetting polymers such as epoxy resins are originally composed of so-called oligomers of relatively low molecular weight, which are once melted by heating and then reacted with a reactive group at the end of the molecular chain or in the molecular chain. In many cases, the polymer is three-dimensionally polymerized and becomes insoluble or has a high softening point. In this case, high dimensional accuracy is required because the viscosity becomes extremely low in the molten state during the process, dimensional change occurs in the process of polymerizing, that is, curing reaction, and in some cases volatile matter is generated by the reaction. It is unsuitable for use in such molded products.

【0005】一方、非熱可塑性高分子は基本的には熱可
塑性高分子と同様な線状高分子であるにもかかわらず、
分子の対称性・直線性が高い、高い分極率を持つ基
を含み分子間の凝集力が高い等の理由で軟化点を有さな
いといった特徴がある。また、同時に主に芳香環や含窒
素複素環等からなり分解開始温度も高いといった特徴も
有している。従って、非常に高い耐熱性を有し、広範な
用途において使用することができる。しかし、この非熱
可塑性高分子は熱により軟化しないため成型は困難であ
る。このような非熱可塑性高分子の成型方法として、高
分子を微細な粉体としてこれを圧縮成型する方法が提題
されている。
On the other hand, although the non-thermoplastic polymer is basically a linear polymer similar to the thermoplastic polymer,
It is characterized by not having a softening point because it has a high symmetry and linearity of the molecule, contains a group with a high polarizability, and has a high cohesive force between the molecules. At the same time, it has a feature that it is mainly composed of an aromatic ring or a nitrogen-containing heterocyclic ring and has a high decomposition initiation temperature. Therefore, it has very high heat resistance and can be used in a wide range of applications. However, this non-thermoplastic polymer is difficult to mold because it does not soften due to heat. As a method of molding such a non-thermoplastic polymer, a method of compressing and molding the polymer into fine powder has been proposed.

【0006】[0006]

【発明が解決しようとする課題】しかし、この非熱可塑
性高分子の成型において、高分子を微細な粉体として型
に詰めて高温下に高圧でプレスして成型する、もしくは
高圧でプレス後加熱処理するなどの従来の成型法では、
成型品が大きくなるほど高圧が必要となり、設備が大が
かりになるという問題があった。
However, in the molding of this non-thermoplastic polymer, the polymer is packed as a fine powder in a mold and pressed at high temperature under high pressure or molded, or heated at high pressure and then heated. With conventional molding methods such as processing,
There was a problem that the larger the molded product, the higher the pressure required, and the larger the equipment.

【0007】そこで、本発明者らは上記従来の問題を解
決し、非常に高い圧力を必要としていた非熱可塑性高分
子の成型をより低圧で行うことを可能にして、より大き
な成型体を簡易に得る方法を提供することを目的に鋭意
研究を重ねた結果、従来金属に対して適用されていた放
電プラズマ焼結法を非熱可塑性高分子の成型に応用する
ことによって、従来の圧縮成型法に比較して驚くべき低
圧力で非熱可塑性高分子が緻密に成型されることを見出
し、本発明に至ったのである。
Therefore, the present inventors have solved the above-mentioned conventional problems and made it possible to perform molding of a non-thermoplastic polymer, which required a very high pressure, at a lower pressure, thereby simplifying a larger molded body. As a result of intensive studies aimed at providing a method for obtaining the above-mentioned method, a conventional compression molding method was applied by applying the spark plasma sintering method, which was conventionally applied to metals, to the molding of non-thermoplastic polymers. The present inventors have found that a non-thermoplastic polymer can be densely molded at a surprisingly low pressure as compared with the above, and have reached the present invention.

【0008】[0008]

【課題を解決するための手段】本発明に係る高分子成型
体の製造方法の要旨とするところは、非熱可塑性高分子
の粉体を放電プラズマ焼結法を用いて成型することにあ
る。
The gist of the method for producing a polymer molded body according to the present invention is to mold a powder of a non-thermoplastic polymer using a discharge plasma sintering method.

【0009】そして、かかる高分子成型体の製造方法に
おいて、前記非熱可塑性高分子が芳香族ポリイミドであ
ることにある。
In the method for producing a polymer molded body, the non-thermoplastic polymer is an aromatic polyimide.

【0010】更に、前記芳香族ポリイミドが 4,4'-ジア
ミノジフェニルエーテルとピロメリット酸二無水物から
なることにある。
Further, the aromatic polyimide is composed of 4,4'-diaminodiphenyl ether and pyromellitic dianhydride.

【0011】また、前記芳香族ポリイミドがフェニレン
ジアミン類と1つ以上の芳香環を有する酸二無水物から
なることにある。
The aromatic polyimide is composed of a phenylenediamine and an acid dianhydride having one or more aromatic rings.

【0012】[0012]

【発明の実施の形態】本発明に係る高分子成型体の製造
方法は、非熱可塑性高分子の粉体を放電プラズマ焼結法
を用いて成型することを特徴とし、かかる方法により従
来の圧縮成型法に比較して驚くべき低圧力で、緻密に成
型された非熱可塑性高分子の成型体を得ることができ
る。
BEST MODE FOR CARRYING OUT THE INVENTION A method for producing a polymer molded body according to the present invention is characterized in that a powder of a non-thermoplastic polymer is molded by using a discharge plasma sintering method. It is possible to obtain a densely molded non-thermoplastic polymer molding at a surprisingly low pressure as compared with the molding method.

【0013】ここで、本発明における非熱可塑性高分子
とは、例えば、TMAや動的粘弾性測定装置などにより
明確な融解点や軟化点が検知しがたいものや、検知でき
ても流動性がでるほど軟化を引き起こさないもの、更に
は融解点や軟化点が400℃以上の充分高い温度であっ
てかつ軟化点と分解点が近く、従来の成型法では熱的成
型は難しいものなどをいう。具体的には、非熱可塑性高
分子としては、例えば芳香族ポリイミド、芳香族ポリア
ミド、各種の芳香族系ラダーポリマー、あるいは芳香族
チアゾール5員環・芳香族オキサゾール5員環・芳香族
イミダゾール5員環を含みかつ分子の対称性・剛直性が
高く非熱可塑性を示す高分子、また、それらの共重合体
やブレンド体などが挙げられる。
Here, the non-thermoplastic polymer in the present invention means, for example, a substance whose definite melting point or softening point is difficult to detect by TMA or a dynamic viscoelasticity measuring device, or fluidity which can be detected. It means that it does not cause softening to the extent that it appears, and that the melting point and softening point are sufficiently high temperatures of 400 ° C or higher and the softening point and the decomposition point are close to each other, which makes thermal molding difficult by conventional molding methods. . Specifically, examples of the non-thermoplastic polymer include aromatic polyimide, aromatic polyamide, various aromatic ladder polymers, or aromatic thiazole 5-membered ring, aromatic oxazole 5-membered ring, aromatic imidazole 5-membered ring. Examples thereof include polymers having a ring and having high symmetry / rigidity of the molecule and exhibiting non-thermoplasticity, and copolymers and blends thereof.

【0014】なかでも芳香族ポリイミドは、樹脂そのも
のの優れた耐熱性・耐薬品性・機械的特性・電気的特性
から、成型体とした場合にも特に優れた特性を示す。更
に、得られる成型体の性能が優れるというだけでなく、
本発明の製造方法による効果も特に顕著である。すなわ
ち、芳香族ポリイミドの成型体を得るには、通常圧縮成
型法では500MPaの圧力が必要であるのに対し、本
発明によれば約20〜50MPaの圧力で成型可能なの
である。
Among them, the aromatic polyimide exhibits particularly excellent properties even when formed into a molded product because of the excellent heat resistance, chemical resistance, mechanical properties and electrical properties of the resin itself. Furthermore, not only the performance of the obtained molded body is excellent,
The effect of the manufacturing method of the present invention is particularly remarkable. That is, in order to obtain a molded body of aromatic polyimide, a pressure of 500 MPa is usually required in the compression molding method, whereas according to the present invention, molding can be performed at a pressure of about 20 to 50 MPa.

【0015】更には、分子構造が脂肪族鎖を含まず全て
芳香族環のみ、又は芳香族環と芳香族環の電子非局在性
を切らない結合基のみからなる全芳香族ポリイミドが好
ましく、特に全芳香族ポリイミドとしてはピロメリット
酸二無水物と 4,4'-ジアミノジフェニルエーテルとから
なるものが、電気的・熱的特性、摺動性等のバランスの
とれた特性を示し、工業的に特に有用である。また、フ
ェニレンジアミン類と1つ以上の芳香環を有する酸二無
水物類からなるポリイミドも有用である。
Further, a wholly aromatic polyimide having a molecular structure which does not include an aliphatic chain and is composed of only aromatic rings or aromatic rings and a bonding group which does not cut off electron delocalization of the aromatic rings is preferable. Especially as a wholly aromatic polyimide, one consisting of pyromellitic dianhydride and 4,4'-diaminodiphenyl ether shows a well-balanced characteristic such as electrical / thermal characteristics and slidability, and is industrially used. Especially useful. Also useful are polyimides consisting of phenylenediamines and acid dianhydrides having one or more aromatic rings.

【0016】かかる芳香族ポリイミドの粉体の製造法に
は特に制限がなく、いかなる方法を用いて製造してもよ
い。具体的には、例えば、従来公知の方法で芳香族ジア
ミンと芳香族テトラカルボン酸二無水物とから得られた
ポリアミド酸の溶液に化学量論以上の脱水剤を加え、該
溶液の温度を上げて攪拌しながら放置し、該反応溶液中
に析出してくるポリイミド粉体をろ取・洗浄して乾燥さ
せるという熱的イミド化の方法や、上記ポリアミド酸溶
液に化学量論以上の脱水剤と触媒量の第3級アミンを加
え、室温で数時間攪拌し、該反応溶液をメタノール、水
等の貧溶媒中に滴下してポリイミドを糸状若しくは塊状
に現出させ、その後、乾燥、粉砕するという化学的イミ
ド化の方法などを挙げることができる。
There are no particular restrictions on the method for producing the aromatic polyimide powder, and any method may be used. Specifically, for example, a stoichiometric or more stoichiometric dehydrating agent is added to a solution of a polyamic acid obtained from an aromatic diamine and an aromatic tetracarboxylic dianhydride by a conventionally known method, and the temperature of the solution is raised. The mixture is left to stir with stirring, and the polyimide powder precipitated in the reaction solution is filtered, washed and dried to obtain a thermal imidization method, or the polyamic acid solution is mixed with a stoichiometric or more dehydrating agent. A catalytic amount of a tertiary amine is added, the mixture is stirred at room temperature for several hours, and the reaction solution is dropped into a poor solvent such as methanol or water to expose the polyimide in the form of threads or lumps, and then dried and crushed. Examples thereof include chemical imidization methods.

【0017】なお、非熱可塑性高分子の粉体の大きさは
限定されないが、その粒径が小さいほど緻密な成型が可
能である。好ましくは100μm以下、より好ましくは
30μm以下、更に好ましくは10μm以下である。
The size of the non-thermoplastic polymer powder is not limited, but the smaller the particle size, the more precise the molding. It is preferably 100 μm or less, more preferably 30 μm or less, still more preferably 10 μm or less.

【0018】ところで、放電プラズマ焼結法とは、黒鉛
型を抵抗体として直接通電によるホットプレスを行う方
法であり、具体的には、黒鉛型に非熱可塑性高分子の粉
体を詰めて20〜50MPaで加圧し、次いで成型雰囲
気すなわち焼結炉内を減圧し、該黒鉛型を抵抗体として
0.1〜20V、好ましくは1〜5Vの電圧値、10〜
3000A好ましくは100〜1000Aの電流値で、
ms(ミリセカンド)単位でON,OFFを繰り返すこ
とでプラズマを発生させて焼結させる。そして、この際
に焼結炉内の温度を所定温度まで昇温させるのである
が、昇温に際しては最高温度に達するまでに1〜15分
程度の時間をかけ、最高温度で1〜30分ホールドした
後、除冷して型から取り出すのである。
By the way, the discharge plasma sintering method is a method in which hot pressing is performed by directly energizing a graphite mold as a resistor. Specifically, the graphite mold is filled with a powder of a non-thermoplastic polymer, and Pressurizing at -50 MPa, then depressurizing the molding atmosphere, that is, the inside of the sintering furnace, and using the graphite mold as a resistor, a voltage value of 0.1 to 20 V, preferably 1 to 5 V, 10
3000A, preferably with a current value of 100-1000A,
By repeating ON and OFF in ms (millisecond) unit, plasma is generated and sintered. At this time, the temperature in the sintering furnace is raised to a predetermined temperature. When raising the temperature, it takes about 1 to 15 minutes to reach the maximum temperature, and the maximum temperature is held for 1 to 30 minutes. After that, it is cooled and taken out from the mold.

【0019】この際の、焼結時における最高温度は樹脂
の分解が起こらない範囲で、充分に緻密な成型が可能な
できうる最高の温度を実験的に見つける必要がある。な
お、黒鉛型以外にWC等の超硬合金型及びダイス鋼型を
用いることもできる。
At this time, the maximum temperature at the time of sintering is within a range in which the resin is not decomposed, and it is necessary to experimentally find the maximum temperature at which sufficiently dense molding can be performed. In addition to the graphite type, a cemented carbide type such as WC and a die steel type can be used.

【0020】このとき、上述のように焼結に先立ち焼結
炉を減圧し、焼結時も減圧下で行うのが好ましい。空気
中では酸素・水などが金属や高分子に悪影響を及ぼす可
能性があるばかりでなく、型内でのプラズマの発生が阻
害されるため緻密な成型ができない場合があるからであ
る。同様の理由から不活性ガス中で行うことも可能であ
る。
At this time, it is preferable that the sintering furnace is depressurized before the sintering as described above and the sintering is also performed under the reduced pressure. This is because oxygen and water may adversely affect metals and polymers in the air, and the generation of plasma in the mold may be hindered, which may prevent precise molding. It is also possible to carry out in an inert gas for the same reason.

【0021】このような本発明に係る高分子成型体の製
造方法によれば、非常に高い耐熱性を有するものの熱に
より軟化しないために成型が困難であった非熱可塑性高
分子を非常に低圧力で成型することができ、比較的大型
の成型体であっても容易に加工することができる。そし
て、かかる方法により得られた成型体は緻密性に優れ、
容易には欠け等が生じない強固なものである。
According to such a method for producing a polymer molded body according to the present invention, a non-thermoplastic polymer which is difficult to mold because it does not soften by heat but has a very high heat resistance is extremely low. It can be molded by pressure, and even a relatively large molded body can be easily processed. And the molded body obtained by such a method is excellent in denseness,
It is a strong material that does not easily chip.

【0022】なかでも芳香族ポリイミドは20〜50M
Paで成型することが可能となり、本発明の製造方法に
よる効果が特に顕著である。なお、ポリイミドの成形体
はそれ単独であっても非常に優れた摺動性を示すが、よ
り高い摺動性を得るために、充填剤を一定比率均一に混
合することも可能である。充填剤としては、黒鉛、ポリ
テトラフルオロエチレン、二硫化モリブデン、球状シリ
コーン等が好ましく用いられる。
Among them, aromatic polyimide is 20 to 50M.
It becomes possible to mold with Pa, and the effect of the manufacturing method of the present invention is particularly remarkable. Although the polyimide molded body exhibits very excellent slidability even when used alone, it is possible to uniformly mix a filler in a certain ratio in order to obtain higher slidability. As the filler, graphite, polytetrafluoroethylene, molybdenum disulfide, spherical silicone or the like is preferably used.

【0023】以上、本発明に係る高分子成型体の製造方
法の実施例を説明したが、本発明はこれらの実施例のみ
に限定されるものではなく、本発明はその趣旨を逸脱し
ない範囲内で当業者の知識に基づき、種々なる改良、変
更、修正を加えた態様で実施しうるものである。
Although the embodiments of the method for producing a polymer molded product according to the present invention have been described above, the present invention is not limited to these embodiments, and the present invention is within the scope of the present invention. Therefore, various improvements, changes and modifications can be made based on the knowledge of those skilled in the art.

【0024】[0024]

【実施例】以下に、芳香族ポリイミドを用いた場合の実
施例を示し、本発明の内容を具体的に説明するが、本発
明はこれら実施例によって限定されるものではない。
EXAMPLES The present invention will be specifically described below by showing examples using aromatic polyimide, but the present invention is not limited to these examples.

【0025】〔実施例〕まず、本発明において使用する
芳香族ポリイミド粉体の製造方法としては、窒素気流下
において、N,N-ジメチルアセトアミド(以下、DMAc
とする。)とピリジンの混合溶液中(体積比1:1)
で、同モル量の 4,4'-ジアミノジフェニルエーテルとピ
ロメリット酸二無水物からポリアミド酸溶液を得て、引
き続き得られたポリアミド酸溶液を加熱して加熱攪拌を
続けると、ポリイミドが不溶化し粉末として析出してき
た。放冷後、ろ過して得られた粉末を、DMAc、メタ
ノールの順に洗浄・ろ過を繰り返し、更に、窒素下で、
イミド化と乾燥が完了するよう200℃、20時間加熱
処理し、平均粒径30μmの芳香族ポリイミド粉体を得
た。
Example First, as a method for producing the aromatic polyimide powder used in the present invention, N, N-dimethylacetamide (hereinafter, DMAc) was used under a nitrogen stream.
And ) And pyridine in a mixed solution (volume ratio 1: 1)
Then, to obtain a polyamic acid solution from the same molar amount of 4,4'-diaminodiphenyl ether and pyromellitic dianhydride, and continue heating and stirring the resulting polyamic acid solution, the polyimide becomes insoluble powder Has been deposited as. After allowing to cool, the powder obtained by filtration is repeatedly washed and filtered in the order of DMAc and methanol, and further, under nitrogen,
Heat treatment was carried out at 200 ° C. for 20 hours to complete imidization and drying to obtain an aromatic polyimide powder having an average particle diameter of 30 μm.

【0026】次に、この得られた芳香族ポリイミド粉体
の約3gを、内径2cmの円筒形黒鉛型に投入して50M
Paで加圧し、次いで成型雰囲気を約5Paに減圧して
1.5V、200Aの電流を通電し、放電プラズマ焼結
を行った。この際の昇温ステップは、まず、室温から4
00℃に6分かけて昇温し、更に420℃まで2分かけ
て昇温した後、420℃で10分間保持した。その後約
30分間かけて室温にまでもどしてから型から取り出し
てポリイミド成型体を得た。以上のようにして得られた
成型体を顕微鏡観察したところ、緻密な成型状態が確認
された。また、容易には欠け等が生じない強固なもので
あった。
Next, about 3 g of the obtained aromatic polyimide powder was put into a cylindrical graphite mold having an inner diameter of 2 cm to obtain 50 M.
Pressure was applied at Pa, then the molding atmosphere was depressurized to about 5 Pa, a current of 1.5 V and 200 A was applied, and spark plasma sintering was performed. At this time, the temperature raising step is from room temperature to 4
The temperature was raised to 00 ° C over 6 minutes, further increased to 420 ° C over 2 minutes, and then maintained at 420 ° C for 10 minutes. Thereafter, the temperature was returned to room temperature over about 30 minutes, and then the product was taken out from the mold to obtain a polyimide molded body. When the molded body obtained as described above was observed with a microscope, a dense molded state was confirmed. In addition, it was a strong material that was not easily chipped.

【0027】〔比較例〕実施例と同様の平均粒径30μ
mの芳香族ポリイミド粉末約3gを、内径2cmの円筒形
黒鉛型に投入して50MPaで加圧し、次いで成型雰囲
気を約5Paに減圧し、通電は行なわずに実施例と同様
の条件で昇温させてポリイミド成型体を得た。しかし、
得られた成型体は緻密性が悪く、人の爪で欠ける程度の
脆いものであった。
[Comparative Example] The same average particle diameter 30 μm as in the example
About 3 g of aromatic polyimide powder of m was charged into a cylindrical graphite mold having an inner diameter of 2 cm and pressurized at 50 MPa, then the molding atmosphere was decompressed to about 5 Pa, and the temperature was raised under the same conditions as in Example without energization. Then, a polyimide molded body was obtained. But,
The obtained molded product had poor compactness and was brittle enough to be chipped by a human nail.

【0028】[0028]

【発明の効果】本発明の製造方法によれば、非熱可塑性
高分子、特にはポリイミドの成型において低圧力での成
型が可能であり、そのため従来のような大型の加工機を
必要としない。その結果、比較的大型の非熱可塑性高分
子の成型体が容易に加工できる。こうして得られた成型
体は耐熱性、耐摩耗性等に優れ、摺動部材などの機構部
品、自動車部品、事務機器部品、電気・電子部品などに
有用である。
According to the manufacturing method of the present invention, it is possible to mold a non-thermoplastic polymer, particularly a polyimide, at a low pressure, and therefore, a large-sized processing machine as in the prior art is not required. As a result, a relatively large non-thermoplastic polymer molding can be easily processed. The molded product thus obtained has excellent heat resistance and wear resistance, and is useful for mechanical parts such as sliding members, automobile parts, office equipment parts, and electric / electronic parts.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 非熱可塑性高分子の粉体を放電プラズマ
焼結法を用いて成型することを特徴とする高分子成型体
の製造方法。
1. A method for producing a polymer molded body, which comprises molding a non-thermoplastic polymer powder using a discharge plasma sintering method.
【請求項2】 前記非熱可塑性高分子が芳香族ポリイミ
ドであることを特徴とする請求項1に記載する高分子成
型体の製造方法。
2. The method for producing a polymer molded body according to claim 1, wherein the non-thermoplastic polymer is an aromatic polyimide.
【請求項3】 前記芳香族ポリイミドが 4,4'-ジアミノ
ジフェニルエーテルとピロメリット酸二無水物からなる
ことを特徴する請求項2に記載する高分子成型体の製造
方法。
3. The method for producing a polymer molding according to claim 2, wherein the aromatic polyimide is composed of 4,4′-diaminodiphenyl ether and pyromellitic dianhydride.
【請求項4】 前記芳香族ポリイミドがフェニレンジア
ミン類と1つ以上の芳香環を有する酸二無水物からなる
ことを特徴とする請求項2に記載する高分子成型体の製
造方法。
4. The method for producing a polymer molded body according to claim 2, wherein the aromatic polyimide is composed of phenylenediamines and an acid dianhydride having one or more aromatic rings.
JP25746895A 1995-10-04 1995-10-04 Production of polymer molding Withdrawn JPH0999491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25746895A JPH0999491A (en) 1995-10-04 1995-10-04 Production of polymer molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25746895A JPH0999491A (en) 1995-10-04 1995-10-04 Production of polymer molding

Publications (1)

Publication Number Publication Date
JPH0999491A true JPH0999491A (en) 1997-04-15

Family

ID=17306736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25746895A Withdrawn JPH0999491A (en) 1995-10-04 1995-10-04 Production of polymer molding

Country Status (1)

Country Link
JP (1) JPH0999491A (en)

Similar Documents

Publication Publication Date Title
US4016140A (en) Amide-imide copolymer moldings and method of preparation
WO1996014977A1 (en) Process for molding aromatic polyimide resin
US4942007A (en) Continuous preparation of shaped long articles of polyimide
JP2002128892A (en) Preparing method of polyimide powder, polyimide powder, polyimide-powder molded article and its manufacturing method
JPH09131828A (en) Functionally gradient material and manufacture thereof
JP3531719B2 (en) Manufacturing method of polyimide resin molding
US4136085A (en) Process for controlling the melt flow of amide-imide polymers
JPH0999491A (en) Production of polymer molding
JP3596284B2 (en) Method for producing polyimide powder and compact
US3640969A (en) Process for preparing soluble polyimide by the polycondensation of mellophanic dianhydride pyromellitic dianhydrid eand an aromatic diami nefollowed by imidation of the polycondensation product
JPH0611798B2 (en) Manufacturing method of polyimide molding
WO2021182589A1 (en) Aromatic polyimide powder for molded body, molded body using same, method for improving mechanical strength of molded body
JP4010594B2 (en) Production method of polyimide powder and powder compact
JP4218716B2 (en) Aromatic polyimide powder and molded article comprising the aromatic polyimide powder
JP2017025310A (en) Sydnone as component corresponding to thermosetting resin excellent in heat resistance
JPH0571370B2 (en)
KR101535915B1 (en) Polymer composite materials comprising reduced and functionalized graphene oxide and method for preparing the same
JP2015074207A (en) Method for producing aromatic polyimide resin molded body
KR20230046682A (en) Polyimide powder and manufacturing method thereof
JPS63195173A (en) Manufacture of boron nitride ceramic formed body
JPH0388810A (en) Thermosetting resin composition
Yu et al. Phenylethynyl-terminated polyimide oligomers with low viscosity and good thermal properties
JPH07118388A (en) Production of molded poly(amic acid) and of molded polyimide
JPH0733873A (en) Production of polyimide precursor powder
Imai High pressure synthesis of polyimides and related polymers

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030107