JPH0388810A - Thermosetting resin composition - Google Patents

Thermosetting resin composition

Info

Publication number
JPH0388810A
JPH0388810A JP1224442A JP22444289A JPH0388810A JP H0388810 A JPH0388810 A JP H0388810A JP 1224442 A JP1224442 A JP 1224442A JP 22444289 A JP22444289 A JP 22444289A JP H0388810 A JPH0388810 A JP H0388810A
Authority
JP
Japan
Prior art keywords
resin composition
thermosetting resin
compound
bismaleimide
bismaleimide compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1224442A
Other languages
Japanese (ja)
Inventor
Akira Nagai
晃 永井
Shin Nishimura
伸 西村
Junichi Katagiri
片桐 純一
Masahiro Suzuki
正博 鈴木
Masao Suzuki
雅雄 鈴木
Akio Takahashi
昭雄 高橋
Akio Kobi
向尾 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1224442A priority Critical patent/JPH0388810A/en
Publication of JPH0388810A publication Critical patent/JPH0388810A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)
  • Epoxy Resins (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To provide the subject composition containing a specific bismaleimide compound as an essential component, giving a three-dimensionally crosslinked cured product by the polymerization reaction of double bond, having excellent moldability, high heat-resistance, low dielectric constant and excellent electrical properties and suitable as an insulation material. CONSTITUTION:The objective composition contains a bismaleimide compound of formula as essential component and further contains preferably a cyanamide compound, cyanato compound, isocyanato compound, epoxy compound, other maleimide compound or various kinds of vinyl compounds.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は熱硬化性樹脂組成物に係り、特に、成形性、耐
熱性、及び、低誘電率で電気特性に優れた絶縁材料とし
て好適な樹脂組成物に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a thermosetting resin composition, and in particular, it is suitable as an insulating material having excellent moldability, heat resistance, low dielectric constant, and electrical properties. The present invention relates to a resin composition.

〔従来の技術〕[Conventional technology]

従来、低vI電率絶縁材料としてポリ四フッ化工チレン
(PTFE)に代表されるフッ素系樹脂やポリエチレン
、ポリブタジェン等の炭化水素系樹脂が知られており、
広く一般に適用されてきた。
Conventionally, fluororesins such as polytetrafluoroethylene (PTFE) and hydrocarbon resins such as polyethylene and polybutadiene have been known as low vI electric constant insulating materials.
It has been widely applied.

これらは比誘電率が3以下である。しかし、フッ素系樹
脂は耐熱性、電気特性の面で優れているが。
These have a dielectric constant of 3 or less. However, fluororesins are superior in terms of heat resistance and electrical properties.

これらは一般に、熱可塑性樹脂であるため軟化温度をも
つ。軟化温度より高温側では急激な機械的強度の低下や
熱膨張率の増大が見られ、材料特性が著しく低下する。
Since these are thermoplastic resins, they generally have a softening temperature. At temperatures higher than the softening temperature, a rapid decrease in mechanical strength and an increase in the coefficient of thermal expansion are observed, resulting in a significant decrease in material properties.

そのため、軟化温度以上の領域では使用できず、利用分
野に限定を受けた材料である。また、PTFEはワニス
を作製するのに適当な溶媒がないため一般には加熱溶融
成形を行っている。この成形温度は300℃以上と高く
、かつ、溶融粘度は非常に高いため成形性2作業性に乏
しい材料である。これに対して炭化水素系はブタジェン
樹脂、アリル樹脂等数多くの熱硬化性樹脂が開発されて
いる。これらは三次元架橋物の構造を有し、高温で機械
的強度2寸法安定性を必要とする高耐熱材料の分野での
適用が期待できる。
Therefore, it cannot be used in the region above the softening temperature, and is a material whose field of application is limited. Furthermore, since there is no suitable solvent for making varnish with PTFE, it is generally heated and melt-molded. The molding temperature is as high as 300° C. or higher, and the melt viscosity is very high, so it is a material with poor moldability and workability. On the other hand, many hydrocarbon-based thermosetting resins such as butadiene resin and allyl resin have been developed. These have a three-dimensional crosslinked structure and can be expected to be applied in the field of highly heat-resistant materials that require mechanical strength and two-dimensional stability at high temperatures.

しかし、炭化水素系樹脂はその化学構造から類推される
ように酸化されやすく、熱分解特性が劣る。
However, hydrocarbon resins are easily oxidized and have poor thermal decomposition properties, as can be inferred from their chemical structures.

そのため、高耐熱材料としてはほとんど利用されていな
い。このような耐熱性を要求される分野ではイミド環等
の複素芳香環を持つ樹脂が数多く適用されている。代表
的なものにポリイミド、ポリベンゾイミダゾール、ポリ
ベンゾチアゾール等がある。このうち特にビスマレイミ
ド化合物は硬化反応時に縮合水等の副反応生成物を発生
しない付加型耐熱材料として各種構造材料、FRP、モ
ールド材、配線基板、LSIの層間絶縁膜等多くの分野
で適用されている。
Therefore, it is hardly used as a highly heat-resistant material. In fields where such heat resistance is required, many resins having heteroaromatic rings such as imide rings are used. Typical examples include polyimide, polybenzimidazole, and polybenzothiazole. Among these, bismaleimide compounds in particular are used as additive heat-resistant materials that do not generate side reaction products such as condensed water during curing reactions, and are used in many fields such as various structural materials, FRP, molding materials, wiring boards, and LSI interlayer insulating films. ing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、ビスマレイミド化合物は低誘電率材料と比べて
比誘電率が大きいという問題がある。今まで開発されて
きた多くのビスマレイミド化合物は比誘電率が3以上で
ある。また、この化合物として代表的なビス(4−マレ
イミドフェニル)メタン(以下BMI)は溶融温度(1
58℃)と重合温度(180℃)がほとんど同じであり
その温度差であるプロセッシングウィンドー(以下、P
W)は極めて小さく、20℃である。このPWの範囲内
では材料は流動性を示し、成形可能な条件となる。その
ため、BMIは一般には単独組成で用いることはほとん
どない。ジアミン、反応性エラストマー等とのプレポリ
マ化反応で高分子量化を進め、溶融温度の低下を図って
いる。このような改良によってはじめて成形材料として
用いていることが可能となる。しかし、第二成分の添加
は、一般に、単独に比べて比誘電率が高くなり、本発明
が対象とする分野には適さない。
However, bismaleimide compounds have a problem in that they have a higher dielectric constant than low dielectric constant materials. Many bismaleimide compounds that have been developed so far have dielectric constants of 3 or more. Bis(4-maleimidophenyl)methane (hereinafter referred to as BMI), which is a typical example of this compound, has a melting temperature (1
58℃) and polymerization temperature (180℃) are almost the same, and the processing window (hereinafter referred to as P
W) is extremely small and is 20°C. Within this PW range, the material exhibits fluidity and is moldable. Therefore, BMI is generally rarely used as a single composition. A prepolymerization reaction with diamines, reactive elastomers, etc. is used to increase the molecular weight and lower the melting temperature. Only through such improvements can it be used as a molding material. However, addition of the second component generally results in a higher dielectric constant than that of the second component alone, and is not suitable for the field targeted by the present invention.

本発明の目的はビスマレイミド化合物について低誘電率
化を図ると同時に重合温度を高くし、PWを大きくした
材料を提供することにある。本発明の樹脂組成物は成形
性、耐熱性に優れた低誘電率絶縁材料である。
An object of the present invention is to provide a bismaleimide compound having a low dielectric constant, a high polymerization temperature, and a large PW. The resin composition of the present invention is a low dielectric constant insulating material with excellent moldability and heat resistance.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は で表されるビスマレイミド化合物を必須成分として用い
て、二重結合の重合反応により三次元架橋硬化物を得る
ことを特徴とする熱硬化性樹脂組成物により達成できる
。この時、目的の耐熱性、電気特性を損なわない範囲で
マレイミドの二重結合と共重合可能な各種化合物と組合
せることにより、成形性に優れた樹脂組成物を得ること
ガ出来る。
The above object can be achieved by a thermosetting resin composition characterized in that it uses the bismaleimide compound represented by as an essential component and obtains a three-dimensionally crosslinked cured product through a double bond polymerization reaction. At this time, a resin composition with excellent moldability can be obtained by combining various compounds copolymerizable with the double bond of maleimide within a range that does not impair the desired heat resistance and electrical properties.

このような化合物としては、シアナミド化合物。Such compounds include cyanamide compounds.

シアナト化合物、イソシアナト化合物、エポキシ化合物
、マレイミド化合物、ビニル化合物等が有用である。そ
のほか同様なものは一級から四級の各種アミン化合物、
カルボン酸化合物、ポリアミド、フェノール樹脂、メラ
ミン樹脂、ウレア樹脂。
Cyanato compounds, isocyanate compounds, epoxy compounds, maleimide compounds, vinyl compounds, etc. are useful. Other similar products include various primary to quaternary amine compounds,
Carboxylic acid compounds, polyamides, phenolic resins, melamine resins, urea resins.

ウレタン樹脂、ポリアミノビスマレイミド樹脂等もある
。これらはポリマ、オリゴマ、及びモノマ単位で用いる
。このような樹脂組成物は重合可能な二重結合、あるい
は、三重結合等の官能基を分子構造中に持っており、加
熱、光照射、あるいは、ラジカル重合開始剤の存在のも
とで架橋反応し、三次元網目構造をもつ硬化物となる。
There are also urethane resins, polyamino bismaleimide resins, etc. These are used in polymer, oligomeric, and monomeric units. Such resin compositions have functional groups such as polymerizable double bonds or triple bonds in their molecular structures, and undergo crosslinking reactions under heating, light irradiation, or the presence of radical polymerization initiators. The resulting cured product has a three-dimensional network structure.

これは高温でも機械的特性2寸法安定性等を保持した耐
熱性絶縁材料となる。また、この架橋硬化反応において
縮合水等の反応副生成物を発生しないため、各種構造材
料、モールド成形等の多くの分野で適用できる利点があ
る。耐熱性絶縁材料として代表的なポリイミド、ポリベ
ンゾイミダゾール、ポリベンゾチアゾール等と異なる点
である。
This becomes a heat-resistant insulating material that maintains mechanical properties, two-dimensional stability, etc. even at high temperatures. Furthermore, since reaction by-products such as condensed water are not generated in this crosslinking and curing reaction, there is an advantage that it can be applied in many fields such as various structural materials and molding. This is different from typical heat-resistant insulating materials such as polyimide, polybenzimidazole, and polybenzothiazole.

ビスマレイミド化合物の代表的なものにビス(4−マレ
イミドフェニル)メタン(BMI)がある。しかし、B
MIは比誘電率が3.3 と高いことと、溶融温度(1
58℃)と重合温度(180℃)がほとんど同じであり
その温度差であるPWは20℃しかない等の問題点があ
る。また、BMI単独では得られる硬化物の弾性率が高
く非常に脆いという欠点がある。そのためBMIは一般
には単独組成で用いることはほとんどない0通常は、ジ
アミン、ジチオール、反応性エラストマ(液状ゴム)等
とのプレポリマ化により成形材料として用いている。こ
れらは、一般に、単独に比べてさらに比誘電率が高くな
る場合が多い。
A typical bismaleimide compound is bis(4-maleimidophenyl)methane (BMI). However, B
MI has a high dielectric constant of 3.3 and a melting temperature (1
58°C) and the polymerization temperature (180°C) are almost the same, and the temperature difference between them, PW, is only 20°C. In addition, BMI alone has the disadvantage that the obtained cured product has a high elastic modulus and is very brittle. Therefore, BMI is generally rarely used as a single composition; it is usually used as a molding material by prepolymerizing with diamine, dithiol, reactive elastomer (liquid rubber), etc. In general, these materials often have a higher relative dielectric constant than those used alone.

そこでビスマレイミド化合物としてその構造中に屈曲率
の大きいエテール基を導入して可撓性を付与したものが
開発されている0代表的なものに2.2− (ビス(4
−マレイミドフェノキシ)フェニル)プロパンがある。
Therefore, bismaleimide compounds have been developed in which flexibility is imparted by introducing an ether group with a large curvature into the structure.A typical example is 2.2-(bis(4
-maleimidophenoxy)phenyl)propane.

この化合物は単独で成形材料として利用でき、得られる
硬化物の弾性率は低減し、破断強度が向上する。しかし
、比誘電率は3.1 と比較的高い。
This compound can be used alone as a molding material, and the resulting cured product has a lower elastic modulus and an improved breaking strength. However, the dielectric constant is relatively high at 3.1.

本発明はこのエーテル骨格を有するビスマレイミド構造
にフッ素基を導入することにより、これ・ら二つの問題
点を解決することにした。フッ素基により得られる硬化
物のモル比容を大きくすることにより比誘電率を低減す
ることができ、3以下のビスマレイミド化合物を得るこ
とができた。また官能基の二重結合があるマレイミド環
の近くに電子吸引性のフッ素基を導入することにより、
二重結合の炭素上の電子密度を低減し、反応性を大幅に
低減することができる。これにより重合温度を高温側に
移動させ、PWを大きくすることができ、100℃以上
にすることが可能となった。
The present invention aims to solve these two problems by introducing a fluorine group into the bismaleimide structure having this ether skeleton. By increasing the molar specific volume of the cured product obtained by using fluorine groups, the dielectric constant could be reduced, and a bismaleimide compound having a dielectric constant of 3 or less could be obtained. In addition, by introducing an electron-withdrawing fluorine group near the maleimide ring where the double bond of the functional group is located,
The electron density on the carbon of the double bond can be reduced and the reactivity can be significantly reduced. This made it possible to move the polymerization temperature to a higher temperature side, increase PW, and raise it to 100° C. or higher.

PWが大きく、得られる硬化物の可撓性に富むため、ジ
アミン等の第二成分を必要としないため、比誘電率を増
加させることなく絶縁材料として用いることができる。
Since the PW is large and the resulting cured product is highly flexible, it does not require a second component such as diamine, so it can be used as an insulating material without increasing the dielectric constant.

フッ素基としては、モル比容。For fluorine groups, molar specific volume.

電子吸引性の効果をできるだけ大きくする意味からもフ
ッ素含量の高い方が望ましい。そのような観点からトリ
フルオロメチル基が最も優れている。
A high fluorine content is desirable from the viewpoint of maximizing the electron-withdrawing effect. From this point of view, trifluoromethyl group is the best.

本発明はマレイミド環に近いベンゼン環にトリフルオロ
メチル基を各−個導入して二重結合の反応性を低減した
。二個以上導入すると反応性をさらに低減し、成形材料
としての実用性がなくなることが懸念される。そこで、
低誘電率化の観点から二重結合の反応性に影響をほとん
ど及ぼさないと考えられる分子構造の中央のプロパン骨
格の箇所をフッ素化した。以上により(1)式で表され
るビスマレイミド化合物を用いた硬化物が成形性。
In the present invention, trifluoromethyl groups are introduced into each benzene ring close to the maleimide ring to reduce the reactivity of the double bond. There is a concern that if two or more are introduced, the reactivity will be further reduced and the practicality as a molding material will be lost. Therefore,
From the perspective of lowering the dielectric constant, we fluorinated the propane skeleton at the center of the molecular structure, which is thought to have little effect on the reactivity of double bonds. As described above, the cured product using the bismaleimide compound represented by formula (1) has good moldability.

耐熱性、電気特性等に優れていることを見出した。It was discovered that it has excellent heat resistance, electrical properties, etc.

硬化物は溶融状態であるPWの温度範囲で金型等に充填
後、所定の重合温度以上に昇温させ架橋反応を進めるこ
とにより得られる。この時、過酸化物等のラジカル重合
開始剤を添加すると重合温度は低温側に移動させること
が可能になり、反応時間も低減することができる。この
ようなラジカル重合開始剤としては、例えば、ベンゾイ
ルパーオキシド、パラクロロベンゾイルパーオキシド。
The cured product is obtained by filling a mold or the like in the temperature range of PW in a molten state, and then raising the temperature to a predetermined polymerization temperature or higher to proceed with a crosslinking reaction. At this time, if a radical polymerization initiator such as peroxide is added, the polymerization temperature can be moved to a lower temperature side, and the reaction time can also be reduced. Examples of such radical polymerization initiators include benzoyl peroxide and parachlorobenzoyl peroxide.

2.4−ジクロロベンゾイルパーオキシド、ラウロイル
パーオキシド、ジクミルパーオキシド、アセチルパーオ
キシド、メチルエチルケトンパーオキシド、シクロヘキ
サノンパーオキシド、ビス(1−ヒドロキシシクロヘキ
シルパーオキシド)、2.5−ジメチルヘキサン−2,
5−ジヒドロパーオキシド、t−ブチルパーベンゾエー
ト、2゜5−ジメチル−2,5−(t−ブチルパーオキ
シ)ヘキサン、2,5−ジメチル−2,5−(t−ブチ
ルパーオキシ)ヘキシン−3,2,5−ジメチルへキシ
ル−2,5−ジ(パーオキシベンゾエート)、クメンヒ
ドロパーオキシド、t−ブチルヒドロパーオキシド、t
−ブチルパーオキシベンゾエート、t−ブチルパーオキ
シアセテート、1−プチルパーオキシオクテート、t−
プチルパーオキシイソブチレート、ジベンジルパーオキ
シド、ジ−t−ブチルパーオキシフタレート等がある。
2.4-dichlorobenzoyl peroxide, lauroyl peroxide, dicumyl peroxide, acetyl peroxide, methyl ethyl ketone peroxide, cyclohexanone peroxide, bis(1-hydroxycyclohexyl peroxide), 2.5-dimethylhexane-2,
5-dihydroperoxide, t-butylperbenzoate, 2゜5-dimethyl-2,5-(t-butylperoxy)hexane, 2,5-dimethyl-2,5-(t-butylperoxy)hexane- 3,2,5-dimethylhexyl-2,5-di(peroxybenzoate), cumene hydroperoxide, t-butyl hydroperoxide, t
-Butyl peroxybenzoate, t-butyl peroxy acetate, 1-butyl peroxy octate, t-
Examples include butyl peroxyisobutyrate, dibenzyl peroxide, di-t-butyl peroxy phthalate, and the like.

これらを一種、あるいは、数種組合せて使用する。These may be used alone or in combination.

重合開始剤の配合量は、樹脂組成物100重量部に対し
て0.01〜5重量部であるが、特に、好ましくは0.
1〜3重量部である。また、必要に応じて重合促進剤、
遅延剤や各種顔料、充填剤等を加えてもよい。
The amount of the polymerization initiator to be blended is 0.01 to 5 parts by weight per 100 parts by weight of the resin composition, particularly preferably 0.01 to 5 parts by weight.
It is 1 to 3 parts by weight. In addition, if necessary, a polymerization accelerator,
A retardant, various pigments, fillers, etc. may be added.

〔実施例〕〔Example〕

〈実施例1〉 1.1.l、3,3.3−へキサフルオロ−2゜2−ビ
ス〔(4−マレイミド−2−トリフルオロメチルフェノ
キシ)フェニル〕プロパン(p −HFBP)(セント
ラル硝子)100gと2,2−ビス〔(4−シアノアミ
ノフェノキシ)フェニル〕プロパン(マナツク)100
gをアセトン300gに溶解し、ラジカル重合開始剤と
してt−ブチルヒドロパーオキシド(日本油脂)0.5
gを添加後、真空乾燥により溶媒を除去し、粉末状の試
料を得た。得られた試料を厚さ2mのスペーサを用いて
プレス成形により硬化物の樹脂板を得た。硬化条件は1
50℃で試料を、−旦、溶融したあと、250℃に昇温
し、1時間加熱、加圧した。得られた樹脂板の比誘電率
、熱膨張率、熱分解温度を測定した。また、樹脂組成物
の融点。
<Example 1> 1.1. l, 3,3.3-hexafluoro-2゜2-bis[(4-maleimido-2-trifluoromethylphenoxy)phenyl]propane (p-HFBP) (Central Glass) 100 g and 2,2-bis[( 4-cyanoaminophenoxy)phenyl]propane (Manatsuk) 100
g was dissolved in 300 g of acetone, and 0.5 g of t-butyl hydroperoxide (NOF) was added as a radical polymerization initiator.
After adding g, the solvent was removed by vacuum drying to obtain a powder sample. The obtained sample was press-molded using a 2 m thick spacer to obtain a cured resin plate. Curing conditions are 1
After melting the sample at 50° C., the temperature was raised to 250° C. and heated and pressurized for 1 hour. The dielectric constant, thermal expansion coefficient, and thermal decomposition temperature of the obtained resin plate were measured. Also, the melting point of the resin composition.

重合温度を示差熱分析により測定した。Polymerization temperature was measured by differential thermal analysis.

〈実施例2〉 実施例1で用いたp−HFBPと100gとl。<Example 2> 100 g and 1 of p-HFBP used in Example 1.

1.1,3,3,3−へキサフルオロ−2,2−ビス(
4−シアナトフェニル)プロパン(マナツク)100g
をアセトン300gに溶解した後、真空乾燥により粉末
状の組成物を得た。これをラジカル重合開始剤無添加で
熱重合のみで硬化物をプレス成形により得た。硬化条件
は150℃で試料を、−旦、溶融したあと、250℃に
昇温しで1時間、さらに、280℃で1時間加熱、加圧
した。実施例1と同様に得られた樹脂組成物、及び、樹
脂板の特性を評価した。
1.1,3,3,3-hexafluoro-2,2-bis(
4-cyanatophenyl)propane (Manatsuk) 100g
After dissolving in 300 g of acetone, a powdery composition was obtained by vacuum drying. A cured product was obtained by press molding only by thermal polymerization without the addition of a radical polymerization initiator. The curing conditions were such that the sample was first melted at 150°C, then heated to 250°C for 1 hour, and then heated and pressurized at 280°C for 1 hour. The properties of the obtained resin composition and resin plate were evaluated in the same manner as in Example 1.

〈実施例3〉 1.1,1,3,3.3−へキサフルオロ−2゜2−ビ
ス〔(5−マレイミド−3−トリフルオロメチルフェノ
キシ)フェニル〕プロパン(m −HFBP)(セント
ラル硝子)100gと2,2−ビス〔(4−マレイミド
フェノキシ)フェニル〕プロパン(BBMI)(日立化
成)100gをアセトン300gに溶解し、ラジカル重
合開始剤として2,5−ジメチル−2,5−(t−ブチ
ルパーオキシ)ヘキシン−3(日本油脂)Igを添加後
、真空乾燥により溶媒を除去し粉末状の試料を得た。得
られた試料を厚さ2mのスペーサを用いて金型により成
形し樹脂板を得た。硬化条件は150℃で試料を、−旦
、溶融した後、脱泡を行い250℃に昇温しで1時間加
熱した。実施例1と同様に得られた樹脂組成物及び樹脂
板の特性を評価した。
<Example 3> 1.1,1,3,3.3-hexafluoro-2゜2-bis[(5-maleimido-3-trifluoromethylphenoxy)phenyl]propane (m-HFBP) (Central Glass) 100 g of 2,2-bis[(4-maleimidophenoxy)phenyl]propane (BBMI) (Hitachi Chemical) were dissolved in 300 g of acetone, and 2,5-dimethyl-2,5-(t- After adding butylperoxy)hexyne-3 (NOF) Ig, the solvent was removed by vacuum drying to obtain a powder sample. The obtained sample was molded using a mold using a 2 m thick spacer to obtain a resin plate. The curing conditions were such that the sample was first melted at 150°C, defoamed, and heated to 250°C for 1 hour. The properties of the obtained resin composition and resin plate were evaluated in the same manner as in Example 1.

〈実施例4〉 実施例1で用いたp −HF B P l 00 gと
2゜2−ビス(4−アリルオキシフェニル)プロパン1
00gをメチルイソブチルケトン200gに溶解し、1
20’C160分還流下でプレポリマ化を行った。室温
まで冷却後、ラジカル重合開始剤としてジクミルパーオ
キシド(日本油脂)0.2g添加後、真空乾燥により溶
媒を除去し、粉末状の試料を得た。得られた試料を実施
例1と同様にプレス成形を行い樹脂板を得た。硬化条件
は200℃、1時間加熱、加圧した。実施例1と同様に
得られた樹脂組成物、及び、樹脂板の特性を評価した。
<Example 4> p -HF B P l 00 g used in Example 1 and 2゜2-bis(4-allyloxyphenyl)propane 1
00g in 200g of methyl isobutyl ketone, 1
Prepolymerization was performed under reflux at 20'C for 160 minutes. After cooling to room temperature, 0.2 g of dicumyl peroxide (NOF) was added as a radical polymerization initiator, and the solvent was removed by vacuum drying to obtain a powder sample. The obtained sample was press-molded in the same manner as in Example 1 to obtain a resin plate. The curing conditions were heating and pressure at 200° C. for 1 hour. The properties of the obtained resin composition and resin plate were evaluated in the same manner as in Example 1.

〔比較例〕[Comparative example]

く比較例1〉 実施例1で用いたp−HFBP単独で実施例1と同様な
条件で樹脂板を得て特性を評価した。
Comparative Example 1> A resin plate was obtained using only p-HFBP used in Example 1 under the same conditions as in Example 1, and its properties were evaluated.

〈比較例2〉 実施例3で用いたBBMI (日立化成)を実施例1と
同様にプレス成形により得た。硬化条件は180℃で試
料を、−旦、溶融したあと、220℃に昇温し王時間加
熱、加圧した。実施例1と同様に得られた樹脂板の特性
を評価した。
<Comparative Example 2> BBMI (Hitachi Chemical) used in Example 3 was obtained by press molding in the same manner as in Example 1. The curing conditions were as follows: After melting the sample at 180°C, the temperature was raised to 220°C, followed by heating and pressurizing for a certain period of time. The properties of the obtained resin plate were evaluated in the same manner as in Example 1.

実施例、及び、比較例の結果を表1および表2に示す。The results of Examples and Comparative Examples are shown in Tables 1 and 2.

表1 硬化物の特性 表2 融点と重合開始温度 〔発明の効果〕Table 1 Characteristics of cured product Table 2 Melting point and polymerization initiation temperature 〔Effect of the invention〕

Claims (1)

【特許請求の範囲】 1、▲数式、化学式、表等があります▼(1) で表されるビスマレイミド化合物を必須成分として用い
て、二重結合の重合反応により三次元架橋硬化物を得る
ことを特徴とする熱硬化性樹脂組成物。 2、請求項1のビスマレイミド化合物とシアナミド化合
物を用いる熱硬化性樹脂組成物。 3、請求項1のビスマレイミド化合物とシアナト化合物
を用いる熱硬化性樹脂組成物。 4、請求項1のビスマレイミド化合物とイソシアナト化
合物を用いる熱硬化性樹脂組成物。 5、請求項1のビスマレイミド化合物とエポキ化合物を
用いる熱硬化性樹脂組成物。 6、請求項1のビスマレイミド化合物と他のマレイミド
化合物を用いる熱硬化性樹脂組成物。 7、請求項1のビスマレイミド化合物と各種ビニル化合
物あるいはその重合体を用いる熱硬化性樹脂組成物。 8、請求項1において、二重結合の重合反応が加熱重合
である熱硬化性樹脂組成物。 9、請求項1において、二重結合の重合反応が過酸化物
等のラジカル重合開始剤の存在下での重合である熱硬化
性樹脂組成物。 10、請求項1において、二重結合の重合反応がUV照
射等の光重合である熱硬化性樹脂組成物。 11、請求項1において、比誘電率が3以下の熱硬化性
樹脂組成物。
[Claims] 1. Obtaining a three-dimensionally cross-linked cured product by a polymerization reaction of double bonds using a bismaleimide compound represented by (1) as an essential component. A thermosetting resin composition characterized by: 2. A thermosetting resin composition using the bismaleimide compound and cyanamide compound according to claim 1. 3. A thermosetting resin composition using the bismaleimide compound and cyanato compound according to claim 1. 4. A thermosetting resin composition using the bismaleimide compound and isocyanate compound according to claim 1. 5. A thermosetting resin composition using the bismaleimide compound and epoxy compound according to claim 1. 6. A thermosetting resin composition using the bismaleimide compound according to claim 1 and another maleimide compound. 7. A thermosetting resin composition using the bismaleimide compound according to claim 1 and various vinyl compounds or polymers thereof. 8. The thermosetting resin composition according to claim 1, wherein the polymerization reaction of the double bond is thermal polymerization. 9. The thermosetting resin composition according to claim 1, wherein the polymerization reaction of the double bond is polymerization in the presence of a radical polymerization initiator such as a peroxide. 10. The thermosetting resin composition according to claim 1, wherein the polymerization reaction of the double bond is photopolymerization such as UV irradiation. 11. The thermosetting resin composition according to claim 1, having a dielectric constant of 3 or less.
JP1224442A 1989-09-01 1989-09-01 Thermosetting resin composition Pending JPH0388810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1224442A JPH0388810A (en) 1989-09-01 1989-09-01 Thermosetting resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1224442A JPH0388810A (en) 1989-09-01 1989-09-01 Thermosetting resin composition

Publications (1)

Publication Number Publication Date
JPH0388810A true JPH0388810A (en) 1991-04-15

Family

ID=16813837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1224442A Pending JPH0388810A (en) 1989-09-01 1989-09-01 Thermosetting resin composition

Country Status (1)

Country Link
JP (1) JPH0388810A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017132798A (en) * 2017-04-10 2017-08-03 協立化学産業株式会社 Peroxide and thermosetting resin composition
WO2021124681A1 (en) * 2019-12-19 2021-06-24 株式会社ダイセル Curable composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017132798A (en) * 2017-04-10 2017-08-03 協立化学産業株式会社 Peroxide and thermosetting resin composition
WO2021124681A1 (en) * 2019-12-19 2021-06-24 株式会社ダイセル Curable composition
JP2021095543A (en) * 2019-12-19 2021-06-24 株式会社ダイセル Curable composition

Similar Documents

Publication Publication Date Title
KR900005054B1 (en) Stable compositions containing imides
US4510272A (en) Bis-maleimide-epoxy compositions and prepregs
US3717615A (en) Polyimides
US4247670A (en) Curable mixtures based on maleimide and 2,2,4-trimethyl-1,2-dihydroquinoline
EP0035760B1 (en) Thermosetting resin composition, process for preparation thereof and cured product thereof
US3781240A (en) Polyimide molding powders
KR950000704B1 (en) Thermally stable polymers based on maleimides, among which a bis-maleimide-siloxane, and processes for their preparation
JP2013241553A (en) Thermosetting polyimide comprising cardo type diamine
JPH0388810A (en) Thermosetting resin composition
US4132747A (en) Heat-resistant molding resin composition
JPS60252628A (en) Thermosetting resin composition
US3770705A (en) Thermosetting resins prepared from dimaleimides and isocyanuric acid or derivative thereof
JPH0613581B2 (en) Method for producing fluorine-containing thermosetting resin
JPH05500377A (en) Curing with biscitraconimide (co)polymers and anionic catalysts
JPS5915126B2 (en) Method for producing polymers with imide groups
JPH04261411A (en) Fluorine-containing bismaleimide group-containing cured material and production thereof
JP2623713B2 (en) Method for producing polysulfone-modified cyanato resin
JP6935402B2 (en) Maleimide resin composition, prepreg, cured product thereof and semiconductor device
JP2623714B2 (en) Method for producing polyetherimide-modified cyanato resin
JP2010084074A (en) Group 10 transition metal compound-containing polymerizable composition, prepreg, and layered product
JPS58132010A (en) Thermosetting resin composition
JPH03281619A (en) Fluorinated cyanate composition and its curing
KR800000284B1 (en) Heat-resistance molding resin composition
JPH01149830A (en) Thermoplastic aromatic polyimide polymer
JPH03109426A (en) Production of cured product of polyaminobismaleimide resin