JPH0997785A - Plasma processing device and plasma cleaning method - Google Patents

Plasma processing device and plasma cleaning method

Info

Publication number
JPH0997785A
JPH0997785A JP25270895A JP25270895A JPH0997785A JP H0997785 A JPH0997785 A JP H0997785A JP 25270895 A JP25270895 A JP 25270895A JP 25270895 A JP25270895 A JP 25270895A JP H0997785 A JPH0997785 A JP H0997785A
Authority
JP
Japan
Prior art keywords
plasma
emission
lens optical
cleaning
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25270895A
Other languages
Japanese (ja)
Inventor
Tadashi Kimura
忠司 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25270895A priority Critical patent/JPH0997785A/en
Publication of JPH0997785A publication Critical patent/JPH0997785A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a plasma processing device and a method capable of detecting an end point of plasma cleaning very accurately. SOLUTION: A plasma processing device is equipped with a window material 7 which transmits plasma emission from a vacuum chamber 1 and a lens optical system 8 focused on an empty space inside the vacuum chamber 1 through the window material 7, an optical device 9 which selectively transmits plasma emission in a specific range of frequency transmitted through the lens optical system 8, a plasma emission intensity measuring device 10 which measures the intensity of plasma emission in a specific frequency range, and a processing device 11 which calculates a change of emission intensity with time. Only plasma emission from the vicinity of a region where a disused deposit film is hard to remove and which takes a lot of time to clean up is spatially decomposed and extracted through the lens optical system 8 focused on it, and an intensity change in the spatially decomposed plasma emission of specific frequency range is measured and monitored, whereby an end point of plasma cleaning is accurately detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体や液晶パネル、太
陽電池等の薄膜形成工程、あるいは微細加工工程等に用
いられるプラズマCVD装置やドライエッチング装置及
びプラズマアッシング装置などのプラズマ処理装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus such as a plasma CVD apparatus, a dry etching apparatus or a plasma ashing apparatus used in a thin film forming process for semiconductors, liquid crystal panels, solar cells or the like, or a fine processing process.

【0002】[0002]

【従来の技術】近年、プラズマ処理装置は、デバイスの
高機能化とその処理コストの低減のために、高品質化、
高速化、大面積化、低ダメージ化、低ダストのクリーン
化を実現する取り組みが盛んに行なわれている。このよ
うなプラズマ処理装置は基材にプラズマ処理を施し、成
膜やエッチングを行うが、この時、処理基材以外の処理
室内壁や処理室内の構成部品などに反応生成物として不
要な堆積膜が堆積する。基材の処理回数が増えると、こ
の不要な堆積膜は厚く堆積し、やがて剥離してダスト源
になり、デバイスの不良原因になる。そのため、装置の
実生産時間(稼働率)を短縮してしまうが、この堆積膜
を除去(クリーニング)することがプラズマクリーニン
グにより行われている。
2. Description of the Related Art In recent years, plasma processing apparatuses have been improved in quality in order to improve device functionality and reduce processing costs.
Efforts are being actively made to achieve high speed, large area, low damage, and low dust. Such a plasma processing apparatus performs plasma processing on a base material to perform film formation and etching, but at this time, unnecessary deposition film as a reaction product on the inner wall of the processing chamber other than the processing base material or components in the processing chamber. Is deposited. When the number of times the substrate is processed increases, the unnecessary deposited film is thickly deposited and eventually peels off to become a dust source, which causes a device failure. Therefore, although the actual production time (operating rate) of the apparatus is shortened, the deposited film is removed (cleaned) by plasma cleaning.

【0003】以下に従来のプラズマ処理装置について説
明する。従来のプラズマ処理装置の例としては、特開昭
63−5532号公報にプラズマクリーニング方法とし
て示されている。図5は特開昭63−5532号公報に
示されたプラズマ処理装置の反応室の断面図である。
A conventional plasma processing apparatus will be described below. An example of a conventional plasma processing apparatus is disclosed as a plasma cleaning method in Japanese Patent Laid-Open No. 63-5532. FIG. 5 is a sectional view of a reaction chamber of the plasma processing apparatus disclosed in Japanese Patent Laid-Open No. 63-5532.

【0004】図5において、21は真空排気が可能な真
空容器、22は処理基材、23は高周波電源24に接続
された高周波電極、25は設置された対向接地電極、2
6、29は石英の窓、27、30は特定波長の発光強度
測定装置(例えば、干渉フィルターとホトダイオードに
より構成)で、両電極23、25間のプラズマ発光スペ
クトル強度を測定するように設置されている。28、3
1は終点検出装置である。
In FIG. 5, 21 is a vacuum container that can be evacuated, 22 is a processing substrate, 23 is a high-frequency electrode connected to a high-frequency power source 24, 25 is an opposite ground electrode installed, 2
Reference numerals 6 and 29 are quartz windows, and reference numerals 27 and 30 are devices for measuring emission intensity of a specific wavelength (for example, an interference filter and a photodiode), which are installed to measure the plasma emission spectrum intensity between the electrodes 23 and 25. There is. 28, 3
1 is an end point detection device.

【0005】以上のように構成されたプラズマ処理装置
について、以下そのクリーニング方法について説明す
る。まず、不要な膜が堆積した真空容器21を真空排気
し、ガス導入口よりクリーニング用反応ガス(例えば酸
素ガス)を導入し圧力を150mTorrに調整する。
次に、高周波電源24から13.56MHzの高周波電
力を高周波電極24に供給し、プラズマを両電極間に発
生させる。このプラズマによって真空容器21の内壁や
両電極上の不要な堆積膜をエッチング除去する。この
時、石英窓26、29を通して両電極間のプラズマ発光
スペクトルを監視する。すなわち、両電極間のプラズマ
内における、堆積膜とガスプラズマとの反応生成物、あ
るいは反応によって消費される物質による発光スペクト
ル強度を特定波長の発光強度測定装置27、30より監
視し、その発光強度がクリーニングの終点で変化するこ
とから終点検出装置28、31により終点を検出する。
A cleaning method of the plasma processing apparatus having the above structure will be described below. First, the vacuum container 21 on which an unnecessary film is deposited is evacuated, and a cleaning reaction gas (for example, oxygen gas) is introduced from the gas introduction port to adjust the pressure to 150 mTorr.
Next, 13.56 MHz high frequency power is supplied from the high frequency power supply 24 to the high frequency electrode 24 to generate plasma between both electrodes. By this plasma, unnecessary deposition films on the inner wall of the vacuum chamber 21 and both electrodes are removed by etching. At this time, the plasma emission spectrum between both electrodes is monitored through the quartz windows 26 and 29. That is, the emission spectrum intensity of the reaction product of the deposited film and the gas plasma or the substance consumed by the reaction in the plasma between both electrodes is monitored by the emission intensity measuring devices 27 and 30 of a specific wavelength, and the emission intensity is monitored. Changes at the end point of cleaning, the end point is detected by the end point detection devices 28 and 31.

【0006】[0006]

【発明が解決しようとする課題】ダスト源となる不要な
堆積膜は両電極上だけでなく、真空容器の内壁や電極の
側面及び裏面にも堆積しており、しかもこれらの箇所の
堆積膜はプラズマ領域の中心から離れているため、プラ
ズマクリーニングでの除去に要する時間が電極上よりも
長時間必要となる。しかしながら上記の従来構成では、
発光スペクトルの強度を監視する際に両電極間のプラズ
マ発光について、空間分解能を有していない発光強度測
定装置で監視しており、両電極間のプラズマ発光を中心
にしていわば漠然と監視していることとなるため、両電
極間の発光スペクトルの変化は検知しやすいが、真空容
器の内壁や電極の側面及び裏面に堆積したプラズマクリ
ーニングで除去しにくく長いクリーニング時間の必要な
堆積膜のクリーニングの終点は、検出しにくい。すなわ
ち、この真空容器の内壁や電極の側面及び裏面の堆積膜
のプラズマクリーニング終点検出は不可能であった。従
って、従来構成では、終点を検出してから、さらにプラ
ズマクリーニングを過剰に続けていた。このような従来
方法では、真空容器の内壁や電極の側面及び裏面の堆積
膜が実際にプラズマクリーニングで除去されていても、
過剰な時間クリーニングして、無駄に稼働率を落とすと
いった問題や、十分に除去されていないにもかかわらず
クリーニングを終了し、残った堆積膜が後のプラズマ処
理中にダスト源となって歩留まりを落とすといった問題
点を有していた。
Unnecessary deposited films, which are dust sources, are deposited not only on both electrodes but also on the inner wall of the vacuum container and the side and back surfaces of the electrodes. Since it is away from the center of the plasma region, the time required for removal by plasma cleaning is longer than that on the electrode. However, in the above conventional configuration,
When monitoring the intensity of the emission spectrum, the plasma emission between both electrodes is monitored by an emission intensity measuring device that does not have spatial resolution, and it is vaguely monitored with a focus on the plasma emission between both electrodes. Therefore, the change in the emission spectrum between both electrodes is easy to detect, but it is difficult to remove by plasma cleaning deposited on the inner wall of the vacuum container, the side surface and the back surface of the electrode, and the end point of the cleaning of the deposited film that requires a long cleaning time. Is hard to detect. That is, it was impossible to detect the plasma cleaning end point of the deposited film on the inner wall of this vacuum container, the side surface of the electrode, and the back surface. Therefore, in the conventional configuration, the plasma cleaning is further continued excessively after the end point is detected. In such a conventional method, even if the deposited film on the inner wall of the vacuum container and the side and back surfaces of the electrode is actually removed by plasma cleaning,
There is a problem that the operating rate is unnecessarily reduced by cleaning for an excessive period of time, and cleaning is completed even if it is not sufficiently removed, and the remaining deposited film becomes a dust source during the subsequent plasma processing, which increases the yield. It had the problem of dropping it.

【0007】本発明は上記従来の問題点を解決するもの
で、プラズマクリーニングの高精度な終点検出を行うこ
とができるプラズマ処理装置とプラズマクリーニング方
法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide a plasma processing apparatus and a plasma cleaning method capable of performing highly accurate end point detection of plasma cleaning.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に本発明の第1の構成のプラズマ処理装置は、基材処理
室内の空間に焦点を合わせたレンズ光学系と、前記レン
ズ光学系を透過したプラズマ発光の特定波長領域を選択
透過する光学装置と、前記特定波長領域のプラズマ発光
強度測定装置と、前記発光強度の時間変化の演算処理を
行う終点検出装置とを備えている。
To achieve this object, a plasma processing apparatus having a first structure according to the present invention comprises a lens optical system focused on a space in a substrate processing chamber and the lens optical system. An optical device that selectively transmits a specific wavelength region of the transmitted plasma emission, a plasma emission intensity measuring device of the specific wavelength region, and an end point detecting device that performs a calculation process of the temporal change of the emission intensity are provided.

【0009】また、本発明の第2の構成によれば、レン
ズ光学系は、前記プラズマ発生源のプラズマ発生部と処
理基材とで挟まれた空間以外に焦点を合わせて設置する
ことが好ましい。
Further, according to the second aspect of the present invention, it is preferable that the lens optical system is installed while focusing on a space other than the space sandwiched between the plasma generating portion of the plasma generating source and the processing substrate. .

【0010】また、本発明の第3の構成によれば、レン
ズ光学系は、基材処理室の内壁近傍に焦点を合わせて設
置することが好ましい。
Further, according to the third aspect of the present invention, it is preferable that the lens optical system is installed in focus near the inner wall of the substrate processing chamber.

【0011】また、本発明に係るプラズマクリーニング
方法は、プラズマ源のプラズマ発生部と処理基材とで挟
まれた主プラズマ領域以外のプラズマ発光を、レンズ光
学装置で焦点を合わせて空間分解し、次にその空間分解
したプラズマ発光の特定波長領域の発光強度を測定、監
視することにより、プラズマクリーニングの終点を検知
する。
In the plasma cleaning method according to the present invention, plasma light emission other than the main plasma region sandwiched between the plasma generating portion of the plasma source and the processing substrate is spatially decomposed by focusing with a lens optical device. Next, the end point of plasma cleaning is detected by measuring and monitoring the emission intensity of the spatially decomposed plasma emission in a specific wavelength region.

【0012】[0012]

【作用】前記本発明の第1の構成によれば、プラズマ発
光を空間分解、及び波長分解してその強度変化を監視す
ることにより、ダスト源となる不要な堆積膜のプラズマ
クリーニングの終点を高精度に検知することができる。
According to the first aspect of the present invention, the end point of plasma cleaning of the unnecessary deposited film, which is a dust source, is increased by spatially and wavelength-resolving the plasma emission and monitoring the intensity change. It can be detected accurately.

【0013】また、本発明の第2の構成によれば、不要
な堆積膜のプラズマクリーニング速度の速いプラズマ発
生部と処理基材とで挟まれた空間以外にレンズ光学系の
焦点を合わせてプラズマ発光を空間分解し、その後、波
長分解してその強度を監視することにより、プラズマク
リーニングで除去しにくい部分の不要な堆積膜のプラズ
マクリーニングの終点を高精度に検知できる。
According to the second aspect of the present invention, the lens optical system is focused on the plasma other than the space sandwiched between the plasma generating portion having a high plasma cleaning speed of the unnecessary deposited film and the processing substrate. By spatially decomposing the light emission and then wavelength-decomposing it and monitoring its intensity, the end point of the plasma cleaning of the unnecessary deposited film in the portion that is difficult to remove by plasma cleaning can be detected with high accuracy.

【0014】また、本発明の第3の構成によれば、最も
クリーニング時間のかかる基材処理室の内壁のプラズマ
クリーニングの終点を高精度に検知することが容易にな
る。
Further, according to the third structure of the present invention, it becomes easy to detect with high accuracy the end point of the plasma cleaning of the inner wall of the base material processing chamber which takes the longest cleaning time.

【0015】また、前記本発明の方法によれば、不要な
堆積膜の、除去しにくくクリーニング時間のかかる部分
の近傍のプラズマ発光のみを、レンズ光学装置で焦点を
合わせて空間分解、抽出し、次にその空間分解したプラ
ズマ発光の特定波長領域の発光強度変化を測定、監視す
ることにより、プラズマクリーニングの終点を高精度に
検知することが出来る。
Further, according to the method of the present invention, only the plasma emission in the vicinity of the portion of the unnecessary deposited film that is difficult to remove and requires a long cleaning time is spatially decomposed and extracted by focusing with the lens optical device. Next, the end point of plasma cleaning can be detected with high accuracy by measuring and monitoring the emission intensity change of the spatially decomposed plasma emission in a specific wavelength region.

【0016】[0016]

【実施例】以下本発明のプラズマ処理装置の一実施例に
ついて、SiN膜が真空容器内部に堆積したプラズマC
VD装置のプラズマクリーニングへの適用を例に取り、
図面を参照しながら説明する。
EXAMPLE An example of a plasma processing apparatus according to the present invention will now be described with reference to plasma C in which a SiN film is deposited inside a vacuum container.
Taking the application to plasma cleaning of VD equipment as an example,
This will be described with reference to the drawings.

【0017】図1において、1は真空容器、2は真空排
気系、3は基板加熱ヒータを有し基板を保持する(図示
せず)接地電極、4は反応ガス導入口を有し、13.5
6MHzの高周波電源6が接続された高周波電極、5は
絶縁体、7はプラズマ発光を透過する石英窓、8は石英
ガラスのレンズ(焦点距離=150mm)で接地電極3の
側面から3mm離れた空間に焦点を合わせている。9は特
定波長領域を透過する干渉フィルター、10はフォトダ
イオードで透過したプラズマ発光を電気信号に変換す
る。11は終点検出装置である。
In FIG. 1, 1 is a vacuum container, 2 is a vacuum exhaust system, 3 is a ground electrode for holding a substrate (not shown) having a heater for heating a substrate (not shown), 4 has a reaction gas introduction port, and 13. 5
A high-frequency electrode to which a 6-MHz high-frequency power source 6 is connected, 5 is an insulator, 7 is a quartz window that transmits plasma emission, and 8 is a quartz glass lens (focal length = 150 mm), which is a space 3 mm away from the side surface of the ground electrode 3. Focus on. Reference numeral 9 is an interference filter which transmits a specific wavelength region, and 10 is a conversion of the plasma emission transmitted by the photodiode into an electric signal. Reference numeral 11 is an end point detection device.

【0018】ここで、監視すべきプラズマ発光は、プラ
ズマ内における、堆積膜とガスプラズマとの反応生成
物、あるいは反応によって消費される物質いずれかの発
光スペクトルでよいが、ここでは、SiN膜のクリーニ
ングであるので、反応生成物のN(窒素)の発光スペク
トルである674nmの発光強度を監視する。従って、干
渉フィルター9は674nm近傍に透過の中心を有するも
のである。
Here, the plasma emission to be monitored may be an emission spectrum of a reaction product of the deposited film and the gas plasma in the plasma, or a substance consumed by the reaction. Since it is cleaning, the emission intensity at 674 nm, which is the emission spectrum of N (nitrogen) of the reaction product, is monitored. Therefore, the interference filter 9 has a transmission center near 674 nm.

【0019】以上のように構成されたプラズマ処理装置
について、図1を用いてその動作を説明する。まず、不
要なSiN膜が内部に堆積された真空容器1を真空排気
し、反応ガスであるCF4を90cc/分と、O2を10cc
/分同時に導入し、800mTorrに調圧する。次に、8
00Wの高周波電力を高周波電極4に印加させる。する
と真空容器1内に両電極3、4間を中心としてF(弗
素)系ガスのプラズマが発生する。堆積しているSiN
膜はFラジカルでエッチングされ、SiF4や N 2ガス
の反応生成として真空容器1内から排気され、クリーニ
ングされる。通常、両電極間の堆積膜は速やかに除去で
きるが、接地電極側面の堆積膜の除去はこれよりも時間
がかかり、除去しにくい。
Plasma processing apparatus configured as described above
The operation will be described with reference to FIG. First,
Evacuate the vacuum container 1 with the necessary SiN film deposited inside.
The reaction gas CFFour90cc / min, O210cc
/ Min at the same time, the pressure is adjusted to 800 mTorr. Next, 8
A high frequency power of 00 W is applied to the high frequency electrode 4. Do
And F (fluorine) in the vacuum chamber 1 centered between the electrodes 3 and 4.
Plasma of an elementary gas is generated. Deposited SiN
The film is etched by F radicals and SiFFourAnd N 2gas
As the reaction product of the
Be used. Normally, the deposited film between both electrodes can be removed quickly.
However, it takes longer than this to remove the deposited film on the side of the ground electrode.
It takes time and is difficult to remove.

【0020】図2に、本実施例の接地電極側面上3mmの
空間における反応生成物のN(窒素)の発光スペクトル
である674nmの発光強度の変化と、従来方式の両電極
間の発光スペクトルの強度変化を示した。従来技術で
は、両電極間のSiN膜が除去できた時点で発光強度は
大きく変化し、A点付近で終点を検出しているが、実際
には、接地電極の側面上には未だSiN膜が堆積してお
り正確な終点を検出することができない。
FIG. 2 shows changes in the emission intensity of 674 nm, which is the emission spectrum of N (nitrogen) of the reaction product in a space of 3 mm on the side surface of the ground electrode of this example, and the emission spectrum between both electrodes in the conventional method. The intensity change was shown. In the prior art, the emission intensity changes greatly when the SiN film between both electrodes can be removed, and the end point is detected near point A. However, in reality, the SiN film still remains on the side surface of the ground electrode. Accurate end point cannot be detected due to accumulation.

【0021】一方、本実施例によれば、接地電極側面上
の発光スペクトルのみを選択的に監視しているので、接
地電極側面上のSiN膜が除去された時点(B点)で発
光スペクトルは大きく変化し、この時点で終点を検出す
ることができる。すなわち、クリーニングしにくい箇所
近傍の発光スペクトル強度を空間的に選択監視すること
により、高精度のクリーニング終点検出が可能となる。
On the other hand, according to this embodiment, since only the emission spectrum on the side surface of the ground electrode is selectively monitored, the emission spectrum is changed at the time (point B) when the SiN film on the side surface of the ground electrode is removed. There is a large change, and the end point can be detected at this point. That is, it is possible to detect the cleaning end point with high accuracy by spatially selectively monitoring the emission spectrum intensity in the vicinity of the portion that is difficult to clean.

【0022】以上のように本実施例によれば、基材処理
室内の空間に焦点を合わせたレンズ光学系と、前記レン
ズ光学系を透過したプラズマ発光の特定波長領域を選択
透過する光学装置と、前記特定波長領域のプラズマ発光
強度測定装置と、前記発光強度の時間変化の演算処理装
置とを備えることにより、不要な堆積膜の、除去しにく
くクリーニング時間のかかる部分の近傍のプラズマ発光
のみを、レンズ光学装置で焦点を合わせて空間分解、抽
出し、次にその空間分解したプラズマ発光の特定波長領
域の発光強度変化を測定、監視することにより、プラズ
マクリーニングの終点を高精度に検知することができ、
無駄なクリーニング時間の延長を省き生産性を向上でき
ると共に、除去されていない不要な堆積膜を残さず、ク
リーンな状態に真空容器内を保つことができる。
As described above, according to this embodiment, the lens optical system focused on the space in the substrate processing chamber, and the optical device selectively transmitting the specific wavelength region of the plasma emission transmitted through the lens optical system. By providing the plasma emission intensity measuring device for the specific wavelength region and the arithmetic processing device for the time variation of the emission intensity, only the plasma emission in the vicinity of the portion of the unnecessary deposited film, which is difficult to remove and requires cleaning time, Detecting the end point of plasma cleaning with high accuracy by focusing and spatially decomposing and extracting with a lens optical device, and then measuring and monitoring the change in emission intensity of the spatially decomposed plasma emission in a specific wavelength region. Can
It is possible to save unnecessary extension of the cleaning time and improve productivity, and to keep the inside of the vacuum container in a clean state without leaving an unnecessary deposited film that has not been removed.

【0023】なお、本実施例において、レンズの焦点を
合わせ、空間的に選択監視するプラズマ発光の領域を、
接地電極の側面上としたが、本発明はこれに限定される
べきものでなく、プラズマクリーニングで除去しにくい
箇所の近傍領域とすることが望ましく、例えば、図3に
示したように、A、B:電極裏面付近、C:高周波電極
の側面付近、D:真空容器内壁上などに設定してもよ
い。プラズマの発生方法やプロセス条件、真空容器の構
造、ガス供給や排気の構造などにより、装置に合わせ
て、最適な箇所に設定することが望ましい。
In the present embodiment, the area of plasma emission for focusing the lens and spatially selectively monitoring is defined as follows.
Although it is set on the side surface of the ground electrode, the present invention should not be limited to this, and it is desirable to set it in the vicinity of a portion that is difficult to remove by plasma cleaning. For example, as shown in FIG. B: near the back surface of the electrode, C: near the side surface of the high frequency electrode, D: on the inner wall of the vacuum container, or the like. It is desirable to set the optimum location according to the device depending on the plasma generation method, process conditions, vacuum container structure, gas supply and exhaust structure, and the like.

【0024】また、本実施例において、平行平板型のプ
ラズマCVD装置を例にとって説明したが、プラズマの
発生のさせ方はこれに限るものでなく、図4に示した様
な構成をとる、プラズマ発生源12として、誘導加熱プ
ラズマ源(ICP)や電子サイクロトロン共鳴(EC
R)やヘリコン波プラズマ源などを用いてもよい。ガス
の種類をフッ素系、塩素系、臭素系、酸素系等のエッチ
ングガスに変えることによって、ドライエッチング装置
に本発明を用いてもよい。この場合も同様に、例えば、
E:基板保持台の側面上、F:基板保持台の裏面上、
G:真空容器内壁上等に焦点を合わせ、スペクトルの強
度変化を監視してもよい。
Further, although the parallel plate type plasma CVD apparatus has been described as an example in the present embodiment, the method of generating plasma is not limited to this, and the plasma having the configuration shown in FIG. 4 is used. As the generation source 12, an induction heating plasma source (ICP) or an electron cyclotron resonance (EC
R) or a helicon wave plasma source may be used. The present invention may be used in a dry etching apparatus by changing the type of gas to a fluorine-based, chlorine-based, bromine-based, oxygen-based etching gas or the like. In this case as well, for example,
E: on the side surface of the substrate holder, F: on the back surface of the substrate holder,
G: Focusing on the inner wall of the vacuum container or the like, the intensity change of the spectrum may be monitored.

【0025】また、本実施例において、プラズマ発光の
特定波長領域を選択透過する光学装置として、干渉フィ
ルターを用いたが、グレーティング等の光学装置を用い
てもよい。
In this embodiment, the interference filter is used as the optical device for selectively transmitting the specific wavelength region of plasma emission, but an optical device such as a grating may be used.

【0026】また、本実施例においてレンズ光学系とし
て、単板レンズを用いたが、複数個のレンズを用いた光
学系としてもよい。
Although a single-plate lens is used as the lens optical system in this embodiment, an optical system using a plurality of lenses may be used.

【0027】また、本実施例において、プラズマCVD
装置を用いて説明したが、ドライエッチング装置やプラ
ズマアッシング装置に用いてもよい。
Further, in this embodiment, plasma CVD
Although the apparatus has been described, it may be used for a dry etching apparatus or a plasma ashing apparatus.

【0028】[0028]

【発明の効果】以上のように本発明によれば、プラズマ
発光を空間分解、及び波長分解してその強度変化を監視
することにより、ダスト源となる不要な堆積膜のプラズ
マクリーニングの終点を高精度に検知することができ
る。
As described above, according to the present invention, by plasma decomposition and wavelength decomposition of plasma emission and monitoring the intensity change thereof, the end point of plasma cleaning of an unnecessary deposited film as a dust source can be increased. It can be detected accurately.

【0029】また、前記本発明の方法によれば、不要な
堆積膜の除去しにくく、クリーニング時間のかかる部分
の近傍のプラズマ発光のみを、レンズ光学装置で焦点を
合わせて空間分解、抽出し、次にその空間分解したプラ
ズマ発光の特定波長領域の発光強度変化を測定、監視す
ることにより、プラズマクリーニングの終点を高精度に
検知することが出来る。
Further, according to the method of the present invention, only plasma emission in the vicinity of the portion where it is difficult to remove an unnecessary deposited film and which requires a long cleaning time is spatially decomposed and extracted by focusing with a lens optical device. Next, the end point of plasma cleaning can be detected with high accuracy by measuring and monitoring the emission intensity change of the spatially decomposed plasma emission in a specific wavelength region.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るプラズマ処理装置の一実施例にお
ける反応室の断面図
FIG. 1 is a sectional view of a reaction chamber in an embodiment of a plasma processing apparatus according to the present invention.

【図2】本発明に係るプラズマ処理装置と従来型のプラ
ズマ処理装置におけるプラズマクリーニング時の発光ス
ペクトルの変化を示す図
FIG. 2 is a diagram showing changes in emission spectra during plasma cleaning in the plasma processing apparatus according to the present invention and the conventional plasma processing apparatus.

【図3】本発明に係るプラズマ処理装置の平行平板型装
置の別の実施例における反応室の断面図
FIG. 3 is a sectional view of a reaction chamber in another embodiment of the parallel plate type apparatus of the plasma processing apparatus according to the present invention.

【図4】本発明に係るプラズマ処理装置の別の実施例に
おける反応室の断面図
FIG. 4 is a sectional view of a reaction chamber in another embodiment of the plasma processing apparatus according to the present invention.

【図5】従来例のプラズマ処理装置における反応室の断
面図
FIG. 5 is a sectional view of a reaction chamber in a conventional plasma processing apparatus.

【符号の説明】[Explanation of symbols]

1 真空容器 2 真空排気系 3 接地電極 4 高周波電極 5 絶縁物 6 高周波電源 7 窓材(石英窓) 8 レンズ 9 干渉フィルター 10 発光強度測定装置 11 終点検出装置 12 プラズマ発生源 DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Vacuum exhaust system 3 Grounding electrode 4 High frequency electrode 5 Insulator 6 High frequency power supply 7 Window material (quartz window) 8 Lens 9 Interference filter 10 Emission intensity measurement device 11 End point detection device 12 Plasma generation source

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/302 N ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01L 21/302 N

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】プラズマ発生源を有し基材をプラズマ処理
するプラズマ処理装置であって、基材処理室内の空間に
焦点を合わせたレンズ光学系と、前記レンズ光学系を透
過したプラズマ発光の特定波長領域を選択透過する光学
装置と、前記特定波長領域のプラズマ発光強度測定装置
と、前記発光強度の時間変化の演算処理を行う終点検出
装置とを有するプラズマ処理装置。
1. A plasma processing apparatus having a plasma generation source for performing plasma processing on a base material, comprising: a lens optical system focused on a space in a base material processing chamber; and plasma emission light passing through the lens optical system. A plasma processing apparatus comprising: an optical device that selectively transmits a specific wavelength region, a plasma emission intensity measuring device in the specific wavelength region, and an end point detecting device that performs a calculation process of the time variation of the emission intensity.
【請求項2】レンズ光学系の焦点は、プラズマ発生源の
プラズマ発生部と処理基材とで挟まれた空間以外にある
ことを特徴とする請求項1記載のプラズマ処理装置。
2. The plasma processing apparatus according to claim 1, wherein the focal point of the lens optical system is located in a space other than the space sandwiched between the plasma generation portion of the plasma generation source and the processing substrate.
【請求項3】レンズ光学系の焦点は、基材処理室の内壁
近傍にあることを特徴とする請求項2記載のプラズマ処
理装置。
3. The plasma processing apparatus according to claim 2, wherein the focal point of the lens optical system is near the inner wall of the substrate processing chamber.
【請求項4】プラズマ発生源を有し基材をプラズマ処理
するプラズマ処理装置のプラズマクリーニング方法であ
って、前記プラズマ源のプラズマ発生部と処理基材とで
挟まれた領域以外のプラズマ発光を、レンズ光学装置で
焦点を合わせて空間分解し、次にその空間分解したプラ
ズマ発光の特定波長領域の発光強度を測定、監視するこ
とにより、プラズマクリーニングの終点を検知すること
を特徴とするプラズマクリーニング方法。
4. A plasma cleaning method for a plasma processing apparatus, which has a plasma generation source and performs plasma processing on a substrate, wherein plasma emission other than a region sandwiched between the plasma generation portion of the plasma source and the processing substrate is performed. Plasma cleaning characterized by detecting the end point of plasma cleaning by focusing and spatially decomposing with a lens optical device and then measuring and monitoring the emission intensity of the spatially decomposed plasma emission in a specific wavelength region. Method.
JP25270895A 1995-09-29 1995-09-29 Plasma processing device and plasma cleaning method Pending JPH0997785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25270895A JPH0997785A (en) 1995-09-29 1995-09-29 Plasma processing device and plasma cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25270895A JPH0997785A (en) 1995-09-29 1995-09-29 Plasma processing device and plasma cleaning method

Publications (1)

Publication Number Publication Date
JPH0997785A true JPH0997785A (en) 1997-04-08

Family

ID=17241151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25270895A Pending JPH0997785A (en) 1995-09-29 1995-09-29 Plasma processing device and plasma cleaning method

Country Status (1)

Country Link
JP (1) JPH0997785A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003019639A1 (en) * 2001-08-31 2003-03-06 Tokyo Electron Limited Treating device using treating gas, and method of operating the same
JP2011142362A (en) * 2011-04-22 2011-07-21 Sharp Corp Method of cleaning film formation device, and film formation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003019639A1 (en) * 2001-08-31 2003-03-06 Tokyo Electron Limited Treating device using treating gas, and method of operating the same
JP2011142362A (en) * 2011-04-22 2011-07-21 Sharp Corp Method of cleaning film formation device, and film formation method

Similar Documents

Publication Publication Date Title
US5846373A (en) Method for monitoring process endpoints in a plasma chamber and a process monitoring arrangement in a plasma chamber
US7028696B2 (en) Plasma cleaning of deposition chamber residues using duo-step wafer-less auto clean method
JP4162773B2 (en) Plasma processing apparatus and detection window
US6099747A (en) Chamber etching of plasma processing apparatus
US6626185B2 (en) Method of depositing a silicon containing layer on a semiconductor substrate
US7341644B2 (en) Method for predicting consumption of consumable part, method for predicting deposited-film thickness, and plasma processor
US20030005943A1 (en) High pressure wafer-less auto clean for etch applications
TWI772206B (en) Selective etch rate monitor
US6068783A (en) In-situ and non-intrusive method for monitoring plasma etch chamber condition utilizing spectroscopic technique
US8048326B2 (en) Method and apparatus for determining an etch property using an endpoint signal
US7297560B2 (en) Method and apparatus for detecting endpoint
JPH0936102A (en) Monitoring method of deposite in chamber, plasma processing method, dry-cleaning method and semiconductor manufacturing device
US10892145B2 (en) Substrate processing apparatus, substrate processing method, and method of fabricating semiconductor device using the same
US10636686B2 (en) Method monitoring chamber drift
JPH0997785A (en) Plasma processing device and plasma cleaning method
US6545245B2 (en) Method for dry cleaning metal etching chamber
JPH09209179A (en) Dry etching device and its cleaning method
US20060012796A1 (en) Plasma treatment apparatus and light detection method of a plasma treatment
JP2006073751A (en) Endpoint detecting method and device for plasma cleaning treatment
KR100263406B1 (en) Method and device for detecting the end point of plasma process
KR100290750B1 (en) End point detection method and apparatus of plasma treatment
JPH01283359A (en) Plasma treatment apparatus
JP3231560B2 (en) Plasma etching equipment
JP2885150B2 (en) Dry cleaning method for dry etching equipment
JP4098711B2 (en) Plasma processing equipment