JPH0997734A - Laminated capacitor - Google Patents

Laminated capacitor

Info

Publication number
JPH0997734A
JPH0997734A JP25343695A JP25343695A JPH0997734A JP H0997734 A JPH0997734 A JP H0997734A JP 25343695 A JP25343695 A JP 25343695A JP 25343695 A JP25343695 A JP 25343695A JP H0997734 A JPH0997734 A JP H0997734A
Authority
JP
Japan
Prior art keywords
layers
dielectric layer
dielectric
contain
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25343695A
Other languages
Japanese (ja)
Inventor
Hitoshi Oota
等 大小田
Yoshitomo Onizuka
善友 鬼塚
Kenji Takaoka
健二 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP25343695A priority Critical patent/JPH0997734A/en
Publication of JPH0997734A publication Critical patent/JPH0997734A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)

Abstract

PROBLEM TO BE SOLVED: To make the durability of a laminated capacitor enhance under a high temperature and a high pressure by a method wherein dielectric layers, which contain a barium titanate-zirconate as their main component and contain a specified amount of Li, Si and B, are provided in such a way that the thickness of the layers and the rate of segragation phases in the layers are specified. SOLUTION: A capacitor is constituted by laminating alternately dielectric layers 1, which contain a barium titanate-zirconate as their main component and contain 0.4 to 1.2 pts.wt. of Li, Si and B in total amount in the case where the Li, the Si and the B are respectively converted into Li2 O, SiO2 and B2 O3 to 100 pts.wt. of this titanium zirconic acid barium, and internal electrode layers 2, which consist of a base metal layer. The layers 1 are formed so that they have a thickness of 3 to 10μm and at the same time, segragation phases 4, which consist of a composite oxide containing at least two kinds of elements out of Li, Si and B, exist in an area ratio of 4 to 12% on each breaking surface of the layers 1 in the layers 1. In such a way, the phases 4 exist at a constant rate, whereby even in the case where an electron mobility in grain boundary phases in the layers 1 is lessened and the layers 1 are formed into a thin form, a function to be brought out as a dielectric material is fully ensured and the life of the capacitor can be prolonged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、チタンジルコン酸
バリウムを主成分とし、Li,Si,Bのうち少なくと
も一種を含有する誘電体層と、ニッケル等の卑金属から
なる内部電極層とを交互に積層してなる積層型コンデン
サに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention alternately comprises a dielectric layer containing barium titanium zirconate as a main component and containing at least one of Li, Si and B, and an internal electrode layer made of a base metal such as nickel. The present invention relates to a laminated type multilayer capacitor.

【0002】[0002]

【従来技術】従来、積層型コンデンサを得るにあたって
は、内部電極を構成する電極層と誘電体層とを交互に積
層した後、一体焼成して得られた焼結体が用いられてい
る。
2. Description of the Related Art Conventionally, in obtaining a multilayer capacitor, a sintered body obtained by alternately laminating electrode layers constituting internal electrodes and dielectric layers and then firing them integrally is used.

【0003】ところで積層型コンデンサを作製する場
合、従来のBaTiO3 を主成分とする誘電体材料で
は、1300〜1500℃で焼成するため、内部電極材
料としては、このような温度で溶融しないPt,Pd等
の貴金属が使用されてきた。
By the way, when a multilayer capacitor is manufactured, a conventional dielectric material containing BaTiO 3 as a main component is fired at 1300 to 1500 ° C., and therefore Pt which does not melt at such a temperature is used as an internal electrode material. Noble metals such as Pd have been used.

【0004】しかしながら、これらの貴金属は高価であ
り、高容量化を図るために内部電極数を増加させた場合
にはコストが著しく高くなるという問題があった。そこ
で、近年、安価なニッケル等の卑金属が内部電極材料と
して用いられている。
[0004] However, these noble metals are expensive, and there has been a problem that when the number of internal electrodes is increased in order to increase the capacity, the cost is significantly increased. Therefore, in recent years, inexpensive base metals such as nickel have been used as internal electrode materials.

【0005】しかしながら、ニッケル等の卑金属からな
る内部電極を用いた場合には、内部電極材料の酸化を防
止するため還元雰囲気中で焼成しなければならず、その
ような雰囲気下で焼成すると、誘電体セラミックスが還
元され絶縁性を失ってしまうという問題があった。
However, when an internal electrode made of a base metal such as nickel is used, the internal electrode material must be fired in a reducing atmosphere in order to prevent the oxidation of the internal electrode material. There is a problem that the body ceramics are reduced and the insulating property is lost.

【0006】そこで、近年では、還元雰囲気中で焼成し
た場合でも、誘電体セラミックスが還元されないよう
な、例えば、塩基性酸化物である(Ba,Ca,Sr)
Oを酸性酸化物であるTiO2 に対して化学量論比より
過剰にしたチタン酸バリウム固溶体(Ba,Ca,S
r)(Ti,Zr)O3 から成る基本成分と、Li2
とSi2 Oを含む添加成分とからなる誘電体磁器組成物
が提案されている(例えば、特公昭60−20851号
公報等参照)。
In recent years, therefore, basic oxides such as (Ba, Ca, Sr) which do not reduce dielectric ceramics even when fired in a reducing atmosphere.
Barium titanate solid solution (Ba, Ca, S) in which O is added in excess of stoichiometric ratio to TiO 2 as an acidic oxide
r) a basic component composed of (Ti, Zr) O 3 and Li 2 O
A dielectric porcelain composition consisting of and an additive component containing Si 2 O has been proposed (see, for example, Japanese Patent Publication No. 60-20851).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の組成を用いた積層型コンデンサでは、高
温、高電圧の環境下で用いられる場合には製品寿命が短
いという問題があった。即ち、上記従来の組成では、高
温、高電圧の環境下では、誘電体磁器自体の電気伝導性
が高くなり、誘電体としての機能が低下し、誘電体とし
ての寿命が短くなるという問題があった。特に、近年で
は、高容量化のために誘電体層を薄層化する傾向にある
が、誘電体層が薄くなる程、高温、高電圧環境下におい
ては電気伝導性が高くなり易く、誘電体としての機能が
低下し易いという問題があった。
However, the multilayer capacitor using the above-mentioned conventional composition has a problem that the product life is short when used in a high temperature and high voltage environment. That is, in the above-described conventional composition, in a high-temperature, high-voltage environment, the electric conductivity of the dielectric porcelain itself increases, the function as a dielectric decreases, and the life as a dielectric decreases. Was. In particular, in recent years, there has been a tendency to reduce the thickness of the dielectric layer in order to increase the capacity. However, as the dielectric layer becomes thinner, the electrical conductivity tends to increase under high temperature and high voltage environments. There is a problem that the function of the device is easily deteriorated.

【0008】[0008]

【発明の目的】本発明は、誘電体層の厚みが3〜10μ
mという薄い場合でも、高温、高電圧の環境下における
寿命を向上することができる積層型コンデンサを提供す
ることを目的とする。
OBJECTS OF THE INVENTION The present invention provides a dielectric layer having a thickness of 3 to 10 .mu.m.
An object of the present invention is to provide a multilayer capacitor that can improve the life under high temperature and high voltage environment even when the thickness is as thin as m.

【0009】[0009]

【課題を解決するための手段】本発明者等は、上記問題
に対して鋭意検討した結果、チタンジルコン酸バリウム
100重量部に対してLi,Si,BをそれぞれLi2
O,SiO2 ,B2 3 換算で総量0.4〜1.2重量
部含有する誘電体層の厚みを3〜10μmとするととも
に、Li,Si,Bを含有する複合酸化物からなる偏析
相の面積の割合を、誘電体層の破断面における面積の4
〜12%とすることにより、誘電体層が薄層であっても
高温、高電圧の環境下における寿命を向上することがで
きることを見い出し、本発明に至った。
Means for Solving the Problems As a result of intensive studies made by the present inventors on the above problems, Li, Si and B were added to Li 2 for 100 parts by weight of barium titanium zirconate, respectively.
The thickness of the dielectric layer contained in a total amount of 0.4 to 1.2 parts by weight in terms of O, SiO 2 , B 2 O 3 is set to 3 to 10 μm, and segregated from a composite oxide containing Li, Si, and B. The ratio of the area of the phase to the area of the fracture surface of the dielectric layer is 4
It has been found out that the life can be improved under the environment of high temperature and high voltage even if the dielectric layer is a thin layer by setting the content to ˜12%, and the present invention has been completed.

【0010】即ち、本発明の積層型コンデンサは、チタ
ンジルコン酸バリウムを主成分とし、このチタンジルコ
ン酸バリウム100重量部に対してLi,Si,Bをそ
れぞれLi2 O,SiO2 ,B2 3 換算で総量0.4
〜1.2重量部含有する誘電体層と、卑金属からなる内
部電極層とを交互に積層してなる積層型コンデンサであ
って、前記誘電体層が3〜10μmの厚みを有するとと
もに、前記誘電体層中に、Li,SiおよびBのうち少
なくとも2種を含有する複合酸化物からなる偏析相が、
前記誘電体層の破断面において4〜12%の面積比で存
在するものである。
That is, the multilayer capacitor of the present invention contains barium titanium zirconate as a main component, and Li, Si, and B are added to Li 2 O, SiO 2 , and B 2 O with respect to 100 parts by weight of barium titanium zirconate, respectively. 0.4 in total of 3
A multilayer capacitor, wherein a dielectric layer containing 1.2 to 1.2 parts by weight and an internal electrode layer made of a base metal are alternately laminated, wherein the dielectric layer has a thickness of 3 to 10 μm, and In the body layer, a segregation phase composed of a composite oxide containing at least two kinds of Li, Si and B,
It exists in an area ratio of 4 to 12% on the fracture surface of the dielectric layer.

【0011】[0011]

【作用】本発明の積層型コンデンサでは、誘電体層の厚
みを3〜10μmと薄層化した場合でも、誘電体として
の機能を十分に有し、かつ、高温、高電圧の環境下にお
いても寿命を長くすることができる。
In the multilayer capacitor of the present invention, even when the thickness of the dielectric layer is thinned to 3 to 10 μm, the multilayer capacitor has a sufficient function as a dielectric and is capable of operating under high temperature and high voltage environments. The life can be extended.

【0012】即ち、高温、高電圧の環境下における寿命
は誘電体磁器中の粒界相を移動する電子の移動度に影響
されると考えられるが、Li、Si、Bを含んだ組成の
偏析相が一定割合で存在することにより、粒界相の電子
の移動度を小さくすることができるからである。
That is, it is considered that the life under high temperature and high voltage environment is affected by the mobility of electrons moving in the grain boundary phase in the dielectric ceramic, but the segregation of the composition containing Li, Si and B This is because the mobility of electrons in the grain boundary phase can be reduced by the existence of the phases at a constant ratio.

【0013】[0013]

【発明の実施の形態】本発明の積層型コンデンサは、チ
タンジルコン酸バリウムを主成分とし、このチタンジル
コン酸バリウム100重量部に対してLi,Si,Bを
それぞれLi2 O,SiO2 ,B2 3 換算で総量0.
4〜1.2重量部含有する誘電体層を有するものである
が、本発明に用いられる誘電体層は、例えば、Ba(T
i、Zr)O3 100モル部に対してCaTiO3
1.0〜8.0モル部含有する成分と、この成分100
重量部に対して、Nd2 3 を0.3〜0.8重量部、
MnO2 を0.1〜0.2重量部含有させて、主成分が
構成される。
BEST MODE FOR CARRYING OUT THE INVENTION The multilayer capacitor of the present invention contains barium titanium zirconate as a main component, and Li, Si and B are added to Li 2 O, SiO 2 and B to 100 parts by weight of barium titanium zirconate, respectively. 2 O 3 total amount in terms of 0.
The dielectric layer used in the present invention is, for example, Ba (T).
i, Zr) O 3 and a component containing 1.0 to 8.0 parts by mole of CaTiO 3 with respect to 100 parts by mole,
0.3 to 0.8 parts by weight of Nd 2 O 3 based on parts by weight,
The main component is constituted by containing 0.1 to 0.2 parts by weight of MnO 2 .

【0014】一方、Li2 O、SiO2 、B2 3 のモ
ル比で表される三角図において、(Li2 O、Si
2 、B2 3 )で示す、A(20、80、0)、B
(70、30、0)、C(80、0、20)、D(4
0、20、40)の4点で囲まれる組成範囲の粒界相成
分を900℃以上の温度で仮焼し、Li,Si,Bのう
ちの少なくとも2種を含有する複合酸化物を作製する。
そして、このLi,Si,Bを含有する複合酸化物を上
記主成分100重量部に対して、総量0.4〜1.2重
量部添加含有してなるものである。誘電体層中に、不純
物としてAl2 3 ,Fe2 3 ,ZrO2 等が混入す
る場合がある。
On the other hand, in the triangular diagram represented by the molar ratio of Li 2 O, SiO 2 and B 2 O 3 , (Li 2 O, Si
A (20, 80, 0), B, which is represented by O 2 , B 2 O 3 ).
(70, 30, 0), C (80, 0, 20), D (4
(0, 20, 40), the grain boundary phase component in the composition range surrounded by four points is calcined at a temperature of 900 ° C. or higher to produce a composite oxide containing at least two kinds of Li, Si, and B. .
The composite oxide containing Li, Si, B is added in a total amount of 0.4 to 1.2 parts by weight with respect to 100 parts by weight of the main component. Al 2 O 3 , Fe 2 O 3 , ZrO 2 and the like may be mixed as impurities in the dielectric layer.

【0015】本発明においては、添加される粒界相成分
は、Li,Si,BをそれぞれLi2 O,SiO2 ,B
2 3 換算で総量0.4〜1.2重量部含有すれば良
く、3種類の成分を必須成分とするものではなく、2種
でも良い。これらのうちLiとSiの組み合わせは誘電
率向上という観点から特に望ましい。
In the present invention, the grain boundary phase components added are Li 2 Si, B, Li 2 O, SiO 2 and B, respectively.
It suffices that the total amount is 0.4 to 1.2 parts by weight in terms of 2 O 3 , and the three types of components are not essential components, and two types may be used. Of these, a combination of Li and Si is particularly desirable from the viewpoint of improving the dielectric constant.

【0016】また、卑金属からなる内部電極層は、例え
ば、Ni、Co、Cu等からなるものである。
The internal electrode layer made of a base metal is made of, for example, Ni, Co, Cu or the like.

【0017】さらに、誘電体層の厚みを3〜10μmと
したのは、誘電体層の厚みが3μmより薄いと誘電体層
の作製が困難であるからであり、厚みが10μmよりも
厚くなると、高容量化を図ることができなくなるからで
ある。本発明の誘電体層の厚みは、高容量化および誘電
体層の作製の容易性という観点から5〜8μmであるこ
とが望ましい。
Further, the reason why the thickness of the dielectric layer is set to 3 to 10 μm is that it is difficult to manufacture the dielectric layer if the thickness of the dielectric layer is thinner than 3 μm, and if the thickness is thicker than 10 μm, This is because it is not possible to increase the capacity. The thickness of the dielectric layer of the present invention is desirably 5 to 8 μm from the viewpoint of increasing the capacity and facilitating the production of the dielectric layer.

【0018】また、誘電体層におけるLi,Si,Bを
含有する複合酸化物からなる偏析相は、例えば、(3L
2 O・B2 3 +Li4 SiO4 )、(Li4 SiO
4 )、(Li4 SiO4 +Li2 O)のように表現され
るようなものがあり、このような偏析相の量を一定に制
御することにより、上記したように粒界相の電子の移動
度を制御し、高温、高電圧の環境下における製品寿命を
長くすることができるのである。
The segregation phase composed of a complex oxide containing Li, Si, B in the dielectric layer is, for example, (3 L
i 2 O.B 2 O 3 + Li 4 SiO 4 ), (Li 4 SiO
4 ) and (Li 4 SiO 4 + Li 2 O), and by controlling the amount of such a segregation phase to a constant value, the movement of electrons in the grain boundary phase as described above. The product life can be extended under high temperature and high voltage environment by controlling the temperature.

【0019】偏析相は、誘電体層の一断面(破断面)に
おける面積中、4〜12%の面積比を有することが必要
である。偏析相の面積比率が4%よりも小さい場合に
は、高温、高電圧下での信頼性の寿命時間が顕著に短く
なり、一方、12%よりも大きくなると比誘電率が顕著
に低下するからである。この偏析相の面積比率は、高温
高電圧下での信頼性および高容量化という観点から6〜
10%であることが望ましい。このように、偏析相の面
積比率を4〜12%とするためには、焼成時において最
高温度から800℃までの降温速度を50℃/hr以
下、特には20〜40℃/hrとすることが必要であ
る。これは、降温速度を50℃/hr以下とすることに
より、偏析相の生成を促進し、偏析相割合を4〜12%
にすることができるのである。
It is necessary that the segregation phase has an area ratio of 4 to 12% in the area of one cross section (fracture surface) of the dielectric layer. When the area ratio of the segregation phase is smaller than 4%, the life time of reliability at high temperature and high voltage is remarkably shortened, while when it is larger than 12%, the relative dielectric constant is remarkably lowered. Is. The area ratio of the segregated phase is 6 to 6 from the viewpoint of reliability and high capacity under high temperature and high voltage.
Desirably, it is 10%. Thus, in order to set the area ratio of the segregation phase to 4 to 12%, the temperature lowering rate from the maximum temperature to 800 ° C during firing should be 50 ° C / hr or less, and particularly 20 to 40 ° C / hr. is necessary. This is because when the cooling rate is set to 50 ° C./hr or less, the generation of the segregation phase is promoted, and the segregation phase ratio is 4 to 12%.
It can be.

【0020】本発明の積層型コンデンサは、例えば、先
ず、上記した誘電体磁器組成物に所定のバインダー、可
塑剤を添加し誘電体層用のスリップを作製するととも
に、例えば、Niに所定のバインダー、可塑剤を添加し
内部電極用のスリップを作製する。そして、台板上に、
誘電体層用のスリップをドクターブレード法により複数
回塗布し、厚みが5〜14μmの厚みの誘電体成形膜を
形成し、この誘電体成形膜の表面に内部電極用スリップ
をスクリーン印刷して所定形状の内部電極膜を形成す
る。この工程を所望の容量が得られるまで繰り返した
後、酸素分圧が3×10-5〜3×10-3Paの非還元性
雰囲気において最高温度1200〜1300℃で1〜5
時間焼成し、この最高温度から800℃までの降温速度
を20〜50℃/hrとする。この後、窒素雰囲気にお
いて900〜1100℃で2〜7時間熱処理することに
より、本発明の積層型コンデンサを得る。
In the multilayer capacitor of the present invention, for example, first, a predetermined binder and a plasticizer are added to the above-mentioned dielectric ceramic composition to prepare a slip for a dielectric layer and, for example, a predetermined binder is added to Ni. , Add a plasticizer to make a slip for the internal electrode. And on the base plate,
The dielectric layer slip is applied multiple times by the doctor blade method to form a dielectric molding film having a thickness of 5 to 14 μm, and the internal electrode slip is screen-printed on the surface of the dielectric molding film to a predetermined size. A shaped internal electrode film is formed. After repeating this step until the desired capacity is obtained, the maximum temperature is 1200 to 1300 ° C. for 1 to 5 in a non-reducing atmosphere having an oxygen partial pressure of 3 × 10 −5 to 3 × 10 −3 Pa.
Firing is performed for an hour, and the rate of temperature decrease from this maximum temperature to 800 ° C. is 20 to 50 ° C./hr. Then, heat treatment is performed in a nitrogen atmosphere at 900 to 1100 ° C. for 2 to 7 hours to obtain the multilayer capacitor of the present invention.

【0021】[0021]

【実施例】出発原料として水熱合成法により得られた平
均粒径0.5μmのBa(Ti、Zr)O3 粉末を用
い、このBa(Ti、Zr)O3 100モル部に対して
水熱合成法により得られた平均粒径1.0μmのCaT
iO3 を0.05モル部添加した成分を作製し、この成
分100重量部に対してNd2 3 を0.5重量部、M
nO2 を0.2重量部添加し、混合して主成分を作製す
る。この主成分100重量部に対して、Li2 O、Si
2 、B2 3 のモル比が表1に示す比となる仮焼した
粒界相成分を、表1に示す量だけ添加し、ZrO2 ボー
ルにより混合し、バインダー、可塑剤を加え、誘電体層
用スリップを得た。
EXAMPLE A Ba (Ti, Zr) O 3 powder having an average particle size of 0.5 μm obtained by a hydrothermal synthesis method was used as a starting material, and 100 parts by mole of this Ba (Ti, Zr) O 3 was mixed with water. CaT having an average particle size of 1.0 μm obtained by a thermal synthesis method
A component was prepared by adding 0.05 mol part of iO 3 , and 0.5 part by weight of Nd 2 O 3 and M were added to 100 parts by weight of this component.
0.2 parts by weight of nO 2 is added and mixed to prepare the main component. For 100 parts by weight of this main component, Li 2 O, Si
A calcined grain boundary phase component having a molar ratio of O 2 and B 2 O 3 shown in Table 1 was added in an amount shown in Table 1, mixed with ZrO 2 balls, and a binder and a plasticizer were added. A slip for a dielectric layer was obtained.

【0022】また、Niとテルピネオールを添加し、A
2 3 ボールにより混合し、バインダー、可塑剤を加
え、内部電極層用スリップを得た。
In addition, Ni and terpineol were added, and A
mixed by l 2 O 3 balls, a binder, a plasticizer is added to give a slip internal electrode layer.

【0023】そして、誘電体層用スリップを台板にドク
ターブレード法により複数回塗布して、焼成後の厚みが
表1の厚みとなるように誘電体成形膜を作製し、この誘
電体成形膜の上面に、内部電極層用スリップをクシ型構
造と成るようにスクリーン印刷し、誘電体成形膜の形成
から電極膜の形成までの工程を20回繰り返し、誘電体
成形膜を20層有する積層成形体を作製した。この積層
成形体を熱圧着後、酸素分圧が3×10-4Paの非還元
性雰囲気において1250℃で2時間焼成し、800℃
までの降温速度を表1に示す速度として冷却した後、窒
素雰囲気中において1000℃で5時間熱処理した。こ
の後、該焼結体の両端面に、Cuからなる外部電極を形
成し、本発明の積層型コンデンサを得た。
Then, the dielectric layer slip was applied to the base plate a plurality of times by the doctor blade method to prepare a dielectric molded film so that the thickness after firing would be the thickness shown in Table 1, and this dielectric molded film was formed. The internal electrode layer slip is screen-printed on the upper surface of the so as to form a comb structure, and the steps from the formation of the dielectric molding film to the formation of the electrode film are repeated 20 times to form a laminated molding having 20 layers of the dielectric molding film. The body was made. After thermocompression bonding of the laminated molded body, the laminated molded body is fired at 1250 ° C. for 2 hours in a non-reducing atmosphere having an oxygen partial pressure of 3 × 10 −4 Pa.
After cooling at a temperature falling rate of up to the rate shown in Table 1, heat treatment was performed at 1000 ° C. for 5 hours in a nitrogen atmosphere. Then, external electrodes made of Cu were formed on both end faces of the sintered body to obtain a multilayer capacitor of the present invention.

【0024】このようにして得られた積層型コンデンサ
に対して、誘電体層厚みを走査型電子顕微鏡(SEM)
にて観察、測定するとともに、誘電体層中の偏析相の存
在状態を透過電子顕微鏡(TEM)にて観察した。偏析
相の割合は、SEM観察した写真の偏析部分を画像解析
により面積を算出して求めた。また、容量を、LCRメ
ータで、測定周波数1kHz、入力信号レベル1Vrm
sという条件で測定し、誘電体層一層当たりの容量に換
算して求めた。
With respect to the multilayer capacitor thus obtained, the thickness of the dielectric layer was determined by scanning electron microscope (SEM).
And the state of segregation phase in the dielectric layer was observed with a transmission electron microscope (TEM). The proportion of the segregated phase was determined by calculating the area of the segregated portion of the SEM-observed photograph by image analysis. In addition, the capacity was measured with an LCR meter at a measurement frequency of 1 kHz and an input signal level of 1 Vrm.
It was measured under the condition of s and converted into the capacitance per one dielectric layer.

【0025】さらに、150℃の測定炉中で誘電体厚み
に対して8V/μmの電圧を印加し、ショート故障に至
るまでの時間(寿命)を測定し、この結果を表1に示
す。
Further, a voltage (8 V / μm) was applied to the dielectric thickness in a measuring furnace at 150 ° C., and the time (life) until a short circuit failure was measured. The results are shown in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】この表1の結果より、本発明の試料では2
50nF以上の高容量であり、また、150℃、8V/
μmの電圧を印加した場合でも、ショート故障にいたる
までの時間が185時間以上と長く、高温、高電圧の環
境下であっても、信頼性が高く、長寿命であることが判
る。
From the results shown in Table 1, the sample of the present invention is 2
High capacity of 50 nF or more, and 150 ° C., 8 V /
Even when a voltage of μm is applied, it takes a long time to reach a short circuit failure of 185 hours or more, and it can be seen that the reliability is high and the life is long even in an environment of high temperature and high voltage.

【0028】図1に、本発明のNo.7の積層型コンデン
サの断面をTEMにて5000倍に拡大した結果を示
す。図において、符号1は誘電体層、符号2は内部電極
層、符号3は(Ba,Ca)(Ti,Zr)O3 からな
るセラミック粒子、符号4は偏析相を示す。
FIG. 1 shows the results of enlarging the cross section of the laminated type capacitor No. 7 of the present invention by 5000 times with a TEM. In the figure, reference numeral 1 indicates a dielectric layer, reference numeral 2 indicates an internal electrode layer, reference numeral 3 indicates ceramic particles made of (Ba, Ca) (Ti, Zr) O 3 , and reference numeral 4 indicates a segregation phase.

【0029】[0029]

【発明の効果】本発明の積層型コンデンサでは、チタン
ジルコン酸バリウム100重量部に対してLi,Si,
BをそれぞれLi2 O,SiO2 ,B2 3 換算で総量
0.4〜1.2重量部含有する誘電体層の厚みを3〜1
0μmとするとともに、Li,SiおよびBのうち少な
くとも2種を含有する複合酸化物からなる偏析相の面積
の割合を、誘電体層の破断面における面積の4〜12%
としたので、誘電体層の厚みが3〜10μmと薄い場合
でも、高温、高電圧の環境下における寿命を向上するこ
とができる。
In the multilayer capacitor of the present invention, 100 parts by weight of barium titanium zirconate is mixed with Li, Si,
The dielectric layer containing B in the total amount of 0.4 to 1.2 parts by weight in terms of Li 2 O, SiO 2 , and B 2 O 3 has a thickness of 3 to 1 respectively.
The area ratio of the segregation phase composed of a composite oxide containing at least two of Li, Si and B is 4 to 12% of the area of the fracture surface of the dielectric layer.
Therefore, even when the thickness of the dielectric layer is as thin as 3 to 10 μm, the life can be improved under the environment of high temperature and high voltage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の試料No.7の拡大断面図である。FIG. 1 is an enlarged sectional view of Sample No. 7 of the present invention.

【符号の説明】[Explanation of symbols]

1・・・誘電体層 2・・・内部電極層 3・・・セラミック粒子 4・・・偏析相 1 ... Dielectric layer 2 ... Internal electrode layer 3 ... Ceramic particle 4 ... Segregation phase

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】チタンジルコン酸バリウムを主成分とし、
このチタンジルコン酸バリウム100重量部に対してL
i,Si,BをそれぞれLi2 O,SiO2 ,B2 3
換算で総量0.4〜1.2重量部含有する誘電体層と、
卑金属からなる内部電極層とを交互に積層してなる積層
型コンデンサであって、前記誘電体層が3〜10μmの
厚みを有するとともに、前記誘電体層中に、Li,Si
およびBのうち少なくとも2種を含有する複合酸化物か
らなる偏析相が、前記誘電体層の破断面において4〜1
2%の面積比で存在することを特徴とする積層型コンデ
ンサ。
1. A barium titanium zirconate as a main component,
L to 100 parts by weight of this barium titanium zirconate
i, Si and B are replaced with Li 2 O, SiO 2 and B 2 O 3 respectively.
A dielectric layer containing a total amount of 0.4 to 1.2 parts by weight,
A multilayer capacitor, wherein internal electrode layers made of a base metal are alternately laminated, wherein the dielectric layer has a thickness of 3 to 10 μm, and Li, Si are contained in the dielectric layer.
And a segregation phase composed of a composite oxide containing at least two of B is 4 to 1 in the fracture surface of the dielectric layer.
A multilayer capacitor characterized by being present in an area ratio of 2%.
JP25343695A 1995-09-29 1995-09-29 Laminated capacitor Pending JPH0997734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25343695A JPH0997734A (en) 1995-09-29 1995-09-29 Laminated capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25343695A JPH0997734A (en) 1995-09-29 1995-09-29 Laminated capacitor

Publications (1)

Publication Number Publication Date
JPH0997734A true JPH0997734A (en) 1997-04-08

Family

ID=17251382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25343695A Pending JPH0997734A (en) 1995-09-29 1995-09-29 Laminated capacitor

Country Status (1)

Country Link
JP (1) JPH0997734A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630832A2 (en) 2004-08-30 2006-03-01 TDK Corporation Ceramic electronic device and the production method
KR100645710B1 (en) * 1999-03-19 2006-11-13 다이요 유덴 가부시키가이샤 Multi layer ceramic capacitor
US7538057B2 (en) 2004-06-18 2009-05-26 Tdk Corporation Ceramic electronic device and the production method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100645710B1 (en) * 1999-03-19 2006-11-13 다이요 유덴 가부시키가이샤 Multi layer ceramic capacitor
US7538057B2 (en) 2004-06-18 2009-05-26 Tdk Corporation Ceramic electronic device and the production method
EP1630832A2 (en) 2004-08-30 2006-03-01 TDK Corporation Ceramic electronic device and the production method
US7419927B2 (en) 2004-08-30 2008-09-02 Tdk Corporation Ceramic electronic device and the production method
US7550402B2 (en) 2004-08-30 2009-06-23 Tdk Corporation Ceramic electronic device and the production method

Similar Documents

Publication Publication Date Title
KR100201201B1 (en) Monolithic ceramic capacitor
JP3024537B2 (en) Multilayer ceramic capacitors
JP2001006966A (en) Ceramic capacitor and its manufacture
JPWO2009041160A1 (en) Dielectric ceramic and multilayer ceramic capacitor
JP2566995B2 (en) High dielectric constant porcelain composition and ceramic capacitor
JP2004323315A (en) Dielectric ceramic composition, its production method, and multilayer ceramic capacitor obtained by using the same
JP3363322B2 (en) Multilayer capacitors
JP2008081351A (en) Dielectric ceramic, multilayer ceramic capacitor, and method for manufacturing the same
JP4729847B2 (en) Non-reducing dielectric ceramic and multilayer ceramic capacitors
JPH0997734A (en) Laminated capacitor
JP3634930B2 (en) Dielectric porcelain composition
JP3287980B2 (en) Multilayer capacitors
JP2000185969A (en) Dielectric ceramic composition
JPH11302071A (en) Dielectric ceramic, laminated ceramic capacitor and its production
JP3245342B2 (en) Manufacturing method of multilayer capacitor
JP2004210613A (en) Dielectric ceramic, its producing method and laminated ceramic capacitor
JP2002338343A (en) Method for producing dielectric ceramic composition and method for producing electronic parts
JP3620314B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP2001278662A (en) Method for manufacturing dielectric ceramic
JP5000088B2 (en) Method for manufacturing dielectric ceramic composition and method for manufacturing ceramic capacitor
JPH10279353A (en) Dielectric ceramic
JP3316717B2 (en) Multilayer ceramic capacitors
JPS6227029B2 (en)
JPH11157928A (en) Dielectric ceramic
JP2926827B2 (en) Dielectric porcelain composition