JPH0996443A - Heat-exchanger for hot water supplying apparatus - Google Patents

Heat-exchanger for hot water supplying apparatus

Info

Publication number
JPH0996443A
JPH0996443A JP7277097A JP27709795A JPH0996443A JP H0996443 A JPH0996443 A JP H0996443A JP 7277097 A JP7277097 A JP 7277097A JP 27709795 A JP27709795 A JP 27709795A JP H0996443 A JPH0996443 A JP H0996443A
Authority
JP
Japan
Prior art keywords
pipe
hot water
heat
heat exchanger
pass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7277097A
Other languages
Japanese (ja)
Other versions
JP3308437B2 (en
Inventor
Mikio Ochi
幹夫 越智
Yukihisa Ohira
恭久 大平
Kiyotaka Nakano
清隆 中野
Toru Tsuruta
透 鶴田
Hiroki Maruyama
浩樹 丸山
Takayuki Otani
孝幸 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON UPRO KK
JFE Steel Corp
Toto Ltd
Original Assignee
NIPPON UPRO KK
Toto Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON UPRO KK, Toto Ltd, Kawasaki Steel Corp filed Critical NIPPON UPRO KK
Priority to JP27709795A priority Critical patent/JP3308437B2/en
Publication of JPH0996443A publication Critical patent/JPH0996443A/en
Application granted granted Critical
Publication of JP3308437B2 publication Critical patent/JP3308437B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a heat-exchanger for hot water supplying apparatus, which can prevent the reduction of a temperature right after the resumption of a hot water supplying after the usage of the hot water supplying is shut off, from generating. SOLUTION: A heat absorbing pipe of a heat-exchanger consists of a plurality of paths 12-22 being connected by fins 15, and combining pipes 24-32 which connect between respective paths. To the fourth combining pipe 30, a by-pass pipe 17 which is branched from a water supplying pipe is joined. The heat absorbing quantity for the upstream side part from the fourth combining pipe 30 of the heat absorbing pipe, is selected from a range from 30% to 65% of the heat absorbing quantity of the overall heat absorbing pipe. The ratio of the flow rate of the by-pass pipe 17 to the total flow rate is set at 0.50. The internal diameters of the first path 12-the fourth path 18 are set smaller than the internal diameters of the fifth path 20 and the sixth path 22.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、供給された水を加
熱して湯にし、浴槽や給湯水栓等に給湯する給湯機の熱
交換器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger for a water heater that heats supplied water into hot water and supplies the water to a bathtub, a hot water faucet, or the like.

【0002】[0002]

【従来の技術】従来、給湯機に供給された水が、バーナ
の燃焼排気により加熱される吸熱部において効率的な熱
伝達を受けられるよう、吸熱部に複数枚のフィンを並設
し、また、供給された水を瞬間加熱する吸熱管が、各フ
ィンを貫通しつつ吸熱部を何度も横切るよう、蛇行状に
複数回折曲げられた構成の熱交換器が知られている。上
記吸熱部を横切る吸熱管の複数の部位を、以下「パス」
と呼ぶ。この熱交換器では、給湯使用中、給水管の水は
各パスを通過する度に加熱されて昇温し、給湯管に連通
する最下流パスの出口で最も高温(=設定湯温)となっ
て出湯する。
2. Description of the Related Art Conventionally, a plurality of fins are arranged side by side in a heat absorbing portion so that water supplied to a water heater can efficiently receive heat in a heat absorbing portion heated by combustion exhaust of a burner. There is known a heat exchanger having a structure in which a heat-absorbing tube for instantaneously heating supplied water is bent in a zigzag manner so as to cross each heat-absorbing portion many times while penetrating each fin. A plurality of parts of the heat absorption tube that crosses the heat absorption part will be referred to as "passes"
Call. In this heat exchanger, while hot water is being used, the water in the water supply pipe is heated and rises in temperature each time it passes through each path, and the hottest (= set hot water temperature) is reached at the outlet of the most downstream path communicating with the hot water supply pipe. Take a bath.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記熱交換
器において給湯の使用を中断すると、吸熱管内の水の移
動はその時点で停止する。しかし、上記各フィンは、一
般に銅板等の熱伝導率の高い材質により構成されている
ので、最下流パスの出口(吸熱部の出口)付近の熱は、
各フィンを介して他の部位に伝達されるから、吸熱部内
の水温は次第に均一化する。そのため、例えば図1に示
すように、給湯使用を中断したときの符号6で示す最下
流パスの出口の水温は、略25℃になり、定常出湯中
(給湯使用中)のときの水温である略40℃より低下す
る(なお、符号1は、給水管に連通する最上流パスを、
符号2〜5は、上記パス1、6の間に設けられる各々の
パスを示す)。
By the way, when the use of the hot water supply in the heat exchanger is interrupted, the movement of the water in the heat absorption tube is stopped at that time. However, since the fins are generally made of a material having a high thermal conductivity such as a copper plate, the heat near the outlet of the most downstream path (exit of the heat absorbing portion) is
Since it is transmitted to other parts via each fin, the water temperature in the heat absorbing part is gradually made uniform. Therefore, as shown in FIG. 1, for example, the water temperature at the outlet of the most downstream path indicated by reference numeral 6 when the use of hot water supply is interrupted is approximately 25 ° C., which is the water temperature during steady tapping (when hot water is being used). The temperature is lower than about 40 ° C. (Note that reference numeral 1 indicates the most upstream path communicating with the water supply pipe,
Reference numerals 2 to 5 indicate respective paths provided between the paths 1 and 6).

【0004】よって、この状態で給湯使用を再開する
と、吸熱部の加熱を速やかに再開しても、最下流パスの
出口の水温が最も高温となる温度分布が形成されるまで
の間、出湯温度が設定湯温に達せず、シャワー等の使用
者に不快感を与えるという問題がある。
Therefore, when hot water supply is resumed in this state, even if heating of the heat absorbing portion is promptly restarted, the hot water outlet temperature is kept until the temperature distribution where the water temperature at the outlet of the most downstream path becomes the highest temperature is formed. However, there is a problem that the set hot water temperature is not reached and the user such as a shower is uncomfortable.

【0005】そこで、吸熱管をバイパスするバイパス管
と、このバイパス管にバイパス流量比を制御する流量制
御弁とを設け、給水の一部をバイパス管に流すことによ
り吸熱部内の水温を高温に保つと共に、再出湯時の湯温
低下を防止する構成の熱交換器が提案された。
Therefore, a bypass pipe for bypassing the heat absorption pipe and a flow control valve for controlling the bypass flow ratio are provided in this bypass pipe, and a part of the feed water is caused to flow through the bypass pipe to keep the water temperature in the heat absorption portion high. At the same time, a heat exchanger having a structure that prevents a decrease in hot water temperature when tapping hot water again was proposed.

【0006】しかし、上記流量制御弁は高価であるた
め、高級機種にしか使用できない。そこで、バイパス管
に上記流量制御弁を設けずに、バイパス流量比を一定に
制御する方法が提案された。
However, since the flow control valve is expensive, it can only be used in high-end models. Therefore, a method has been proposed in which the bypass flow ratio is controlled to be constant without providing the flow control valve in the bypass pipe.

【0007】この方法でも、給水の一部を所定の流量比
でバイパス管側に流すことにより、給湯使用中断中の吸
熱部内の平均水温を、図2に示すように、図1で示した
ものより高温(30℃)に保つことができる。しかし、
実際には給湯使用中断の後、再出湯直後に定常出湯中と
同じ比率でバイパス管からの水が吸熱管からの湯に混合
され、混合後の出湯温はバイパス管がないときのそれと
同じになるので、再出湯直後の湯温は、上記の場合と同
様、25℃になってしまい、再出湯直後の湯温の温度低
下を防止する効果はなかった。
Also in this method, the average water temperature in the heat absorbing portion during the hot water supply interruption is shown in FIG. 1 by flowing a part of the water supply to the bypass pipe side at a predetermined flow rate ratio, as shown in FIG. It can be maintained at a higher temperature (30 ° C). But,
Actually, after the hot water supply is interrupted, the water from the bypass pipe is mixed with the hot water from the endothermic pipe at the same ratio as in the steady hot water immediately after the hot water is again discharged, and the hot water temperature after mixing is the same as that when there is no bypass pipe. Therefore, the hot water temperature immediately after the re-hot water was 25 ° C. as in the above case, and there was no effect of preventing the decrease in the hot water temperature immediately after the hot water was re-poured.

【0008】従って本発明の目的は、給水を加熱するた
めの吸熱管の一部をバイパスするバイパス管に、バイパ
ス流量比を制御する流量制御弁を設けなくても、給湯使
用を中断した後、再出湯直後の湯温の低下を防止するこ
とが可能な給湯機の熱交換器を提供することにある。
Therefore, an object of the present invention is to provide a bypass pipe for bypassing a part of an endothermic pipe for heating water supply without providing a flow control valve for controlling a bypass flow ratio, It is to provide a heat exchanger of a water heater capable of preventing a decrease in hot water temperature immediately after re-hot water is discharged.

【0009】[0009]

【解題を解決するための手段】本発明は、給水管に接続
された始端と給湯管に接続された終端とを有して全体と
して1本の通水管路になるよう形成された吸熱管を備え
る給湯機の熱交換器において、給水管と吸熱管の特定箇
所とを直接結ぶバイパス管を備えたものである。そし
て、上記特定箇所は、吸熱管の終端よりも上流側の位置
であり、かつ、吸熱管の始端から特定箇所までの間の吸
熱量が吸熱管全体の吸熱量の3割以上となるように選定
されている。
DISCLOSURE OF THE INVENTION The present invention provides an endothermic pipe which has a starting end connected to a water supply pipe and an end connected to a hot water supply pipe and is formed so as to form one water passage as a whole. A heat exchanger of a hot water supply device provided with a bypass pipe that directly connects a water supply pipe and a specific portion of a heat absorption pipe. The specific location is located upstream of the end of the heat absorbing tube, and the amount of heat absorbed from the starting end of the heat absorbing tube to the specific location is 30% or more of the amount of heat absorbed by the entire heat absorbing tube. It has been selected.

【0010】本発明の1つの態様では、始端から特定箇
所までの吸熱量が吸熱管全体の吸熱量の3割以上6割以
下になるように、上記特定箇所が選定される。
In one aspect of the present invention, the specific location is selected so that the heat absorption amount from the starting end to the specific location is 30% or more and 60% or less of the heat absorption amount of the entire endothermic tube.

【0011】また、別の態様では、始端から特定箇所ま
での吸熱量が吸熱管全体の吸熱量の6割以上6割5分以
下に選定される。
In another aspect, the amount of heat absorption from the starting end to a specific location is selected to be 60% to 60% of the amount of heat absorption of the entire heat absorption tube.

【0012】また、別の態様では、吸熱管は、特定箇所
より上流側の内径が下流側のそれより小さく形成され
る。
In another aspect, the heat absorption tube is formed so that the inner diameter on the upstream side of the specific location is smaller than that on the downstream side.

【0013】また、別の態様では、バイパス管の流水量
が吸熱管の特定箇所より上流側の部位の流水量と等しい
かそれ以下になるよう、バイパス管の内径が選定され
る。
In another aspect, the inner diameter of the bypass pipe is selected so that the amount of water flowing in the bypass pipe is equal to or less than the amount of water flowing in a portion upstream of the specific portion of the heat absorbing pipe.

【0014】更に、別の態様では、給水管と吸熱管の前
記特定箇所よりも上流側の箇所とを直接結ぶ第2のバイ
パス管を備える。
Further, in another aspect, a second bypass pipe is provided which directly connects the water supply pipe and a portion of the heat absorption pipe upstream of the specific portion.

【0015】本発明によれば、バイパス管が接続される
特定箇所として、吸熱管の終端よりは上流側であって、
しかも、特定箇所より上流側の吸熱量が吸熱管全体の吸
熱量の3割以上となるような位置を選定することによ
り、給湯が中断している間の吸熱管の平均水温を上昇さ
せることができ、また、吸熱管からの出湯に給水が直接
混入するのを防止できるので、再出湯直後の出湯温度も
上昇させることができる。この観点から、望ましくは、
吸熱管全体の吸熱量の少なくとも3割以上6割以下の吸
熱量に相当する箇所、又は、吸熱管全体の吸熱量の6割
以上6割5分以下の吸熱量に相当する箇所に、上記特定
箇所が選定される。
According to the present invention, as the specific portion to which the bypass pipe is connected, it is upstream of the end of the heat absorbing pipe,
Moreover, the average water temperature of the endothermic pipe can be increased while hot water supply is interrupted by selecting a position where the amount of heat absorbed on the upstream side of the specific location is 30% or more of the amount of heat absorbed by the whole endothermic pipe. In addition, since it is possible to prevent the feed water from being directly mixed into the hot water discharged from the endothermic pipe, the hot water temperature immediately after re-hot water can be raised. From this point of view,
The above-mentioned specification is made at a position corresponding to an endothermic amount of at least 30% to 60% of the endothermic amount of the whole endothermic pipe, or a position corresponding to an endothermic amount of 60% to 60% of the total endothermic amount. The location is selected.

【0016】また、本発明の一つの態様によれば、吸熱
管は、特定箇所より上流側の内径が下流側のそれより小
径に形成されるので、上流側部位での給水の流速低下を
防止でき、吸熱管から給水への熱の伝達率低下を防止で
きる。そのため、吸熱管内での局部的な沸騰を防止し易
くなる。
Further, according to one aspect of the present invention, the heat absorbing pipe is formed so that the inner diameter on the upstream side of the specific portion is smaller than that on the downstream side, so that the flow velocity of the water supply at the upstream portion is prevented from decreasing. Therefore, it is possible to prevent a reduction in the heat transfer rate from the heat absorbing tube to the water supply. Therefore, it becomes easy to prevent local boiling in the heat absorbing tube.

【0017】また、別の態様によれば、バイパス管の流
量が、吸熱管の特定箇所より上流側の部位の流量と等し
いかそれ以下になっているので、上記と同様に、特定箇
所の上流側部位での給水の流速低下を防止でき、吸熱管
から給水への熱の伝達率低下を防止できる。そのため、
吸熱管内での局部的な沸騰が防止し易くなる。
According to another aspect, since the flow rate of the bypass pipe is equal to or less than the flow rate of the upstream side of the specific location of the heat absorption tube, the upstream of the specific location is similar to the above. It is possible to prevent a decrease in the flow velocity of the water supply at the side portion, and prevent a decrease in the heat transfer rate from the heat absorbing tube to the water supply. for that reason,
It becomes easy to prevent local boiling in the heat absorption tube.

【0018】更に、別の態様によれば、給水管と吸熱管
の前記特定箇所よりも上流側の箇所とを直接結ぶ第2の
バイパス管を備えることとしたので、第2のバイパス管
により給水がバイパスされる吸熱管の部位の湯温を更に
上昇させることができる。
Further, according to another aspect, since the second bypass pipe which directly connects the water supply pipe and the upstream side of the specific location of the heat absorption pipe is provided, the water supply is performed by the second bypass pipe. It is possible to further raise the hot water temperature at the part of the heat absorption tube bypassed.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を、図
面により詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings.

【0020】図3は、本発明の一実施形態が適用される
給湯機の全体構成を示すブロック図である。
FIG. 3 is a block diagram showing the overall structure of a water heater to which one embodiment of the present invention is applied.

【0021】上記給湯機は、バーナ(図示しない)の燃
焼排気により加熱される熱交換器7、給水源(図示しな
い)からの水を熱交換器7内に配管される吸熱管13
(図4参照)に供給するための給水管1、給水管1内の
通水を検出するための通水センサ3を備える。上記給湯
機は、また、バーナ(図示しない)等を冷却するための
ドラム冷却部5、熱交換器7(吸熱管13)からの出湯
を浴槽や給湯用水栓(いずれも図示しない)等に供給す
るための給湯管9をも備える。
The water heater has a heat exchanger 7 which is heated by combustion and exhaust from a burner (not shown), and a heat absorbing pipe 13 which pipes water from a water supply source (not shown) into the heat exchanger 7.
The water supply pipe 1 for supplying the water (see FIG. 4) and the water flow sensor 3 for detecting the water flow in the water supply pipe 1 are provided. The water heater also supplies hot water from a drum cooling unit 5 for cooling a burner (not shown) and the like, a heat exchanger 7 (heat absorbing tube 13) to a bathtub, a hot water tap (not shown), and the like. A hot water supply pipe 9 is also provided.

【0022】上記構成において、通水センサ3からの検
出信号により所定流量以上の通水があると判断したと
き、給湯機各部を制御するコントローラ(図示しない)
は、温度設定部(図示しない)により設定された湯温設
定値での出湯が熱交換器7から得られるよう、バーナ
(図示しない)の燃焼制御を行う。
In the above structure, when it is determined by the detection signal from the water flow sensor 3 that there is water flow of a predetermined flow rate or more, a controller (not shown) which controls each part of the water heater.
Performs burner (not shown) combustion control so that hot water at a hot water temperature set value set by a temperature setting unit (not shown) can be obtained from the heat exchanger 7.

【0023】図4は、図3の熱交換器7の詳細構成を示
す。
FIG. 4 shows the detailed structure of the heat exchanger 7 of FIG.

【0024】熱交換器7は、バーナの燃焼排気を受ける
ための吸熱部11、吸熱部11を何度も横切るよう全体
として複数回に亘り蛇行状に折り曲げられ、給水管1か
らの給水を通して湯にするための1本の吸熱管13を備
える。熱交換器7は、吸熱管13全体の熱伝達性を高め
るために吸熱部11に複数個並設されたフィン15、給
水管1の下流端と吸熱管13の下流寄りの部位とを直結
し、最上流側から吸熱管13に流入しようとする水の一
部を吸熱管13の下流寄りの部位から流入させるように
したバイパス管17をも備える。
The heat exchanger 7 is bent in a meandering shape as a whole a plurality of times so as to traverse the heat absorbing portion 11 and the heat absorbing portion 11 for receiving the combustion exhaust gas of the burner, and the hot water is supplied from the water supply pipe 1 through the hot water. One endothermic tube 13 is provided. The heat exchanger 7 connects a plurality of fins 15 arranged in parallel in the heat absorbing portion 11 in order to enhance the heat transfer property of the entire heat absorbing tube 13, a downstream end of the water supply tube 1 and a portion of the heat absorbing tube 13 near the downstream side. Also provided is a bypass pipe 17 configured to allow a part of the water, which is about to flow into the heat absorption pipe 13 from the most upstream side, to flow in from a portion of the heat absorption pipe 13 near the downstream side.

【0025】吸熱管13は、吸熱部11を略並行に横切
る複数個の部位(パス)、及び各々のパスを接続するこ
とにより全体として1本の配管(即ち、吸熱管13)を
構成するよう略U字状に湾曲して形成された複数個の結
合管から成る。
The endothermic tube 13 is configured so that a plurality of parts (paths) crossing the endothermic portion 11 in a substantially parallel manner and one pipe (that is, the endothermic tube 13) are formed as a whole by connecting each path. It is composed of a plurality of coupling pipes that are curved in a substantially U shape.

【0026】本実施形態では、吸熱管13は、図示のよ
うに6個のパスと5個の結合管とを備えている。そのた
め、以後の説明では、上記各々のパスについては、給水
管1に連通する最上流側のパスを第1パス12、給湯管
9に連通する最下流側のパスを第6(最終)パス22、
第1パス12と第6パス22との間の各パスを、上流側
から下流側に向って順に第2パス14、第3パス16、
第4パス18、第5パス20と称する。一方、各結合管
については、第1パス12と第2パス14とを接続する
結合管を第1結合管24、第5パス20と第6パス22
とを接続する結合管を第5結合管32、第1結合管24
と第5結合管32との間の各結合管を、上流側から下流
側に向って順に第2結合管26、第3結合管28、第4
結合管30と称する。
In the present embodiment, the heat absorption tube 13 is provided with six paths and five coupling tubes as shown in the figure. Therefore, in the following description, regarding each of the above-mentioned paths, the most upstream path communicating with the water supply pipe 1 is the first path 12, and the most downstream path communicating with the hot water supply pipe 9 is the sixth (final) path 22. ,
Each of the paths between the first path 12 and the sixth path 22 is arranged from the upstream side to the downstream side in order of the second path 14, the third path 16,
These are called the fourth pass 18 and the fifth pass 20. On the other hand, regarding each coupling pipe, a coupling pipe that connects the first pass 12 and the second pass 14 is a first coupling pipe 24, and a fifth pass 20 and a sixth pass 22.
The connecting pipes for connecting the fifth connecting pipe 32 and the first connecting pipe 24
And the fifth coupling pipe 32, the second coupling pipe 26, the third coupling pipe 28, and the fourth coupling pipe 32 in order from the upstream side to the downstream side.
It is referred to as a coupling tube 30.

【0027】本実施形態では、図4に示すように、第4
結合管30がバイパス管17の合流部位となっている。
そして、この合流部位より上流側の第1パス12〜第4
パス18の内径は、これら各パス内での給水の流速低下
や、流速低下に起因する各パスから給水に伝達される熱
の伝達率低下を防止するために、第5パス20及び第6
パス22の内径よりも小径に設定されている。
In this embodiment, as shown in FIG.
The coupling pipe 30 is a confluence part of the bypass pipe 17.
Then, the first path 12 to the fourth path on the upstream side of the confluence portion.
The inner diameters of the paths 18 are set to the fifth path 20 and the sixth path 20 in order to prevent a decrease in the flow rate of the feed water in each of these paths and a decrease in the heat transfer rate of the heat transferred from each path to the feed water due to the decrease in the flow rate.
The diameter is set smaller than the inner diameter of the path 22.

【0028】各々のフィン15には、図5及び図6に示
すように、第1パス12〜第6パス22が全て貫通して
おり、これによって第1パス12〜第6パス22は、各
々のフィン15を介して相互に熱的に連結されている。
即ち、バーナ(図示しない)がコントローラ(図示しな
い)により燃焼制御され、バーナからの熱が各々のフィ
ン15に与えられているとき、第1パス12〜第6パス
22は、各々のフィン15から伝達される熱を奪って各
パス内を通る水を加熱する。一方、給水源から給水管1
への通水停止によるバーナの燃焼停止時には、第6パス
22内の最も高温の湯からの熱や、第5パス20内や第
4パス18内の比較的高温の湯からの熱が、各々のフィ
ン15を介して第1パス12内の最も低温の水や、第2
パス14内や第3パス16内の比較的低温の水に伝達さ
れる。その結果、熱交換器7内の温度は、次第に均一化
する。
As shown in FIGS. 5 and 6, each fin 15 is penetrated by all of the first pass 12 to the sixth pass 22, whereby the first pass 12 to the sixth pass 22 are respectively passed. Are thermally coupled to each other via the fins 15 of the.
That is, when the burner (not shown) is combustion-controlled by the controller (not shown) and the heat from the burner is given to each fin 15, the first pass 12 to the sixth pass 22 pass from each fin 15 to each other. It takes away the heat transferred and heats the water passing through each path. On the other hand, from the water supply source to the water supply pipe 1
When the combustion of the burner is stopped due to the stop of water flow to the water, heat from the hottest hot water in the sixth pass 22 and heat from the relatively hot water in the fifth pass 20 and the fourth pass 18 respectively The coldest water in the first pass 12 through the fins 15 of the
The water is transferred to the relatively low temperature water in the path 14 and the third path 16. As a result, the temperature in the heat exchanger 7 gradually becomes uniform.

【0029】本実施形態では、給湯使用中断後の再出湯
直後に、吸熱部11において最も高い平均水温が得ら
れ、且つ、その高い平均水温のままでの出湯が得られる
よう、給水のバイパス流量比を0.5に設定したバイパ
ス管17を採用し、このバイパス管17を介して給水管
1と第4結合管30とを直結している。そのため、最も
温度の低い第1パス内には残りの0.5の給水しか流入
しないこととなり、これにより吸熱部11内の平均水温
が多少上昇する。
In the present embodiment, the bypass flow rate of the hot water supply is adjusted so that the highest average water temperature can be obtained in the heat absorbing section 11 immediately after the hot water is again used after the hot water supply is interrupted, and the hot water can be discharged at the high average water temperature. A bypass pipe 17 having a ratio set to 0.5 is adopted, and the water supply pipe 1 and the fourth coupling pipe 30 are directly connected via the bypass pipe 17. Therefore, only 0.5 of the remaining feed water flows into the first pass having the lowest temperature, which causes the average water temperature in the heat absorbing portion 11 to rise to some extent.

【0030】ここで、バイパス管17のバイパス流量比
が0.5であれば、第4結合管30より上流の第1パス
12〜第4パス18内の給水の流速はそれほど低下せ
ず、従って各パスから給水への熱の伝達率も低下しな
い。そのため、第1パス12〜第4パス18内の温度が
上昇し、局所的な沸騰が発生じて騒音が大きくなるよう
な不具合は起らない。よって、局所的な沸騰を発生させ
ないためにはバイパス流量比をあまり大きくとらない方
が望ましい。
Here, if the bypass flow ratio of the bypass pipe 17 is 0.5, the flow velocity of the feed water in the first pass 12 to the fourth pass 18 upstream of the fourth coupling pipe 30 does not decrease so much, and The heat transfer rate from each pass to the water supply does not decrease. Therefore, the temperature in the first pass 12 to the fourth pass 18 does not rise, and local boiling does not occur, which causes a problem that noise is increased. Therefore, in order to prevent local boiling, it is desirable that the bypass flow rate ratio is not too large.

【0031】次に、上記構成のバイパス管17の合流位
置を、第4結合管30に設定することにより、給湯使用
中断後の再出湯直後に最も高い平均水温での出湯が得ら
れる理由を、図7を参照して説明する。
Next, by setting the merging position of the bypass pipe 17 having the above-mentioned structure to the fourth connecting pipe 30, the reason why the hot water with the highest average water temperature can be obtained immediately after the re-hot water after the interruption of the hot water supply use is obtained. This will be described with reference to FIG.

【0032】図7において、破線(直線)19は、給水
のバイパス流量比、実線(曲線)21は、給湯使用中断
時の各々(6個)のパスにおける平均水温を示してい
る。同図より、平均水温を30℃以上にするには、吸熱
管13全体が受ける吸熱量の少なくとも3割程度が得ら
れるよう、バイパス流量比を略0.7、合流位置を符号
25で示すように第2パス14の出口付近にするか、又
は、バイパス流量比を略0.3、合流位置を最終パス2
2寄りにすればよいことが分かる。
In FIG. 7, the broken line (straight line) 19 shows the bypass flow rate of the hot water supply, and the solid line (curve) 21 shows the average water temperature in each (6) passes when hot water supply is interrupted. From the figure, in order to obtain an average water temperature of 30 ° C. or higher, the bypass flow rate ratio is set to about 0.7, and the joining position is indicated by reference numeral 25 so that at least 30% of the amount of heat absorbed by the entire endothermic tube 13 can be obtained. Near the exit of the second pass 14, or the bypass flow ratio is about 0.3 and the confluence position is the final pass 2.
You can see that it is better to move closer to 2.

【0033】また、平均水温を符号23で示す32℃程
度(最高値)にするには、吸熱管13全体が受ける吸熱
量の少なくとも6割〜6割5分程度が得られるよう、バ
イパス流量比を0.5、合流位置を第4パス20の出口
付近にすればよいことが分かる。これは、下記の(1)
式によっても裏付けられる。以下、この(1)式を用い
て説明する。 (THmax−TC)/2(TSmax−TC)…………(1) 但し、TC:給水温度値、TSmax:最高設定湯温値、TH
max:バイパス管17内の水が吸熱管13内の湯と合流
する直前の吸熱管13の温度値で、TS(設定湯温値)
=TSmaxでも沸騰しない温度値である。
Further, in order to set the average water temperature to about 32 ° C. (maximum value) indicated by reference numeral 23, the bypass flow rate ratio is set so as to obtain at least 60% to 60% of the amount of heat absorbed by the entire heat absorbing tube 13. It is understood that it is sufficient to set 0.5 and the merging position near the exit of the fourth pass 20. This is (1) below
It is also supported by the formula. In the following, description will be given using this equation (1). (THmax-TC) / 2 (TSmax-TC) (1) However, TC: feed water temperature value, TSmax: maximum set hot water temperature value, TH
max: temperature value of the heat absorbing tube 13 immediately before the water in the bypass tube 17 merges with the hot water in the heat absorbing tube 13, and TS (set hot water temperature value)
= Tsmax is a temperature value at which boiling does not occur.

【0034】ここで、TSmax=75℃、THmax=90℃
とし、冬期のためTC=5℃であったとすれば、これら
の値を上記(1)式に代入することにより、(90−
5)/2(75−5)=0.607が得られる。また、
TSmax、THmaxともに上記値と同様とし、夏期のためT
C=20℃であったとすれば、これらの値を上記(1)
式に代入することにより、(90−20)/2(75−
20)=0.636が得られる。この計算結果から、吸
熱管全体の吸熱量に対し、バイパス管の合流位置より上
流側の吸熱管の吸熱量の割合を略6割〜略6割5分程度
になるよう、バイパス管を接続する結合管を選択すれば
よいことが分かる。つまり、本実施形態のように6個の
パスを備える熱交換器では、バイパス管17の合流位置
は第4パス20の出口に位置する第4結合管30という
ことになり、図7の記載と符合する。
Here, TSmax = 75 ° C. and THmax = 90 ° C.
If TC = 5 ° C. due to the winter season, then substituting these values into equation (1) gives (90−
5) / 2 (75-5) = 0.607 is obtained. Also,
Both TSmax and THmax are the same as the above values, and T
If C = 20 ° C, these values should be calculated as in (1) above.
By substituting into the formula, (90-20) / 2 (75-
20) = 0.636 is obtained. From this calculation result, the bypass pipe is connected so that the ratio of the heat absorption amount of the heat absorption pipe on the upstream side of the confluence position of the bypass pipe to the heat absorption amount of the entire heat absorption pipe is about 60% to about 60%. It is understood that the coupling tube should be selected. That is, in the heat exchanger having six passes as in the present embodiment, the confluence position of the bypass pipes 17 is the fourth coupling pipe 30 located at the outlet of the fourth pass 20, and the description of FIG. To match.

【0035】上記構成によれば、バイパス管17の合流
部位を、吸熱管13全体の吸熱量に対し略6割〜略6割
5分程度の吸熱量が得られる第4結合管30に設定した
ので、給湯使用中断中の吸熱部11内の平均水温は、図
1に示した25℃や、図2に示した30℃よりも高い3
2℃となる(図8参照)。この値は、図2の30℃に近
い温度ではある。しかし、上記構成では、図2で説明し
た熱交換器のように、吸熱部出口で吸熱部からの湯とバ
イパス管からの水とが混合されず、バイパス管の合流部
位が最終パスやその近傍部位に設定された熱交換器のよ
うな湯に水が混入する虞もないので、再出湯直後には、
吸熱部内の平均水温である32℃のまま出湯する。よっ
て、給湯使用中断後の再出湯直後における出湯温度の低
下を防止することができる。
According to the above construction, the merging portion of the bypass pipe 17 is set to the fourth coupling pipe 30 capable of obtaining an endothermic amount of about 60 to 60.55 minutes with respect to the total endothermic amount of the endothermic pipe 13. Therefore, the average water temperature in the heat absorbing part 11 during the hot water supply interruption is higher than 25 ° C. shown in FIG. 1 and 30 ° C. shown in FIG.
It becomes 2 degreeC (refer FIG. 8). This value is a temperature close to 30 ° C. in FIG. However, in the above configuration, as in the heat exchanger described in FIG. 2, the hot water from the heat absorbing portion and the water from the bypass pipe are not mixed at the outlet of the heat absorbing portion, and the confluent portion of the bypass pipe is at or near the final path. Since there is no risk that water will mix into hot water such as the heat exchanger set in the part, immediately after re-hot water,
Pour hot water at 32 ° C, which is the average water temperature in the heat absorbing part. Therefore, it is possible to prevent a decrease in the hot water discharge temperature immediately after re-hot water discharge after interruption of hot water supply use.

【0036】本実施形態では、再出湯直後に最も高い平
均水温(32℃)が得られ、且つ、その高い平均水温の
ままでの出湯が得られるよう、バイパス管17の合流部
位を第4結合管30にしたが、上記合流部位を、少なく
とも3割程度の吸熱量が得られる第2パス14の出口付
近(第2結合管26)にしても、平均水温及び出湯温度
を30℃にすることができる(図7参照)。なお、給水
が湯に混入する虞がない点や、給水が吸熱する機会を多
くできることによりアンダーシュートを小さくすること
ができる点を考慮すれば、上記合流部位を、吸熱部11
出口までの距離を長くすることができるよう、第4パス
20の出口付近よりも上流側に設定した方が望ましい。
In the present embodiment, the highest average water temperature (32 ° C.) is obtained immediately after the hot water is re-extracted, and the high water temperature is maintained at the high average water temperature. Although the pipe 30 is used, the average water temperature and the tap water temperature should be 30 ° C. even if the merging portion is near the outlet of the second pass 14 (the second coupling pipe 26) where an endothermic amount of at least about 30% can be obtained. (See FIG. 7). Considering that there is no risk that the water supply mixes with the hot water, and that the undershoot can be reduced by increasing the chances that the water supply absorbs heat, the confluence portion is defined as the heat absorbing portion 11.
It is desirable to set it on the upstream side of the vicinity of the exit of the fourth pass 20 so that the distance to the exit can be increased.

【0037】図9は、本発明の他の実施形態が適用され
る熱交換器を示す。
FIG. 9 shows a heat exchanger to which another embodiment of the present invention is applied.

【0038】本実施形態と前記一実施形態との相違点
は、本実施形態に係る熱交換器が、吸熱部内の平均水温
を更に上昇させるために、上述したバイパス管(以下、
第1バイパス管という)17に加えて、給水管1と第2
パス14の出口の第2結合管26とを直結すべく配管さ
れた第2バイパス管19をも備えている点にある。この
第2バイパス管19には、給水のバイパス流量比が0.
3のものを採用している。
The difference between the present embodiment and the above-mentioned one embodiment is that the heat exchanger according to the present embodiment further increases the average water temperature in the heat absorbing portion by the above-mentioned bypass pipe (hereinafter,
In addition to the first bypass pipe 17), the water supply pipe 1 and the second
The second bypass pipe 19 is also provided so as to directly connect to the second coupling pipe 26 at the exit of the path 14. In this second bypass pipe 19, the bypass flow ratio of the feed water is 0.
It uses 3 items.

【0039】上記構成によれば、第1バイパス管17に
加えて、給水管1と第2結合管26とを直結する第2バ
イパス管19をも備えることとしたので、給湯使用中断
中の熱交換器7内の平均水温は、図8に示した32℃よ
りも更に高い35℃となる(図10参照)。本実施形態
では、図2で説明した熱交換器のように、吸熱部出口で
吸熱管からの湯とバイパス管からの水とが混合されない
ので、再出湯直後には、吸熱部11内の平均水温である
35℃のまま出湯することとなる。よって、本実施形態
においても、一実施形態におけると同様に、給湯使用中
断後の再出湯直後における出湯温度の低下を防止するこ
とができる。
According to the above configuration, in addition to the first bypass pipe 17, the second bypass pipe 19 that directly connects the water supply pipe 1 and the second coupling pipe 26 is also provided. The average water temperature in the exchanger 7 is 35 ° C., which is higher than 32 ° C. shown in FIG. 8 (see FIG. 10). In the present embodiment, as in the heat exchanger described in FIG. 2, the hot water from the heat absorbing tube and the water from the bypass tube are not mixed at the outlet of the heat absorbing section. The water will be discharged at the water temperature of 35 ° C. Therefore, also in the present embodiment, similarly to the one embodiment, it is possible to prevent a decrease in the hot water discharge temperature immediately after the re-hot water discharge after the use of hot water supply is interrupted.

【0040】図11〜図13は、夫々本発明の他の実施
形態に係る第1〜第3変形例を示す。
11 to 13 show first to third modified examples according to other embodiments of the present invention.

【0041】上記各図に示した熱交換器は、図示の都合
上、4個のパスを備えるものを挙げたが、6個のパスを
備える他の実施形態の熱交換器と理論的な相違点はな
い。
Although the heat exchanger shown in each of the above figures is provided with four paths for convenience of illustration, it is theoretically different from the heat exchanger of another embodiment having six paths. There is no point.

【0042】まず、図11の熱交換器では、第1パス5
1と第2パス53とを接続する第1結合管55に合流す
る第1バイパス管57、第2パス53と第3パス59と
を接続する第2結合管61に合流する第2バイパス管6
3、第3パス59と第4パス65とを接続する第3結合
管67に合流する第3バイパス管69、第4パス65の
出口と合流する第4バイパス管71が配管される。
First, in the heat exchanger of FIG. 11, the first pass 5
The first bypass pipe 57 that joins the first coupling pipe 55 that connects the first and second passes 53, and the second bypass pipe 6 that joins the second coupling pipe 61 that connects the second pass 53 and the third pass 59.
3, the third bypass pipe 69 that joins the third coupling pipe 67 that connects the third pass 59 and the fourth pass 65, and the fourth bypass pipe 71 that joins the outlet of the fourth pass 65 are piped.

【0043】次に、図12の熱交換器では、第1パス7
3と第2パス75とを接続する第1結合管77に合流す
る第1バイパス管79、第2パス75と第3パス81と
を接続する第2結合管83に合流する第2バイパス管8
5、第3パス81と第4パス87とを接続する第3結合
管89に合流する第3バイパス管91が配管される。
Next, in the heat exchanger of FIG. 12, the first pass 7
The first bypass pipe 79 that joins the first coupling pipe 77 that connects the third pass 75 and the third bypass 81, and the second bypass pipe 8 that joins the second coupling pipe 83 that connects the second pass 75 and the third pass 81
5. A third bypass pipe 91 is joined to a third coupling pipe 89 that connects the third pass 81 and the fourth pass 87.

【0044】更に、図13の熱交換器では、第1パス9
3と第2パス95とを接続する第1結合管97から分岐
して第2パス95と第3パス101とを接続する第2結
合管103に合流する第1バイパス管99、第1パス9
3の入口から分岐して第4パス105の出口と合流する
第2バイパス管107が配管される。
Further, in the heat exchanger of FIG. 13, the first pass 9
The first bypass pipe 99 and the first pass 9 that branch from the first coupling pipe 97 that connects the third path 101 and the third path 101 and join the second coupling pipe 103 that connects the second path 95 and the third path 101.
A second bypass pipe 107 that branches from the inlet of No. 3 and joins with the outlet of the fourth pass 105 is provided.

【0045】これら各変形例では、夫々異なった態様で
複数個のバイパス管を備えており、いずれも吸熱部内の
平均水温を更に上昇させて、再出湯直後における出湯性
のより一層の向上を図ることが可能であると共に、吸熱
管内におけるドレンの発生を防止することも可能であ
る。
In each of these modified examples, a plurality of bypass pipes are provided in different manners, and in each case, the average water temperature in the heat absorbing portion is further raised to further improve the hot water dischargeability immediately after the re-hot water is discharged. It is also possible to prevent the generation of drain in the heat absorption tube.

【0046】次に、本発明の実施形態に係る熱交換器
と、従来技術に係る2種類の熱交換器とを比較しつつ、
本発明の実施形態に係る熱交換器の方が従来技術に係る
2種類の熱交換器よりも優れている理由を、図14〜図
18を参照して説明する。なお、以下の説明では、簡単
のため、各実施形態及び従来技術とも、吸熱管のパス数
が「4」の熱交換器を例に挙げる。
Next, comparing the heat exchanger according to the embodiment of the present invention with the two types of heat exchangers according to the prior art,
The reason why the heat exchanger according to the embodiment of the present invention is superior to the two types of heat exchangers according to the related art will be described with reference to FIGS. 14 to 18. In the following description, for simplification, in each of the embodiments and the related art, a heat exchanger in which the number of passes of the heat absorbing tube is “4” will be described as an example.

【0047】まず、吸熱管の表面温度Twは、下記の
(2)式により求められる(図14も併せて参照)。
First, the surface temperature Tw of the heat absorbing tube is obtained by the following equation (2) (see also FIG. 14).

【0048】[0048]

【数1】 (2)式は、吸熱管内においてドレン(水滴)が発生す
るのを防止することが可能な吸熱管の壁温(=燃焼ガス
の露点よりも高い温度)を求めるに際して用いられる。
この(2)式は、吸熱管内の通水量が減少する(つま
り、給水のバイパス流量比が大きい)と吸熱管の壁温が
上昇し、湯温が高いと吸熱管の壁温が上昇することを示
している。
[Equation 1] The equation (2) is used to determine the wall temperature of the heat absorbing tube (= temperature higher than the dew point of the combustion gas) capable of preventing the generation of drain (water droplets) in the heat absorbing tube.
This equation (2) shows that the wall temperature of the endothermic tube rises when the amount of water passing through the endothermic tube decreases (that is, the bypass flow rate of the feed water is large), and the wall temperature of the endothermic tube rises when the hot water temperature is high. Is shown.

【0049】ここで、設定湯温値(TS)を、バイパス
流量比を大きくできない比較的高温の75℃に、給水温
度値(TC)を、バイパス流量比を大きくできない比較
的低温の5℃に、吸熱管内の最高湯温値(THmax)を、
吸熱管内において局所的な沸騰をも生じさせない90℃
に、夫々設定する。これら各々の条件は、近年の給湯機
が所謂温調タイプが主流であることから導出されるもの
である。そして、下記の(3)式を用いて給水のバイパ
ス管へのバイパス流量比αを求め、(2)式等を用いて
設定湯温40℃での出湯時の吸熱管内の湯温を算出し、
図15〜図18を参照しながら各実施形態における効果
と上述した従来技術における効果とを比較する。 α=1−{(バイパスされた給水と吸熱管内の湯との合流直後の湯温−給水温度 ) /(バイパスされた給水と吸熱管内の湯との合流直前の湯温−給水温度) } …………(3 ) ここで、図15〜図17に示す各熱交換器において、全
部のパスの吸熱率を同一(即ち、25%)と仮定し、バ
イパスされた給水と吸熱管内の湯との合流直前の湯温を
90℃、第1パスとバイパス管との分岐点である点Aで
の水温(給水温度)を5℃とする。
Here, the set hot water temperature value (TS) is set to a relatively high temperature of 75 ° C. where the bypass flow rate ratio cannot be increased, and the feed water temperature value (TC) is set to a relatively low temperature of 5 ° C. where the bypass flow rate ratio cannot be increased. , The maximum hot water temperature (THmax) in the heat absorption tube
90 ° C that does not cause local boiling in the endothermic tube
, Set each. These respective conditions are derived from the fact that the so-called temperature control type mainstream hot water heaters in recent years are the mainstream. Then, the bypass flow rate ratio α to the bypass pipe of the feed water is obtained using the following formula (3), and the hot water temperature in the heat absorbing pipe at the time of tapping at the set hot water temperature of 40 ° C is calculated using the formula (2). ,
The effects of the respective embodiments and the effects of the above-described conventional technique will be compared with reference to FIGS. α = 1-{(hot water temperature immediately after the bypass water supply and hot water in the heat absorption pipe join-feed water temperature) / (hot water temperature just before the bypass water supply and hot water in the heat absorption pipe join-feed water temperature)} ... (3) Here, in each heat exchanger shown in FIGS. 15 to 17, assuming that the heat absorption rates of all the paths are the same (that is, 25%), the bypassed water supply and the hot water in the heat absorption pipe are The temperature of the hot water immediately before the joining is set to 90 ° C, and the water temperature (supply water temperature) at the branch point A between the first pass and the bypass pipe is set to 5 ° C.

【0050】まず、図15に示す従来の熱交換器におい
て、バイパスされた給水と吸熱管内の湯との合流直後の
湯温を75℃とすれば、バイパス管135のバイパス流
量比αは(3)式によりα=1−{(75−5)/(9
0−5)}=0.176となる。次に、バイパス管13
5の合流部位より下流側に位置する給湯管137の点F
での湯温を40℃とすれば、第4パス131の上記合流
部位より上流側に位置する点Eでの湯温は、(2)式に
よりE={F(F−A)/(1−α)}+A={(40
−5)/(1−0.176)}+5=47.5で、4
7.5℃である。
First, in the conventional heat exchanger shown in FIG. 15, if the temperature of the hot water immediately after the bypassed feed water and the hot water in the heat absorption pipe are joined is 75 ° C., the bypass flow rate ratio α of the bypass pipe 135 is (3 ), Α = 1-{(75-5) / (9
0-5)} = 0.176. Next, the bypass pipe 13
Point F of hot water supply pipe 137 located on the downstream side of the confluence part of 5
If the hot water temperature at 40 ° C. is 40 ° C., the hot water temperature at the point E located on the upstream side of the confluence portion of the fourth pass 131 is E = {F (F−A) / (1 −α)} + A = {(40
-5) / (1-0.176)} + 5 = 47.5, 4
It is 7.5 ° C.

【0051】また、第3パス127と第4パス131と
を接続する第3結合管133の点Dでの湯温は、D=E
−(E−A)×0.25(=吸熱率)=47.5−(4
7.5−5)×0.25=36.9で、36.9℃であ
る。また、第2パス123と第3パス127とを接続す
る第2結合管129の点Cでの湯温は、C=D−(E−
A)×0.25=36.9−(47.5−5)×0.2
5=26.3で、26.3℃である。更に、第1パス1
21と第2パス123とを接続する第1結合管125の
点Bでの湯温は、B=C−(E−A)×0.25=2
6.3−(47.5−5)×0.25=15.7で、1
5.7℃である。このようにして、点B〜点Eにおける
湯温が夫々求められる。
Further, the hot water temperature at the point D of the third coupling pipe 133 connecting the third pass 127 and the fourth pass 131 is D = E
-(EA) x 0.25 (= endothermic coefficient) = 47.5- (4
7.5-5) × 0.25 = 36.9, which is 36.9 ° C. Further, the hot water temperature at the point C of the second coupling pipe 129 connecting the second path 123 and the third path 127 is C = D- (E-
A) × 0.25 = 36.9− (47.5-5) × 0.2
5 = 26.3 and 26.3 ° C. Furthermore, the first pass 1
21 at the point B of the first coupling pipe 125 connecting the second path 123 to the second path 123, B = C− (EA) × 0.25 = 2
6.3- (47.5-5) × 0.25 = 15.7, which is 1
It is 5.7 ° C. In this way, the hot water temperatures at points B to E are obtained respectively.

【0052】次に、図16に示す従来の熱交換器におい
て、第4パス153の出口である点Fでの湯温を75℃
とすれば、第2結合管149の、バイパス管151の合
流部位より下流側に位置する点Dでの湯温は、D=F−
(F−A)×0.50=75−(75−5)=40で、
40℃である。上記湯温は、バイパス給水と吸熱管内の
湯との合流直後の湯温であるから、バイパス管151の
バイパス流量比αは、(3)式によりα=1−{(40
−5)/(90−5)}=0.59となる。
Next, in the conventional heat exchanger shown in FIG. 16, the hot water temperature at the point F which is the outlet of the fourth pass 153 is set to 75 ° C.
Then, the hot water temperature at the point D of the second coupling pipe 149 located on the downstream side of the confluence portion of the bypass pipe 151 is D = F−
(F−A) × 0.50 = 75− (75−5) = 40,
40 ° C. Since the hot water temperature is the hot water temperature immediately after the bypass water supply and the hot water in the heat absorption pipe are joined, the bypass flow rate ratio α of the bypass pipe 151 is α = 1 − {(40
-5) / (90-5)} = 0.59.

【0053】ここで、点Fでの湯温を40℃に設定した
とすると、第3パス147と第4パス153とを接続す
る第3結合管155の点Eでの湯温は、E=F−(F−
A)×0.25=40−(40−5)×0.25=3
1.3で、31.3℃である。また、上記の点Dでの湯
温は、D=E−(F−A)×0.25=31.3−(4
0−5)×0.25=22.6で、22.6℃である。
また、第2パス143の下流側に位置する点Cでの湯温
(=バイパス給水と吸熱管内の湯との合流直前の湯温)
は、(2)式によりC={(D−A)/(1−0.5
9)}+5={(22.6−5)/(1−0.59)}
+5=48で、48℃である。更に、第1パス141と
第2パス143とを接続する第1結合管145の点Bで
の湯温は、B=C−(C−A)×0.5=48−(48
−5)×0.5=26.5で、26.5℃である。この
ようにして、点B〜点Eにおける湯温が夫々求められ
る。
If the hot water temperature at the point F is set to 40 ° C., the hot water temperature at the point E of the third connecting pipe 155 connecting the third pass 147 and the fourth pass 153 is E = F- (F-
A) × 0.25 = 40− (40−5) × 0.25 = 3
1.3 and 31.3 ° C. Further, the hot water temperature at the point D is D = E- (FA) × 0.25 = 31.3− (4
0-5) × 0.25 = 22.6, which is 22.6 ° C.
Further, the hot water temperature at the point C located on the downstream side of the second path 143 (= the hot water temperature immediately before the bypass water supply and the hot water in the heat absorption pipe are joined)
Is C = {(D−A) / (1−0.5) according to the equation (2).
9)} + 5 = {(22.6-5) / (1-0.59)}
It is + 5 = 48 and is 48 degreeC. Furthermore, the hot water temperature at the point B of the first coupling pipe 145 connecting the first path 141 and the second path 143 is B = C− (CA) × 0.5 = 48− (48
−5) × 0.5 = 26.5, which is 26.5 ° C. In this way, the hot water temperatures at points B to E are obtained respectively.

【0054】次に、図17に示す本発明の実施形態の熱
交換器において、第4パス173の出口である点Gでの
湯温を75℃とすれば、点Gより上流側で第4パス17
3と合流する第2バイパス管177のバイパス流量比β
は、(3)式によりβ=1−{(75−5)/(90−
5)}=0.176となる。
Next, in the heat exchanger of the embodiment of the present invention shown in FIG. 17, if the hot water temperature at the point G, which is the outlet of the fourth pass 173, is 75 ° C. Pass 17
Bypass flow rate ratio β of the second bypass pipe 177 that joins
Is β = 1 − {(75−5) / (90−) according to the equation (3).
5)} = 0.176.

【0055】また、第2結合管171の、第1バイパス
管167の合流部位より下流側の点Dでの湯温は、第4
パス173の、第2バイパス管177の合流部位より下
流側の点Fでの湯温が90℃であることから、D=F−
(F−A)×0.50=90−(90−5)×0.50
=47.5で、47.5℃である。また、第1バイパス
管167のバイパス流量比αは、(3)式によりα=1
−{(47.5−5)/(90−5)}=0.50とな
る。
The hot water temperature at the point D of the second coupling pipe 171 on the downstream side of the confluence of the first bypass pipe 167 is the fourth.
Since the hot water temperature at the point F on the downstream side of the confluence portion of the second bypass pipe 177 of the path 173 is 90 ° C., D = F−
(F−A) × 0.50 = 90− (90−5) × 0.50
= 47.5, which is 47.5 ° C. Further, the bypass flow rate ratio α of the first bypass pipe 167 is α = 1 based on the equation (3).
-{(47.5-5) / (90-5)} = 0.50.

【0056】ここで、点Gでの湯温を40℃に設定した
とすると、点Fでの湯温は、(2)式によりF={(G
−A)/(1−β)}+A={(40−5)/(1−
0.176)}+5=47.5で、47.5℃である。
また、第3結合管175の点Eでの湯温は、E=F−
(F−A)×0.25=47.5−(47.5−5)×
0.25=36.90で、36.90℃である。また、
点Dでの湯温は、D=E−(F−A)×0.25=3
6.90−(47.5−5)×0.25=26.30
で、26.30℃である。また、第2パス163の点C
(第1バイパス管167の合流部位より上流側の部位)
での湯温は、(2)式によりC={(D−A)/(1−
α)}+A={(26.3−5)/(1−0.50)}
+5=47.60で、47.60℃である。更に、第1
結合管165の点Bでの湯温は、B=C−(C−A)×
0.50=47.60−(47.60−5)×0.50
=26.3で、26.3℃である。このようにして、点
B〜点Fにおける湯温が夫々求められる。なお、図17
において、符号161は第1パス、符号169は第3パ
スである。
If the hot water temperature at the point G is set to 40 ° C., the hot water temperature at the point F is F = {(G
-A) / (1-β)} + A = {(40-5) / (1-
0.176)} + 5 = 47.5, which is 47.5 ° C.
Further, the hot water temperature at the point E of the third coupling pipe 175 is E = F-
(F−A) × 0.25 = 47.5− (47.5−5) ×
It is 0.25 = 36.90 and is 36.90 degreeC. Also,
The hot water temperature at the point D is D = E- (FA) × 0.25 = 3
6.90- (47.5-5) x 0.25 = 26.30
And 26.30 ° C. Also, point C of the second pass 163
(A part upstream of the confluence part of the first bypass pipe 167)
The hot water temperature at C = {(DA) / (1-
α)} + A = {(26.3-5) / (1-0.50)}
It is + 5 = 47.60 and is 47.60 degreeC. Furthermore, the first
The hot water temperature at the point B of the coupling pipe 165 is B = C- (CA) ×
0.50 = 47.60- (47.60-5) x 0.50
= 26.3, which is 26.3 ° C. In this way, the hot water temperatures at points B to F are obtained respectively. Note that FIG.
In, the reference numeral 161 is the first pass, and the reference numeral 169 is the third pass.

【0057】ここで、実施形態の熱交換器(図17)と
図15の熱交換器とを比較すると、実施形態の熱交換器
では、第1バイパス管167の一部分と第2バイパス管
177とにより第1パス161〜第4パス173をバイ
パスしているにも拘らず、そのバイパス流量比を図15
のバイパス管135のそれより大きく設定できる。その
ため、図18(上記各温度値がプロットされている)に
おいて、直線181と直線183に示すように、第3パ
ス入口から第4パス出口までの区間では、双方とも湯温
は略等しいが、第1パス入口から第2パス出口までの区
間では、実施形態に係る熱交換器の方が図15の熱交換
器よりも湯温が高い。よって、全体として見れば、実施
形態に係る熱交換器の方が図15の熱交換器よりも平均
水温を高くすることができ、特に、平均水温が高いこと
に起因して数分間(例えば、5分間)の給湯使用中断後
の再出湯に際しての出湯性を高めることができると共
に、ドレン防止効果をも一層向上させることができる。
Here, comparing the heat exchanger of the embodiment (FIG. 17) with the heat exchanger of FIG. 15, in the heat exchanger of the embodiment, a part of the first bypass pipe 167 and the second bypass pipe 177 are compared. Although the first pass 161 to the fourth pass 173 are bypassed, the bypass flow rate ratio is shown in FIG.
It can be set larger than that of the bypass pipe 135. Therefore, in FIG. 18 (each temperature value is plotted), as shown by the straight line 181 and the straight line 183, in the section from the third pass inlet to the fourth pass outlet, the hot water temperatures are almost equal to each other, In the section from the first pass inlet to the second pass outlet, the hot water temperature of the heat exchanger according to the embodiment is higher than that of the heat exchanger of FIG. Therefore, as a whole, the heat exchanger according to the embodiment can raise the average water temperature higher than that of the heat exchanger of FIG. 15, and in particular, due to the high average water temperature for several minutes (for example, It is possible to improve the hot water discharge property when the hot water is again discharged after the hot water supply is interrupted for 5 minutes, and the drain preventing effect can be further improved.

【0058】一方、実施形態の熱交換器(図17)と図
16の熱交換器とを比較すると、少なくとも第1バイパ
ス管167のバイパス流量比については、バイパス管1
51のそれよりあまり小さくせずに、第1バイパス管1
67の一部と第2バイパス管177とにより第1パス1
61〜第4パス173をバイパスできる。そのため、図
18の直線181と直線185に示すように、第1パス
入口から第2パス出口までの区間では、双方とも湯温は
略等しいが、第3パス入口から第4パス出口までの区間
では、実施形態に係る熱交換器の方が図16の熱交換器
よりも湯温が高い。よって、全体として見れば、上記場
合と同様に実施形態に係る熱交換器の方が図16の熱交
換器よりも平均水温を高くすることができ、特に、平均
水温が高いことに起因して数分間の給湯使用中断後の再
出湯に際しての出湯性を高めることができると共にドレ
ン防止効果をも一層向上させることができる。
On the other hand, comparing the heat exchanger of the embodiment (FIG. 17) with the heat exchanger of FIG. 16, at least the bypass flow rate ratio of the first bypass pipe 167 is as follows.
1st bypass pipe 1 without being much smaller than that of 51
1st pass 1 by a part of 67 and the 2nd bypass pipe 177
The 61st to 4th paths 173 can be bypassed. Therefore, as shown by a straight line 181 and a straight line 185 in FIG. 18, in the section from the first pass inlet to the second pass outlet, the hot water temperatures are substantially the same in both sections, but the section from the third pass inlet to the fourth pass outlet Then, the hot water temperature of the heat exchanger according to the embodiment is higher than that of the heat exchanger of FIG. 16. Therefore, as a whole, the heat exchanger according to the embodiment can raise the average water temperature higher than that of the heat exchanger of FIG. 16 as in the case described above, and in particular, due to the high average water temperature. It is possible to improve the hot water discharge property when the hot water is again discharged after the hot water supply is interrupted for several minutes, and further improve the drain prevention effect.

【0059】上述した内容は、あくまで本発明の一実施
例に関するものであって、本発明が、上記内容のみに限
定されることを意味するものでないのは勿論である。
It goes without saying that the contents described above relate to one embodiment of the present invention, and the present invention is not limited to the above contents.

【0060】[0060]

【発明の効果】以上説明したように、本発明によれば、
給水を加熱するための吸熱管の一部をバイパスするバイ
パス管に、バイパス流量比を制御する流量制御弁を設け
なくても、給湯使用を中断した後、再出湯直後の湯温の
低下を防止することが可能な給湯機の熱交換器を提供す
ることができる。
As described above, according to the present invention,
Even if a flow control valve that controls the bypass flow rate ratio is not installed in the bypass pipe that bypasses a part of the heat absorption pipe for heating the water supply, the hot water temperature is prevented from decreasing immediately after the hot water is re-used after the hot water supply is interrupted. It is possible to provide a heat exchanger of a hot water supply device that can be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の熱交換器の各パスにおける湯温の状態を
示す説明図。
FIG. 1 is an explanatory view showing a state of hot water temperature in each pass of a conventional heat exchanger.

【図2】従来の熱交換器の各パスにおける湯温の状態を
示す説明図。
FIG. 2 is an explanatory view showing a state of hot water temperature in each pass of the conventional heat exchanger.

【図3】一実施形態の給湯機の全体構成を示すブロック
図。
FIG. 3 is a block diagram showing an overall configuration of a water heater according to an embodiment.

【図4】図3の熱交換器の詳細構成を示す説明図。FIG. 4 is an explanatory diagram showing a detailed configuration of the heat exchanger of FIG.

【図5】フィンと各パスとの位置関係を示す説明図。FIG. 5 is an explanatory diagram showing a positional relationship between a fin and each path.

【図6】フィンと各パスとの位置関係を示す説明図。FIG. 6 is an explanatory diagram showing a positional relationship between a fin and each path.

【図7】各パスにおける平均水温の状態とバイパス流量
比とを示す説明図。
FIG. 7 is an explanatory diagram showing a state of average water temperature and a bypass flow rate ratio in each pass.

【図8】一実施形態の各パスにおける湯温の状態を示す
説明図。
FIG. 8 is an explanatory view showing a state of hot water temperature in each pass of the embodiment.

【図9】他の実施形態の熱交換器の詳細構成を示す説明
FIG. 9 is an explanatory diagram showing a detailed configuration of a heat exchanger of another embodiment.

【図10】他の実施形態の各パスにおける湯温の状態を
示す説明図。
FIG. 10 is an explanatory view showing a state of hot water temperature in each pass of another embodiment.

【図11】他の実施形態の第1変形例の熱交換器を示す
線図。
FIG. 11 is a diagram showing a heat exchanger of a first modified example of another embodiment.

【図12】他の実施形態の第2変形例の熱交換器を示す
線図。
FIG. 12 is a diagram showing a heat exchanger of a second modified example of another embodiment.

【図13】他の実施形態の第3変形例の熱交換器を示す
線図。
FIG. 13 is a diagram showing a heat exchanger of a third modified example of another embodiment.

【図14】吸熱管の表面温度を求める式に係る説明図。FIG. 14 is an explanatory diagram related to an equation for obtaining the surface temperature of the heat absorbing tube.

【図15】従来の熱交換器の構成を示す線図。FIG. 15 is a diagram showing a configuration of a conventional heat exchanger.

【図16】従来の熱交換器の構成を示す線図。FIG. 16 is a diagram showing a configuration of a conventional heat exchanger.

【図17】実施形態の熱交換器の構成を示す線図。FIG. 17 is a diagram showing the configuration of the heat exchanger of the embodiment.

【図18】実施形態と従来技術との間の各パスにおける
湯温を比較した図。
FIG. 18 is a diagram comparing hot water temperatures in respective passes between the embodiment and the related art.

【符号の説明】[Explanation of symbols]

1 給水管 7 熱交換器 9 給湯管 11 吸熱部 12 第1パス 13 吸熱管 14 第2パス 15 フィン 16 第3パス 17 バイパス管 18 第4パス 20 第5パス 22 第6パス 24 第1結合管 26 第2結合管 28 第3結合管 30 第4結合管 32 第5結合管 1 Water Supply Pipe 7 Heat Exchanger 9 Hot Water Supply Pipe 11 Endothermic Part 12 First Pass 13 Endothermic Pipe 14 Second Pass 15 Fin 16 Third Pass 17 Bypass Pipe 18 Fourth Pass 20 Fifth Pass 22 Sixth Pass 24 First Coupling Pipe 26 second coupling pipe 28 third coupling pipe 30 fourth coupling pipe 32 fifth coupling pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 越智 幹夫 兵庫県神戸市東灘区魚崎浜町43番1号 日 本ユプロ株式会社内 (72)発明者 大平 恭久 兵庫県神戸市東灘区魚崎浜町43番1号 日 本ユプロ株式会社内 (72)発明者 中野 清隆 兵庫県神戸市東灘区魚崎浜町43番1号 日 本ユプロ株式会社内 (72)発明者 鶴田 透 兵庫県神戸市東灘区魚崎浜町43番1号 日 本ユプロ株式会社内 (72)発明者 丸山 浩樹 兵庫県神戸市東灘区魚崎浜町43番1号 日 本ユプロ株式会社内 (72)発明者 大谷 孝幸 兵庫県神戸市東灘区魚崎浜町43番1号 日 本ユプロ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Mikio Ochi Inventor Mikio Ochi 43-1, Uozakihama-cho, Higashinada-ku, Kobe-shi, Hyogo Nihon Yupro Co., Ltd. (72) Inventor Yasuhisa Ohira 43-1, Uozakihama-cho, Higashinada-ku, Kobe No. Nihon Yupro Co., Ltd. (72) Inventor Kiyotaka Nakano 43-1 Uozakihama-cho, Higashinada-ku, Kobe-shi, Hyogo Prefecture Nihon Yupro Co., Ltd. (72) Inventor Toru Tsuruta 43-1, Uozakihama-cho, Higashinada-ku, Kobe-shi, Hyogo Prefecture Issue Nihon Yupro Co., Ltd. (72) Inventor Hiroki Maruyama 43-1, Uozakihama-cho, Higashinada-ku, Kobe-shi, Hyogo Prefecture Nihon Yupro Co., Ltd. (72) Inventor Takayuki Otani 43-1, Uozakihama-cho, Higashinada-ku, Hyogo Prefecture Issue Nihon Yupro Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 給水管に接続された始端及び出湯管に接
続された終端を有して全体として1本の通水管路になる
よう形成された吸熱管を備える給湯機の熱交換器におい
て、 前記給水管と前記吸熱管の特定箇所とを直接結ぶバイパ
ス管を備え、 前記特定箇所は前記吸熱管の終端よりも上流側の位置で
あり、かつ、前記吸熱管の始端から前記特定箇所までの
間の吸熱量が前記吸熱管全体の吸熱量の3割以上となる
ように、前記特定箇所が選定されていることを特徴とす
る給湯機の熱交換器。
1. A heat exchanger for a water heater, comprising a heat absorption pipe having a start end connected to a water supply pipe and an end end connected to a hot water discharge pipe and formed as one water passage as a whole, A bypass pipe that directly connects the water supply pipe and a specific portion of the heat absorbing pipe is provided, and the specific portion is a position on the upstream side of the end of the heat absorbing pipe, and from the start end of the heat absorbing pipe to the specific place. The heat exchanger of a water heater, wherein the specific portion is selected so that the amount of heat absorbed between them is 30% or more of the amount of heat absorbed by the entire heat absorption tube.
【請求項2】 請求項1記載の給湯機の熱交換器におい
て、 前記吸熱管の始端から前記特定箇所までの間の吸熱量が
前記吸熱管全体の吸熱量の3割以上6割以下となるよう
に、前記特定箇所が選定されていることを特徴とする給
湯機の熱交換器。
2. The heat exchanger of the water heater according to claim 1, wherein an endothermic amount from a starting end of the endothermic pipe to the specific portion is 30% or more and 60% or less of an endothermic amount of the entire endothermic pipe. As described above, the heat exchanger of the water heater, wherein the specific location is selected.
【請求項3】 請求項1記載の給湯機の熱交換器におい
て、 前記吸熱管の始端から前記特定箇所までの間の吸熱量が
前記吸熱管全体の吸熱量の6割以上6割5分以下となる
ように、前記特定箇所が選定されていることを特徴とす
る給湯機の熱交換器。
3. The heat exchanger of a water heater according to claim 1, wherein an endothermic amount from a start end of the endothermic pipe to the specific location is 60% or more and 60% or less of an endothermic amount of the entire endothermic pipe. The heat exchanger of the water heater, wherein the specific location is selected so that
【請求項4】 請求項1乃至請求項3のいずれか一項記
載の給湯機の熱交換器において、 前記吸熱管は、前記特定箇所より上流側の内径が下流側
のそれより小さいことを特徴とする給湯機の熱交換器。
4. The heat exchanger of a water heater according to any one of claims 1 to 3, wherein the heat absorption pipe has an inner diameter on the upstream side of the specific location smaller than that on the downstream side. And the heat exchanger of the water heater.
【請求項5】 請求項1乃至請求項4のいずれか一項記
載の給湯機の熱交換器において、 前記バイパス管の流水量が、前記吸熱管の前記特定箇所
より上流側の部位の流水量と等しいかより少なくなるよ
う、前記バイパス管の内径が選定されていることを特徴
とする給湯機の熱交換器。
5. The heat exchanger of a water heater according to any one of claims 1 to 4, wherein the amount of flowing water in the bypass pipe is a amount of flowing water in a portion of the heat absorption pipe upstream of the specific portion. The heat exchanger of the water heater, wherein the inner diameter of the bypass pipe is selected so as to be equal to or less than.
【請求項6】 請求項1乃至請求項5のいずれか一項記
載の給湯機の熱交換器において、 前記給水管と前記吸熱管の特定箇所よりも上流側の箇所
とを直接結ぶ第2のバイパス管を更に備えることを特徴
とする給湯機の熱交換器。
6. The heat exchanger of a water heater according to any one of claims 1 to 5, wherein the water supply pipe and the second end of the heat absorption pipe are directly connected to each other at a position upstream of a specific position. A heat exchanger for a water heater, further comprising a bypass pipe.
JP27709795A 1995-09-29 1995-09-29 Water heater heat exchanger Expired - Fee Related JP3308437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27709795A JP3308437B2 (en) 1995-09-29 1995-09-29 Water heater heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27709795A JP3308437B2 (en) 1995-09-29 1995-09-29 Water heater heat exchanger

Publications (2)

Publication Number Publication Date
JPH0996443A true JPH0996443A (en) 1997-04-08
JP3308437B2 JP3308437B2 (en) 2002-07-29

Family

ID=17578741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27709795A Expired - Fee Related JP3308437B2 (en) 1995-09-29 1995-09-29 Water heater heat exchanger

Country Status (1)

Country Link
JP (1) JP3308437B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008589A (en) * 2006-06-30 2008-01-17 Osaka Gas Co Ltd Latent heat recovery type heating device
JP2013029256A (en) * 2011-07-28 2013-02-07 Noritz Corp Water heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008589A (en) * 2006-06-30 2008-01-17 Osaka Gas Co Ltd Latent heat recovery type heating device
JP2013029256A (en) * 2011-07-28 2013-02-07 Noritz Corp Water heater

Also Published As

Publication number Publication date
JP3308437B2 (en) 2002-07-29

Similar Documents

Publication Publication Date Title
JP6939190B2 (en) Heating and hot water supply device
JPH0996443A (en) Heat-exchanger for hot water supplying apparatus
JP5944614B2 (en) Heat source equipment
JP2006010300A (en) Heat source device
JP3801274B2 (en) Water heater
JP3792637B2 (en) Water heater
JP2004011967A (en) Control method of solar hot-water feed temperature compensating radiant heat capacity in pipe
JP3811334B2 (en) Heating system
JPH056099B2 (en)
JPH08121874A (en) Circulation type water heater
JP4692814B2 (en) Heat source equipment
JP4310894B2 (en) Hot water storage water heater
JP3777255B2 (en) Heat exchanger
ITMI990596A1 (en) COMBINED TYPE ACCUMULATION BOILER
JP5170470B2 (en) Water heater
JP3834431B2 (en) Heat exchanger
CN105910271A (en) Wall-hanging stove
JP2928005B2 (en) Instant water heater
JP2589237Y2 (en) One-can two-circuit water heater
JP2004085112A (en) Space heating apparatus
JPS6365253A (en) Hot-water supplier
CZ9904629A3 (en) Method of extending control range of boiler capacity with stationary fluid bed and boiler for carrying out this method
JP3992420B2 (en) Heat exchange device and hot water supply device
JP2921177B2 (en) Water heater with bath kettle
JP6548144B2 (en) Hot water heater

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees