JP3308437B2 - Water heater heat exchanger - Google Patents

Water heater heat exchanger

Info

Publication number
JP3308437B2
JP3308437B2 JP27709795A JP27709795A JP3308437B2 JP 3308437 B2 JP3308437 B2 JP 3308437B2 JP 27709795 A JP27709795 A JP 27709795A JP 27709795 A JP27709795 A JP 27709795A JP 3308437 B2 JP3308437 B2 JP 3308437B2
Authority
JP
Japan
Prior art keywords
pipe
hot water
heat
path
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27709795A
Other languages
Japanese (ja)
Other versions
JPH0996443A (en
Inventor
幹夫 越智
恭久 大平
清隆 中野
透 鶴田
浩樹 丸山
孝幸 大谷
Original Assignee
東陶機器株式会社
日本ユプロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東陶機器株式会社, 日本ユプロ株式会社 filed Critical 東陶機器株式会社
Priority to JP27709795A priority Critical patent/JP3308437B2/en
Publication of JPH0996443A publication Critical patent/JPH0996443A/en
Application granted granted Critical
Publication of JP3308437B2 publication Critical patent/JP3308437B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Details Of Fluid Heaters (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、供給された水を加
熱して湯にし、浴槽や給湯水栓等に給湯する給湯機の熱
交換器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger of a water heater for heating supplied water to make hot water and supplying hot water to a bathtub or a hot water faucet.

【0002】[0002]

【従来の技術】従来、給湯機に供給された水が、バーナ
の燃焼排気により加熱される吸熱部において効率的な熱
伝達を受けられるよう、吸熱部に複数枚のフィンを並設
し、また、供給された水を瞬間加熱する吸熱管が、各フ
ィンを貫通しつつ吸熱部を何度も横切るよう、蛇行状に
複数回折曲げられた構成の熱交換器が知られている。上
記吸熱部を横切る吸熱管の複数の部位を、以下「パス」
と呼ぶ。この熱交換器では、給湯使用中、給水管の水は
各パスを通過する度に加熱されて昇温し、給湯管に連通
する最下流パスの出口で最も高温(=設定湯温)となっ
て出湯する。
2. Description of the Related Art Conventionally, a plurality of fins are juxtaposed in a heat absorbing portion so that water supplied to a water heater can be efficiently subjected to heat transfer in a heat absorbing portion heated by combustion and exhaust of a burner. A heat exchanger is known which has a configuration in which a heat absorbing tube for instantaneously heating supplied water is bent a plurality of times in a meandering manner so as to cross the heat absorbing portion many times while penetrating each fin. A plurality of portions of the heat absorbing tube crossing the heat absorbing portion will be referred to as a “pass” hereinafter.
Call. In this heat exchanger, while hot water is being used, the water in the water supply pipe is heated each time it passes through each path and rises in temperature, and reaches the highest temperature (= set hot water temperature) at the outlet of the most downstream path communicating with the hot water pipe. Hot water.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記熱交換
器において給湯の使用を中断すると、吸熱管内の水の移
動はその時点で停止する。しかし、上記各フィンは、一
般に銅板等の熱伝導率の高い材質により構成されている
ので、最下流パスの出口(吸熱部の出口)付近の熱は、
各フィンを介して他の部位に伝達されるから、吸熱部内
の水温は次第に均一化する。そのため、例えば図1に示
すように、給湯使用を中断したときの符号6で示す最下
流パスの出口の水温は、略25℃になり、定常出湯中
(給湯使用中)のときの水温である略40℃より低下す
る(なお、符号1は、給水管に連通する最上流パスを、
符号2〜5は、上記パス1、6の間に設けられる各々の
パスを示す)。
By the way, when the use of hot water is interrupted in the heat exchanger, the movement of water in the heat absorbing tube stops at that point. However, since each of the fins is generally made of a material having a high thermal conductivity such as a copper plate, heat near the outlet of the most downstream path (the outlet of the heat absorbing portion) is
Since the water is transmitted to other parts through the fins, the water temperature in the heat absorbing part gradually becomes uniform. Therefore, for example, as shown in FIG. 1, when the hot water supply is interrupted, the water temperature at the outlet of the most downstream path indicated by reference numeral 6 is approximately 25 ° C., which is the water temperature during steady hot water supply (while hot water supply is being used). (Approximately 1 indicates the most upstream path communicating with the water supply pipe,
Reference numerals 2 to 5 indicate respective paths provided between the paths 1 and 6).

【0004】よって、この状態で給湯使用を再開する
と、吸熱部の加熱を速やかに再開しても、最下流パスの
出口の水温が最も高温となる温度分布が形成されるまで
の間、出湯温度が設定湯温に達せず、シャワー等の使用
者に不快感を与えるという問題がある。
[0004] Therefore, when the hot water supply is resumed in this state, even if the heating of the heat absorbing portion is promptly resumed, the outlet water temperature until the water temperature at the outlet of the most downstream path becomes the highest is formed. However, there is a problem that the temperature of the hot water does not reach the set hot water temperature, which gives a discomfort to a user such as a shower.

【0005】そこで、吸熱管をバイパスするバイパス管
と、このバイパス管にバイパス流量比を制御する流量制
御弁とを設け、給水の一部をバイパス管に流すことによ
り吸熱部内の水温を高温に保つと共に、再出湯時の湯温
低下を防止する構成の熱交換器が提案された。
Therefore, a bypass pipe for bypassing the heat absorbing pipe and a flow control valve for controlling the bypass flow rate ratio are provided in the bypass pipe, and a part of the supply water flows through the bypass pipe to keep the water temperature in the heat absorbing section at a high temperature. At the same time, there has been proposed a heat exchanger configured to prevent a drop in hot water temperature at the time of re-hot water supply.

【0006】しかし、上記流量制御弁は高価であるた
め、高級機種にしか使用できない。そこで、バイパス管
に上記流量制御弁を設けずに、バイパス流量比を一定に
制御する方法が提案された。
However, since the flow control valve is expensive, it can be used only for high-end models. Therefore, a method of controlling the bypass flow ratio to be constant without providing the flow control valve in the bypass pipe has been proposed.

【0007】この方法でも、給水の一部を所定の流量比
でバイパス管側に流すことにより、給湯使用中断中の吸
熱部内の平均水温を、図2に示すように、図1で示した
ものより高温(30℃)に保つことができる。しかし、
実際には給湯使用中断の後、再出湯直後に定常出湯中と
同じ比率でバイパス管からの水が吸熱管からの湯に混合
され、混合後の出湯温はバイパス管がないときのそれと
同じになるので、再出湯直後の湯温は、上記の場合と同
様、25℃になってしまい、再出湯直後の湯温の温度低
下を防止する効果はなかった。
[0007] In this method as well, by flowing a part of the supply water to the bypass pipe side at a predetermined flow ratio, the average water temperature in the heat absorbing portion during the interruption of the hot water supply is shown in FIG. 1 as shown in FIG. It can be kept at a higher temperature (30 ° C.). But,
Actually, after the hot water supply is interrupted, the water from the bypass pipe is mixed with the hot water from the endothermic pipe at the same ratio as during normal tapping immediately after the hot tap, and the hot water temperature after mixing is the same as that when there is no bypass pipe. Therefore, the temperature of the hot water immediately after the re-starting of the hot water was 25 ° C. as in the above case, and there was no effect of preventing the temperature of the hot water immediately after the re-starting of the hot-water.

【0008】従って本発明の目的は、給水を加熱するた
めの吸熱管の一部をバイパスするバイパス管に、バイパ
ス流量比を制御する流量制御弁を設けなくても、給湯使
用を中断した後、再出湯直後の湯温の低下を防止するこ
とが可能な給湯機の熱交換器を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for controlling the use of hot water after interrupting the use of hot water without providing a flow control valve for controlling a bypass flow ratio in a bypass pipe that partially bypasses a heat absorbing pipe for heating feed water. An object of the present invention is to provide a heat exchanger of a hot water supply device capable of preventing a drop in hot water temperature immediately after re-hot water supply.

【0009】[0009]

【課題を解決するための手段】本発明に従う給湯機の熱
交換器は、給水管に接続された始端及び出湯管に接続さ
れた終端を有して全体として1本の通水管路になるよう
形成された吸熱管を備えるもので、以下のように構成さ
れている。
SUMMARY OF THE INVENTION A heat exchanger of a water heater according to the present invention has a starting end connected to a water supply pipe and an end connected to a tapping pipe so that the heat exchanger as a whole has a single water passage. It is provided with the formed heat absorbing tube, and is configured as follows.

【0010】即ち、上記給水管と上記吸熱管の特定箇所
とを結ぶ第1のバイパス管と、上記給水管と上記吸熱管
の特定箇所よりも上流側の箇所とを結ぶ第2のバイパス
管とを有する。
That is, a first bypass pipe connecting the water supply pipe and a specific location of the heat absorption pipe, and a second bypass pipe connecting the water supply pipe and a location upstream of the specific location of the heat absorption pipe. Having.

【0011】そして、上記特定箇所は、上記吸熱管の終
端よりも上流側の位置に選定されている。
[0011] The specific location is selected at a position upstream of the end of the heat absorbing tube.

【0012】上記特定箇所について更に述べると、上記
吸熱管の始端から上記特定箇所までの間の吸熱量が上記
特定箇所から上記吸熱管の終端までの間の吸熱量よりも
多くなる位置である。
More specifically, the specific location is a position where the amount of heat absorbed from the start end of the heat absorbing tube to the specific location is greater than the amount of heat absorbed from the specific location to the end of the heat absorbing tube.

【0013】本発明に係る好適な実施形態では、吸熱管
は、特定箇所より上流側の内径が下流側のそれより小さ
く形成される。
[0013] In a preferred embodiment according to the present invention, the heat absorbing tube is formed such that the inside diameter on the upstream side of the specific location is smaller than that on the downstream side.

【0014】上記実施形態の変形例では、第1のバイパ
ス管の流水量が、吸熱管の特定箇所より上流側の部位の
流水量と等しいかそれ以下になるよう、第1のバイパス
管の内径が選定される。
In a modification of the above embodiment, the inner diameter of the first bypass pipe is set so that the amount of water flowing through the first bypass pipe is equal to or less than the amount of water flowing upstream of a specific portion of the heat absorbing pipe. Is selected.

【0015】本発明によれば、第1のバイパス管が接続
される特定箇所として、吸熱管の終端よりも上流側の位
置であって、かつ、吸熱管の始端から該特定箇所までの
間の吸熱量が該特定箇所から上記吸熱管の終端までの間
の吸熱量よりも多くなる位置を選定することにより、給
湯が中断している間の吸熱管の平均水温を上昇させるこ
とができ、また、吸熱管からの出湯に給水が直接混入す
るのを防止できるので、再出湯直後の出湯温度も上昇さ
せることができる。
According to the present invention, the specific location to which the first bypass pipe is connected is a position upstream of the end of the heat absorbing pipe and between the starting end of the heat absorbing pipe and the specific location. By selecting a position where the amount of heat absorbed is greater than the amount of heat absorbed between the specific location and the end of the heat absorbing tube, it is possible to raise the average water temperature of the heat absorbing tube while hot water supply is interrupted, Further, since it is possible to prevent the feed water from directly mixing into the hot water from the heat absorbing pipe, the hot water temperature immediately after the hot water can be raised.

【0016】また、本発明によれば、給水管と吸熱管の
上記特定箇所よりも上流側の箇所とを結ぶ第2のバイパ
ス管を有することとしたので、第2のバイパス管により
給水がバイパスされる吸熱管の部位の湯温を更に上昇さ
せることができる。
In addition, according to the present invention, the water supply pipe is provided with the second bypass pipe connecting the water supply pipe and the heat absorption pipe on the upstream side of the specific point, so that the water supply is bypassed by the second bypass pipe. The temperature of the hot water at the portion of the heat absorption tube to be heated can be further increased.

【0017】本発明の好適な実施形態によれば、吸熱管
は、特定箇所より上流側の内径が下流側のそれより小径
に形成されるので、上流側部位での給水の流速低下を防
止でき、吸熱管から給水への熱の伝達率低下を防止でき
る。そのため、吸熱管内での局部的な沸騰を防止し易く
なる。
According to the preferred embodiment of the present invention, the heat absorbing tube is formed such that the inside diameter on the upstream side of the specific location is smaller than that on the downstream side, so that a decrease in the flow rate of the water supply at the upstream side portion can be prevented. In addition, it is possible to prevent a decrease in the rate of heat transfer from the heat absorption pipe to the water supply. Therefore, local boiling in the heat absorbing tube can be easily prevented.

【0018】また、上記実施形態の変形例によれば、第
1のバイパス管の流量が、吸熱管の特定箇所より上流側
の部位の流量と等しいかそれ以下になっているので、上
記と同様に、特定箇所の上流側部位での給水の流速低下
を防止でき、吸熱管から給水への熱の伝達率低下を防止
できる。そのため、吸熱管内での局部的な沸騰が防止し
易くなる。
Further, according to the modification of the above embodiment, the flow rate of the first bypass pipe is equal to or less than the flow rate of a portion of the heat absorbing tube upstream of a specific portion, and therefore, the same as above. In addition, it is possible to prevent a decrease in the flow rate of the water supply at the upstream portion of the specific location, and it is possible to prevent a reduction in the rate of transfer of heat from the heat absorbing tube to the water supply. Therefore, local boiling in the heat absorbing tube is easily prevented.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を、図
面により詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0020】図3は、本発明の一実施形態が適用される
給湯機の全体構成を示すブロック図である。
FIG. 3 is a block diagram showing the overall configuration of a water heater to which one embodiment of the present invention is applied.

【0021】上記給湯機は、バーナ(図示しない)の燃
焼排気により加熱される熱交換器7、給水源(図示しな
い)からの水を熱交換器7内に配管される吸熱管13
(図4参照)に供給するための給水管1、給水管1内の
通水を検出するための通水センサ3を備える。上記給湯
機は、また、バーナ(図示しない)等を冷却するための
ドラム冷却部5、熱交換器7(吸熱管13)からの出湯
を浴槽や給湯用水栓(いずれも図示しない)等に供給す
るための給湯管9をも備える。
The water heater includes a heat exchanger 7 which is heated by the combustion exhaust gas of a burner (not shown), and a heat absorbing pipe 13 which supplies water from a water supply source (not shown) to the heat exchanger 7.
A water supply pipe 1 for supplying water (see FIG. 4) and a water flow sensor 3 for detecting water flow in the water supply pipe 1 are provided. The water heater also supplies hot water from a drum cooling unit 5 for cooling a burner (not shown) and a heat exchanger 7 (heat absorbing tube 13) to a bathtub and a hot water supply faucet (neither is shown). A hot water supply pipe 9 is also provided.

【0022】上記構成において、通水センサ3からの検
出信号により所定流量以上の通水があると判断したと
き、給湯機各部を制御するコントローラ(図示しない)
は、温度設定部(図示しない)により設定された湯温設
定値での出湯が熱交換器7から得られるよう、バーナ
(図示しない)の燃焼制御を行う。
In the above configuration, when it is determined from the detection signal from the water flow sensor 3 that there is water flow at a predetermined flow rate or more, a controller (not shown) for controlling each part of the water heater is provided.
Performs combustion control of a burner (not shown) so that hot water at a hot water set value set by a temperature setting unit (not shown) is obtained from the heat exchanger 7.

【0023】図4は、図3の熱交換器7の詳細構成を示
す。
FIG. 4 shows a detailed configuration of the heat exchanger 7 of FIG.

【0024】熱交換器7は、バーナの燃焼排気を受ける
ための吸熱部11、吸熱部11を何度も横切るよう全体
として複数回に亘り蛇行状に折り曲げられ、給水管1か
らの給水を通して湯にするための1本の吸熱管13を備
える。熱交換器7は、吸熱管13全体の熱伝達性を高め
るために吸熱部11に複数個並設されたフィン15、給
水管1の下流端と吸熱管13の下流寄りの部位とを直結
し、最上流側から吸熱管13に流入しようとする水の一
部を吸熱管13の下流寄りの部位から流入させるように
したバイパス管17をも備える。
The heat exchanger 7 is bent in a meandering manner a plurality of times as a whole so as to traverse the heat absorbing portion 11 many times to receive the combustion exhaust gas of the burner, and to supply hot water through the water supply pipe 1. One heat absorbing tube 13 is provided. The heat exchanger 7 has a plurality of fins 15 arranged in parallel with the heat absorbing portion 11 in order to enhance the heat transfer property of the entire heat absorbing tube 13, and directly connects the downstream end of the water supply tube 1 to a downstream portion of the heat absorbing tube 13. A bypass pipe 17 for allowing a part of water to flow into the heat absorption tube 13 from the most upstream side to flow from a downstream portion of the heat absorption tube 13.

【0025】吸熱管13は、吸熱部11を略並行に横切
る複数個の部位(パス)、及び各々のパスを接続するこ
とにより全体として1本の配管(即ち、吸熱管13)を
構成するよう略U字状に湾曲して形成された複数個の結
合管から成る。
The heat absorbing tube 13 constitutes a single pipe (that is, the heat absorbing tube 13) as a whole by connecting a plurality of portions (paths) crossing the heat absorbing portion 11 substantially in parallel and connecting the respective paths. It is composed of a plurality of connecting tubes formed in a substantially U-shape.

【0026】本実施形態では、吸熱管13は、図示のよ
うに6個のパスと5個の結合管とを備えている。そのた
め、以後の説明では、上記各々のパスについては、給水
管1に連通する最上流側のパスを第1パス12、給湯管
9に連通する最下流側のパスを第6(最終)パス22、
第1パス12と第6パス22との間の各パスを、上流側
から下流側に向って順に第2パス14、第3パス16、
第4パス18、第5パス20と称する。一方、各結合管
については、第1パス12と第2パス14とを接続する
結合管を第1結合管24、第5パス20と第6パス22
とを接続する結合管を第5結合管32、第1結合管24
と第5結合管32との間の各結合管を、上流側から下流
側に向って順に第2結合管26、第3結合管28、第4
結合管30と称する。
In the present embodiment, the heat absorbing tube 13 includes six paths and five connecting tubes as shown. Therefore, in the following description, regarding each of the above paths, the most upstream path communicating with the water supply pipe 1 is the first path 12, and the most downstream path communicating with the hot water supply pipe 9 is the sixth (final) path 22. ,
Each path between the first path 12 and the sixth path 22 is sequentially referred to as a second path 14, a third path 16,
These are referred to as a fourth pass 18 and a fifth pass 20. On the other hand, for each connecting pipe, the connecting pipe connecting the first path 12 and the second path 14 is the first connecting pipe 24, the fifth path 20 and the sixth path 22.
The fifth connecting pipe 32 and the first connecting pipe 24
The second connecting pipe 26, the third connecting pipe 28, and the fourth connecting pipe are arranged in this order from the upstream side to the downstream side.
It is referred to as a coupling tube 30.

【0027】本実施形態では、図4に示すように、第4
結合管30がバイパス管17の合流部位となっている。
そして、この合流部位より上流側の第1パス12〜第4
パス18の内径は、これら各パス内での給水の流速低下
や、流速低下に起因する各パスから給水に伝達される熱
の伝達率低下を防止するために、第5パス20及び第6
パス22の内径よりも小径に設定されている。
In this embodiment, as shown in FIG.
The coupling pipe 30 is a junction of the bypass pipe 17.
The first to twelfth to fourth paths upstream of the junction
The inner diameter of the path 18 is determined by the fifth path 20 and the sixth path 20 in order to prevent a decrease in the flow rate of the feedwater in each of the paths and a decrease in the rate of transfer of heat transmitted from each path to the feedwater due to the decrease in the flow rate.
The diameter is set smaller than the inner diameter of the path 22.

【0028】各々のフィン15には、図5及び図6に示
すように、第1パス12〜第6パス22が全て貫通して
おり、これによって第1パス12〜第6パス22は、各
々のフィン15を介して相互に熱的に連結されている。
即ち、バーナ(図示しない)がコントローラ(図示しな
い)により燃焼制御され、バーナからの熱が各々のフィ
ン15に与えられているとき、第1パス12〜第6パス
22は、各々のフィン15から伝達される熱を奪って各
パス内を通る水を加熱する。一方、給水源から給水管1
への通水停止によるバーナの燃焼停止時には、第6パス
22内の最も高温の湯からの熱や、第5パス20内や第
4パス18内の比較的高温の湯からの熱が、各々のフィ
ン15を介して第1パス12内の最も低温の水や、第2
パス14内や第3パス16内の比較的低温の水に伝達さ
れる。その結果、熱交換器7内の温度は、次第に均一化
する。
As shown in FIGS. 5 and 6, all the fins 15 are penetrated by the first path 12 to the sixth path 22, so that the first path 12 to the sixth path 22 respectively Are thermally connected to each other through the fins 15 of the first and second fins.
That is, when a burner (not shown) is controlled by a controller (not shown) for combustion and heat from the burner is given to each fin 15, the first to sixth passes 12 to 22 pass from each fin 15. Heats the water passing through each pass by depriving the transferred heat. On the other hand, water supply pipe 1
When the combustion of the burner is stopped by stopping the flow of water to the burner, heat from the hottest hot water in the sixth pass 22 and heat from the relatively hot hot water in the fifth pass 20 and the fourth pass 18 are respectively Of the coldest water in the first path 12 through the fins 15
The water is transmitted to the relatively low-temperature water in the path 14 and the third path 16. As a result, the temperature in the heat exchanger 7 gradually becomes uniform.

【0029】本実施形態では、給湯使用中断後の再出湯
直後に、吸熱部11において最も高い平均水温が得ら
れ、且つ、その高い平均水温のままでの出湯が得られる
よう、給水のバイパス流量比を0.5に設定したバイパ
ス管17を採用し、このバイパス管17を介して給水管
1と第4結合管30とを直結している。そのため、最も
温度の低い第1パス内には残りの0.5の給水しか流入
しないこととなり、これにより吸熱部11内の平均水温
が多少上昇する。
In the present embodiment, the bypass flow rate of the feed water is set so that the highest average water temperature is obtained in the heat absorbing section 11 immediately after the hot water supply is stopped after the hot water supply is interrupted, and the hot water is kept at the high average water temperature. A bypass pipe 17 having a ratio set to 0.5 is employed, and the water supply pipe 1 and the fourth coupling pipe 30 are directly connected via the bypass pipe 17. Therefore, only the remaining 0.5 of the supply water flows into the first path having the lowest temperature, whereby the average water temperature in the heat absorbing section 11 slightly increases.

【0030】ここで、バイパス管17のバイパス流量比
が0.5であれば、第4結合管30より上流の第1パス
12〜第4パス18内の給水の流速はそれほど低下せ
ず、従って各パスから給水への熱の伝達率も低下しな
い。そのため、第1パス12〜第4パス18内の温度が
上昇し、局所的な沸騰が発生じて騒音が大きくなるよう
な不具合は起らない。よって、局所的な沸騰を発生させ
ないためにはバイパス流量比をあまり大きくとらない方
が望ましい。
Here, if the bypass flow rate ratio of the bypass pipe 17 is 0.5, the flow rate of the supply water in the first path 12 to the fourth path 18 upstream of the fourth connection pipe 30 does not decrease so much, and accordingly The rate of heat transfer from each pass to the water supply also does not decrease. For this reason, the temperature in the first to fourth paths 12 to 18 rises, and there is no such a problem that local boiling occurs and noise increases. Therefore, it is desirable not to make the bypass flow rate ratio too large in order not to cause local boiling.

【0031】次に、上記構成のバイパス管17の合流位
置を、第4結合管30に設定することにより、給湯使用
中断後の再出湯直後に最も高い平均水温での出湯が得ら
れる理由を、図7を参照して説明する。
Next, the reason why by setting the joining position of the bypass pipe 17 having the above-described configuration to the fourth connecting pipe 30, it is possible to obtain hot water at the highest average water temperature immediately after re-watering after the stop of hot water supply is used. This will be described with reference to FIG.

【0032】図7において、破線(直線)19は、給水
のバイパス流量比、実線(曲線)21は、給湯使用中断
時の各々(6個)のパスにおける平均水温を示してい
る。
In FIG. 7, a broken line (straight line) 19 indicates the bypass flow rate of the feed water, and a solid line (curve) 21 indicates the average water temperature in each (six) passes when the hot water supply is interrupted.

【0033】また、平均水温を符号23で示す32℃程
度(最高値)にするには、吸熱管13全体が受ける吸熱
量の少なくとも6割〜6割5分程度が得られるよう、バ
イパス流量比を0.5、合流位置を第4パス20の出口
付近にすればよいことが分かる。これは、下記の(1)
式によっても裏付けられる。以下、この(1)式を用い
て説明する。 (THmax−TC)/2(TSmax−TC)…………(1) 但し、TC:給水温度値、TSmax:最高設定湯温値、TH
max:バイパス管17内の水が吸熱管13内の湯と合流
する直前の吸熱管13の温度値で、TS(設定湯温値)
=TSmaxでも沸騰しない温度値である。
In order to set the average water temperature to about 32 ° C. (the maximum value) indicated by the reference numeral 23, the bypass flow rate ratio is set so that at least about 60 to 65% of the amount of heat absorbed by the entire heat absorbing tube 13 is obtained. 0.5 and the merging position should be near the exit of the fourth pass 20. This is the following (1)
It is supported by the formula. Hereinafter, description will be made using this equation (1). (THmax−TC) / 2 (TSmax−TC) (1) where TC: supply water temperature, TSmax: maximum set hot water temperature, TH
max: The temperature value of the heat absorption tube 13 immediately before the water in the bypass tube 17 joins the hot water in the heat absorption tube 13, and is represented by TS (set hot water temperature value).
= Temperature value that does not boil even at TSmax.

【0034】ここで、TSmax=75℃、THmax=90℃
とし、冬期のためTC=5℃であったとすれば、これら
の値を上記(1)式に代入することにより、(90−
5)/2(75−5)=0.607が得られる。また、
TSmax、THmaxともに上記値と同様とし、夏期のためT
C=20℃であったとすれば、これらの値を上記(1)
式に代入することにより、(90−20)/2(75−
20)=0.636が得られる。この計算結果から、吸
熱管全体の吸熱量に対し、バイパス管の合流位置より上
流側の吸熱管の吸熱量の割合を略6割〜略6割5分程度
になるよう、バイパス管を接続する結合管を選択すれば
よいことが分かる。つまり、本実施形態のように6個の
パスを備える熱交換器では、バイパス管17の合流位置
は第4パス20の出口に位置する第4結合管30という
ことになり、図7の記載と符合する。
Here, TSmax = 75 ° C., THmax = 90 ° C.
Assuming that TC = 5 ° C. for the winter season, these values are substituted into the above equation (1) to obtain (90−90).
5) / 2 (75-5) = 0.607 is obtained. Also,
Both TSmax and THmax are the same as the above values.
Assuming that C = 20 ° C., these values are calculated by the above (1).
By substituting into the equation, (90−20) / 2 (75−
20) = 0.636 is obtained. From this calculation result, the bypass pipes are connected such that the ratio of the heat absorption amount of the heat absorption pipe upstream of the merging position of the bypass pipes to the total heat absorption quantity of the heat absorption pipes is about 60% to about 65%. It can be seen that a coupling tube should be selected. That is, in the heat exchanger including six paths as in the present embodiment, the merging position of the bypass pipe 17 is the fourth coupling pipe 30 located at the outlet of the fourth path 20. Match.

【0035】上記構成によれば、バイパス管17の合流
部位を、吸熱管13全体の吸熱量に対し略6割〜略6割
5分程度の吸熱量が得られる第4結合管30に設定した
ので、給湯使用中断中の吸熱部11内の平均水温は、図
1に示した25℃や、図2に示した30℃よりも高い3
2℃となる(図8参照)。この値は、図2の30℃に近
い温度ではある。しかし、上記構成では、図2で説明し
た熱交換器のように、吸熱部出口で吸熱部からの湯とバ
イパス管からの水とが混合されず、バイパス管の合流部
位が最終パスやその近傍部位に設定された熱交換器のよ
うな湯に水が混入する虞もないので、再出湯直後には、
吸熱部内の平均水温である32℃のまま出湯する。よっ
て、給湯使用中断後の再出湯直後における出湯温度の低
下を防止することができる。
According to the above configuration, the junction of the bypass pipe 17 is set to the fourth coupling pipe 30 which can obtain an amount of heat absorption of about 60% to about 65% of the total heat absorption of the heat absorbing tube 13. Therefore, the average water temperature in the heat absorbing section 11 during the interruption of hot water supply is higher than 25 ° C. shown in FIG. 1 or 30 ° C. shown in FIG.
It will be 2 ° C. (see FIG. 8). This value is a temperature close to 30 ° C. in FIG. However, in the above configuration, as in the heat exchanger described with reference to FIG. 2, the hot water from the heat absorbing section and the water from the bypass pipe are not mixed at the heat absorbing section outlet, and the junction of the bypass pipe is located at the final path or in the vicinity thereof. Since there is no danger of water mixing with hot water such as a heat exchanger set in the site,
Hot water is discharged at 32 ° C, which is the average water temperature in the heat absorbing section. Therefore, it is possible to prevent a drop in the tapping temperature immediately after the tapping out of hot water supply.

【0036】本実施形態では、再出湯直後に最も高い平
均水温(32℃)が得られ、且つ、その高い平均水温の
ままでの出湯が得られるよう、バイパス管17の合流部
位を第4結合管30にしたが、上記合流部位を、少なく
とも3割程度の吸熱量が得られる第2パス14の出口付
近(第2結合管26)にしても、平均水温及び出湯温度
を30℃にすることができる(図7参照)。なお、給水
が湯に混入する虞がない点や、給水が吸熱する機会を多
くできることによりアンダーシュートを小さくすること
ができる点を考慮すれば、上記合流部位を、吸熱部11
出口までの距離を長くすることができるよう、第4パス
20の出口付近よりも上流側に設定した方が望ましい。
In the present embodiment, the junction of the bypass pipe 17 is connected to the fourth joint so that the highest average water temperature (32 ° C.) can be obtained immediately after the hot water is re-discharged and the hot water can be discharged at the high average water temperature. Although the pipe 30 is used, the average water temperature and tap water temperature are set to 30 ° C. even when the junction is near the outlet of the second path 14 (the second coupling pipe 26) where at least about 30% of the heat absorption is obtained. (See FIG. 7). In view of the fact that there is no danger of water being mixed into the hot water and that the undershoot can be reduced by increasing the chances of absorbing the heat of the water, the confluence portion can be formed by the heat absorbing portion 11.
It is desirable to set the fourth path 20 on the upstream side rather than near the exit so that the distance to the exit can be lengthened.

【0037】図9は、本発明の他の実施形態が適用され
る熱交換器を示す。
FIG. 9 shows a heat exchanger to which another embodiment of the present invention is applied.

【0038】本実施形態と前記一実施形態との相違点
は、本実施形態に係る熱交換器が、吸熱部内の平均水温
を更に上昇させるために、上述したバイパス管(以下、
第1バイパス管という)17に加えて、給水管1と第2
パス14の出口の第2結合管26とを直結すべく配管さ
れた第2バイパス管19をも備えている点にある。この
第2バイパス管19には、給水のバイパス流量比が0.
3のものを採用している。
The difference between the present embodiment and the above-described embodiment is that the heat exchanger according to the present embodiment further increases the average water temperature in the heat absorbing section by using the above-described bypass pipe (hereinafter, referred to as “the heat exchanger”).
In addition to the first bypass pipe 17), the water supply pipe 1 and the second
The second embodiment is also provided with a second bypass pipe 19 which is piped so as to be directly connected to the second coupling pipe 26 at the outlet of the path 14. In the second bypass pipe 19, the bypass flow rate of the feed water is set to 0.1.
Three are adopted.

【0039】上記構成によれば、第1バイパス管17に
加えて、給水管1と第2結合管26とを直結する第2バ
イパス管19をも備えることとしたので、給湯使用中断
中の熱交換器7内の平均水温は、図8に示した32℃よ
りも更に高い35℃となる(図10参照)。本実施形態
では、図2で説明した熱交換器のように、吸熱部出口で
吸熱管からの湯とバイパス管からの水とが混合されない
ので、再出湯直後には、吸熱部11内の平均水温である
35℃のまま出湯することとなる。よって、本実施形態
においても、一実施形態におけると同様に、給湯使用中
断後の再出湯直後における出湯温度の低下を防止するこ
とができる。
According to the above configuration, in addition to the first bypass pipe 17, the second bypass pipe 19 that directly connects the water supply pipe 1 and the second connection pipe 26 is provided, so that the heat generated during the interruption of the hot water supply is provided. The average water temperature in the exchanger 7 becomes 35 ° C., which is higher than 32 ° C. shown in FIG. 8 (see FIG. 10). In the present embodiment, since the hot water from the heat absorbing tube and the water from the bypass tube are not mixed at the outlet of the heat absorbing portion as in the heat exchanger described with reference to FIG. Hot water will be discharged at the water temperature of 35 ° C. Therefore, also in this embodiment, similarly to one embodiment, it is possible to prevent a drop in tapping temperature immediately after tapping again after hot water supply is stopped.

【0040】図11〜図13は、夫々本発明の他の実施
形態に係る第1〜第3変形例を示す。
FIGS. 11 to 13 show first to third modified examples according to other embodiments of the present invention, respectively.

【0041】上記各図に示した熱交換器は、図示の都合
上、4個のパスを備えるものを挙げたが、6個のパスを
備える他の実施形態の熱交換器と理論的な相違点はな
い。
Although the heat exchanger shown in each of the above figures has four paths for convenience of illustration, it is theoretically different from the heat exchangers of the other embodiments having six paths. There is no point.

【0042】まず、図11の熱交換器では、第1パス5
1と第2パス53とを接続する第1結合管55に合流す
る第1バイパス管57、第2パス53と第3パス59と
を接続する第2結合管61に合流する第2バイパス管6
3、第3パス59と第4パス65とを接続する第3結合
管67に合流する第3バイパス管69、第4パス65の
出口と合流する第4バイパス管71が配管される。
First, in the heat exchanger of FIG.
A first bypass pipe 57 that joins a first connection pipe 55 that connects the first and second paths 53, and a second bypass pipe 6 that joins a second connection pipe 61 that connects the second path 53 and the third path 59
3, a third bypass pipe 69 that joins a third coupling pipe 67 that connects the third path 59 and the fourth path 65, and a fourth bypass pipe 71 that joins an outlet of the fourth path 65 are provided.

【0043】次に、図12の熱交換器では、第1パス7
3と第2パス75とを接続する第1結合管77に合流す
る第1バイパス管79、第2パス75と第3パス81と
を接続する第2結合管83に合流する第2バイパス管8
5、第3パス81と第4パス87とを接続する第3結合
管89に合流する第3バイパス管91が配管される。
Next, in the heat exchanger of FIG.
A first bypass pipe 79 that joins a first connection pipe 77 that connects the third path 3 and the second path 75, and a second bypass pipe 8 that joins a second connection pipe 83 that connects the second path 75 and the third path 81
5, a third bypass pipe 91 that joins a third coupling pipe 89 that connects the third path 81 and the fourth path 87 is provided.

【0044】更に、図13の熱交換器では、第1パス9
3と第2パス95とを接続する第1結合管97から分岐
して第2パス95と第3パス101とを接続する第2結
合管103に合流する第1バイパス管99、第1パス9
3の入口から分岐して第4パス105の出口と合流する
第2バイパス管107が配管される。
Further, in the heat exchanger of FIG.
The first bypass pipe 99 and the first path 9 branch from the first coupling pipe 97 connecting the third path and the second path 95 and join the second coupling pipe 103 connecting the second path 95 and the third path 101.
A second bypass pipe 107 branching from the inlet of the third path and joining the outlet of the fourth path 105 is provided.

【0045】これら各変形例では、夫々異なった態様で
複数個のバイパス管を備えており、いずれも吸熱部内の
平均水温を更に上昇させて、再出湯直後における出湯性
のより一層の向上を図ることが可能であると共に、吸熱
管内におけるドレンの発生を防止することも可能であ
る。
In each of these modifications, a plurality of bypass pipes are provided in different modes, respectively, and the average water temperature in the heat absorbing portion is further raised to further improve the tapping property immediately after the tapping. It is also possible to prevent drainage from occurring in the heat absorbing tube.

【0046】次に、本発明の実施形態に係る熱交換器
と、従来技術に係る2種類の熱交換器とを比較しつつ、
本発明の実施形態に係る熱交換器の方が従来技術に係る
2種類の熱交換器よりも優れている理由を、図14〜図
18を参照して説明する。なお、以下の説明では、簡単
のため、各実施形態及び従来技術とも、吸熱管のパス数
が「4」の熱交換器を例に挙げる。
Next, while comparing the heat exchanger according to the embodiment of the present invention with two types of heat exchangers according to the prior art,
The reason why the heat exchanger according to the embodiment of the present invention is superior to the two types of heat exchangers according to the related art will be described with reference to FIGS. In the following description, for the sake of simplicity, in each of the embodiments and the related art, a heat exchanger in which the number of passes of the heat absorbing tube is “4” will be described as an example.

【0047】まず、吸熱管の表面温度Twは、下記の
(2)式により求められる(図14も併せて参照)。
First, the surface temperature Tw of the heat absorbing tube is obtained by the following equation (2) (see also FIG. 14).

【0048】[0048]

【数1】 (2)式は、吸熱管内においてドレン(水滴)が発生す
るのを防止することが可能な吸熱管の壁温(=燃焼ガス
の露点よりも高い温度)を求めるに際して用いられる。
この(2)式は、吸熱管内の通水量が減少する(つま
り、給水のバイパス流量比が大きい)と吸熱管の壁温が
上昇し、湯温が高いと吸熱管の壁温が上昇することを示
している。
(Equation 1) Equation (2) is used to determine the wall temperature (= temperature higher than the dew point of the combustion gas) of the heat absorbing tube that can prevent the generation of drain (water droplets) in the heat absorbing tube.
This equation (2) indicates that the wall temperature of the heat absorption tube rises when the amount of water passing through the heat absorption tube decreases (that is, when the bypass flow rate ratio of the water supply is large), and the wall temperature of the heat absorption tube rises when the hot water temperature is high. Is shown.

【0049】ここで、設定湯温値(TS)を、バイパス
流量比を大きくできない比較的高温の75℃に、給水温
度値(TC)を、バイパス流量比を大きくできない比較
的低温の5℃に、吸熱管内の最高湯温値(THmax)を、
吸熱管内において局所的な沸騰をも生じさせない90℃
に、夫々設定する。これら各々の条件は、近年の給湯機
が所謂温調タイプが主流であることから導出されるもの
である。そして、下記の(3)式を用いて給水のバイパ
ス管へのバイパス流量比αを求め、(2)式等を用いて
設定湯温40℃での出湯時の吸熱管内の湯温を算出し、
図15〜図18を参照しながら各実施形態における効果
と上述した従来技術における効果とを比較する。 α=1−{(バイパスされた給水と吸熱管内の湯との合流直後の湯温−給水温度 ) /(バイパスされた給水と吸熱管内の湯との合流直前の湯温−給水温度) } …………(3 ) ここで、図15〜図17に示す各熱交換器において、全
部のパスの吸熱率を同一(即ち、25%)と仮定し、バ
イパスされた給水と吸熱管内の湯との合流直前の湯温を
90℃、第1パスとバイパス管との分岐点である点Aで
の水温(給水温度)を5℃とする。
Here, the set hot water temperature value (TS) is set to a relatively high temperature of 75 ° C. where the bypass flow ratio cannot be increased, and the feed water temperature value (TC) is set to a relatively low temperature of 5 ° C. where the bypass flow ratio cannot be increased. , The maximum hot water temperature (THmax) in the endothermic tube,
90 ° C that does not cause local boiling in the endothermic tube
, Respectively. These conditions are derived from the fact that so-called temperature control type water heaters are the mainstream in recent years. Then, the bypass flow ratio α to the bypass pipe of the supply water is obtained using the following equation (3), and the hot water temperature in the heat absorbing pipe at the time of tapping at the set hot water temperature of 40 ° C. is calculated using the equation (2) and the like. ,
With reference to FIGS. 15 to 18, the effect in each embodiment and the effect in the above-described related art will be compared. α = 1 − {(hot water temperature immediately after merging of bypass water and hot water in heat absorbing pipe−water temperature) / (hot water temperature immediately before merging of bypass water and hot water in heat absorbing pipe−water temperature)…… (3) Here, in each of the heat exchangers shown in FIGS. 15 to 17, the heat absorption rates of all the paths are assumed to be the same (that is, 25%), and the bypassed feed water and the hot water in the heat absorption pipe are connected. Is 90 ° C., and the water temperature (water supply temperature) at point A, which is the branch point between the first path and the bypass pipe, is 5 ° C.

【0050】まず、図15に示す従来の熱交換器におい
て、バイパスされた給水と吸熱管内の湯との合流直後の
湯温を75℃とすれば、バイパス管135のバイパス流
量比αは(3)式によりα=1−{(75−5)/(9
0−5)}=0.176となる。次に、バイパス管13
5の合流部位より下流側に位置する給湯管137の点F
での湯温を40℃とすれば、第4パス131の上記合流
部位より上流側に位置する点Eでの湯温は、(2)式に
よりE={F(F−A)/(1−α)}+A={(40
−5)/(1−0.176)}+5=47.5で、4
7.5℃である。
First, in the conventional heat exchanger shown in FIG. 15, if the temperature of the hot water immediately after the merging of the bypassed feed water and the hot water in the heat absorbing tube is set to 75 ° C., the bypass flow ratio α of the bypass pipe 135 becomes (3 ), Α = 1 − {(75−5) / (9
0-5)} = 0.176. Next, the bypass pipe 13
5 of the hot water supply pipe 137 located downstream from the junction of No. 5
Is 40 ° C., the temperature of the hot water at the point E located on the upstream side of the merging portion of the fourth path 131 is given by E = {F (FA) / (1) according to the equation (2). −α)} + A = {(40
−5) / (1−0.176)} + 5 = 47.5 and 4
7.5 ° C.

【0051】また、第3パス127と第4パス131と
を接続する第3結合管133の点Dでの湯温は、D=E
−(E−A)×0.25(=吸熱率)=47.5−(4
7.5−5)×0.25=36.9で、36.9℃であ
る。また、第2パス123と第3パス127とを接続す
る第2結合管129の点Cでの湯温は、C=D−(E−
A)×0.25=36.9−(47.5−5)×0.2
5=26.3で、26.3℃である。更に、第1パス1
21と第2パス123とを接続する第1結合管125の
点Bでの湯温は、B=C−(E−A)×0.25=2
6.3−(47.5−5)×0.25=15.7で、1
5.7℃である。このようにして、点B〜点Eにおける
湯温が夫々求められる。
The temperature of the hot water at the point D of the third connecting pipe 133 connecting the third path 127 and the fourth path 131 is D = E.
− (EA) × 0.25 (= endothermic coefficient) = 47.5− (4
7.5-5) × 0.25 = 36.9, which is 36.9 ° C. The temperature of the hot water at the point C of the second connecting pipe 129 connecting the second path 123 and the third path 127 is C = D− (E−
A) × 0.25 = 36.9− (47.5-5) × 0.2
5 = 26.3, 26.3 ° C. Furthermore, the first pass 1
The temperature of the hot water at the point B of the first connection pipe 125 connecting the first path 21 and the second path 123 is B = C− (E−A) × 0.25 = 2
6.3− (47.5-5) × 0.25 = 15.7 and 1
5.7 ° C. In this way, the hot water temperatures at points B to E are respectively obtained.

【0052】次に、図16に示す従来の熱交換器におい
て、第4パス153の出口である点Fでの湯温を75℃
とすれば、第2結合管149の、バイパス管151の合
流部位より下流側に位置する点Dでの湯温は、D=F−
(F−A)×0.50=75−(75−5)=40で、
40℃である。上記湯温は、バイパス給水と吸熱管内の
湯との合流直後の湯温であるから、バイパス管151の
バイパス流量比αは、(3)式によりα=1−{(40
−5)/(90−5)}=0.59となる。
Next, in the conventional heat exchanger shown in FIG. 16, the hot water temperature at the point F, which is the outlet of the fourth path 153, is set to 75 ° C.
Then, the temperature of the hot water at the point D of the second coupling pipe 149 located downstream of the junction of the bypass pipe 151 is D = F−
(F−A) × 0.50 = 75− (75−5) = 40,
40 ° C. Since the hot water temperature is the temperature immediately after the bypass water supply and the hot water in the heat absorbing pipe have joined, the bypass flow rate ratio α of the bypass pipe 151 is calculated by the following equation (3).
−5) / (90−5)} = 0.59.

【0053】ここで、点Fでの湯温を40℃に設定した
とすると、第3パス147と第4パス153とを接続す
る第3結合管155の点Eでの湯温は、E=F−(F−
A)×0.25=40−(40−5)×0.25=3
1.3で、31.3℃である。また、上記の点Dでの湯
温は、D=E−(F−A)×0.25=31.3−(4
0−5)×0.25=22.6で、22.6℃である。
また、第2パス143の下流側に位置する点Cでの湯温
(=バイパス給水と吸熱管内の湯との合流直前の湯温)
は、(2)式によりC={(D−A)/(1−0.5
9)}+5={(22.6−5)/(1−0.59)}
+5=48で、48℃である。更に、第1パス141と
第2パス143とを接続する第1結合管145の点Bで
の湯温は、B=C−(C−A)×0.5=48−(48
−5)×0.5=26.5で、26.5℃である。この
ようにして、点B〜点Eにおける湯温が夫々求められ
る。
Here, assuming that the hot water temperature at point F is set to 40 ° C., the hot water temperature at point E of third connecting pipe 155 connecting third path 147 and fourth path 153 is E = F- (F-
A) × 0.25 = 40− (40−5) × 0.25 = 3
1.3 at 31.3 ° C. The temperature of the hot water at the point D is D = E− (FA) × 0.25 = 31.3− (4
0-5) × 0.25 = 22.6, 22.6 ° C.
Further, the temperature of the hot water at point C located downstream of the second path 143 (= the hot water temperature immediately before the merging of the bypass water and the hot water in the heat absorbing pipe).
Is given by C = {(DA) / (1-0.5) according to the equation (2).
9) {+5 = {(22.6-5) / (1-0.59)}
+ 5 = 48 at 48 ° C. Further, the temperature of the hot water at the point B of the first connecting pipe 145 connecting the first path 141 and the second path 143 is B = C− (CA) × 0.5 = 48− (48
−5) × 0.5 = 26.5, which is 26.5 ° C. In this way, the hot water temperatures at points B to E are respectively obtained.

【0054】次に、図17に示す本発明の実施形態の熱
交換器において、第4パス173の出口である点Gでの
湯温を75℃とすれば、点Gより上流側で第4パス17
3と合流する第2バイパス管177のバイパス流量比β
は、(3)式によりβ=1−{(75−5)/(90−
5)}=0.176となる。
Next, in the heat exchanger according to the embodiment of the present invention shown in FIG. 17, if the hot water temperature at the point G, which is the outlet of the fourth path 173, is 75 ° C., the fourth Pass 17
3 and the bypass flow rate ratio β of the second bypass pipe 177
Is given by equation (3), β = 1 − {(75−5) / (90−
5)} = 0.176.

【0055】また、第2結合管171の、第1バイパス
管167の合流部位より下流側の点Dでの湯温は、第4
パス173の、第2バイパス管177の合流部位より下
流側の点Fでの湯温が90℃であることから、D=F−
(F−A)×0.50=90−(90−5)×0.50
=47.5で、47.5℃である。また、第1バイパス
管167のバイパス流量比αは、(3)式によりα=1
−{(47.5−5)/(90−5)}=0.50とな
る。
The temperature of the hot water at the point D of the second connecting pipe 171 downstream of the junction of the first bypass pipe 167 is
Since the hot water temperature at the point F of the path 173 downstream of the junction of the second bypass pipe 177 is 90 ° C., D = F−
(F−A) × 0.50 = 90− (90−5) × 0.50
= 47.5 and 47.5 ° C. The bypass flow rate ratio α of the first bypass pipe 167 is given by α = 1 according to the equation (3).
-{(47.5-5) / (90-5)} = 0.50.

【0056】ここで、点Gでの湯温を40℃に設定した
とすると、点Fでの湯温は、(2)式によりF={(G
−A)/(1−β)}+A={(40−5)/(1−
0.176)}+5=47.5で、47.5℃である。
また、第3結合管175の点Eでの湯温は、E=F−
(F−A)×0.25=47.5−(47.5−5)×
0.25=36.90で、36.90℃である。また、
点Dでの湯温は、D=E−(F−A)×0.25=3
6.90−(47.5−5)×0.25=26.30
で、26.30℃である。また、第2パス163の点C
(第1バイパス管167の合流部位より上流側の部位)
での湯温は、(2)式によりC={(D−A)/(1−
α)}+A={(26.3−5)/(1−0.50)}
+5=47.60で、47.60℃である。更に、第1
結合管165の点Bでの湯温は、B=C−(C−A)×
0.50=47.60−(47.60−5)×0.50
=26.3で、26.3℃である。このようにして、点
B〜点Fにおける湯温が夫々求められる。なお、図17
において、符号161は第1パス、符号169は第3パ
スである。
Here, assuming that the hot water temperature at point G is set to 40 ° C., the hot water temperature at point F is calculated by the following equation (2).
-A) / (1-β)} + A = {(40-5) / (1-
0.176)} + 5 = 47.5, which is 47.5 ° C.
The temperature of the hot water at the point E of the third coupling pipe 175 is E = F−
(FA) x 0.25 = 47.5-(47.5-5) x
0.25 = 36.90, 36.90 ° C. Also,
The hot water temperature at the point D is D = E− (FA) × 0.25 = 3
6.90− (47.5-5) × 0.25 = 26.30
And 26.30 ° C. Also, the point C of the second pass 163
(Part upstream of the junction of the first bypass pipe 167)
The temperature of the hot water is calculated by the equation (2) as C = {(DA) / (1-
α)} + A = {(26.3-5) / (1-0.50)}
+ 5 = 47.60, which is 47.60 ° C. Furthermore, the first
The hot water temperature at the point B of the coupling pipe 165 is B = C− (CA) ×
0.50 = 47.60− (47.60−5) × 0.50
= 26.3, 26.3 ° C. In this way, the hot water temperatures at points B to F are obtained, respectively. Note that FIG.
, 161 is a first pass, and 169 is a third pass.

【0057】ここで、実施形態の熱交換器(図17)と
図15の熱交換器とを比較すると、実施形態の熱交換器
では、第1バイパス管167の一部分と第2バイパス管
177とにより第1パス161〜第4パス173をバイ
パスしているにも拘らず、そのバイパス流量比を図15
のバイパス管135のそれより大きく設定できる。その
ため、図18(上記各温度値がプロットされている)に
おいて、直線181と直線183に示すように、第3パ
ス入口から第4パス出口までの区間では、双方とも湯温
は略等しいが、第1パス入口から第2パス出口までの区
間では、実施形態に係る熱交換器の方が図15の熱交換
器よりも湯温が高い。よって、全体として見れば、実施
形態に係る熱交換器の方が図15の熱交換器よりも平均
水温を高くすることができ、特に、平均水温が高いこと
に起因して数分間(例えば、5分間)の給湯使用中断後
の再出湯に際しての出湯性を高めることができると共
に、ドレン防止効果をも一層向上させることができる。
Here, when comparing the heat exchanger of the embodiment (FIG. 17) with the heat exchanger of FIG. 15, in the heat exchanger of the embodiment, a part of the first bypass pipe 167 and the second bypass pipe 177 are connected. Although the first path 161 to the fourth path 173 are bypassed, the bypass flow rate ratio is changed as shown in FIG.
Can be set larger than that of the bypass pipe 135. Therefore, in FIG. 18 (where the respective temperature values are plotted), as shown by the straight line 181 and the straight line 183, in the section from the entrance of the third pass to the exit of the fourth pass, the hot water temperature is substantially the same for both, but In the section from the first pass inlet to the second pass outlet, the heat exchanger according to the embodiment has a higher hot water temperature than the heat exchanger in FIG. Therefore, when viewed as a whole, the heat exchanger according to the embodiment can have a higher average water temperature than the heat exchanger of FIG. 15, and particularly, for several minutes (for example, It is possible to improve the tapping property at the time of tapping again after interrupting the use of hot water supply (for 5 minutes) and to further improve the drain prevention effect.

【0058】一方、実施形態の熱交換器(図17)と図
16の熱交換器とを比較すると、少なくとも第1バイパ
ス管167のバイパス流量比については、バイパス管1
51のそれよりあまり小さくせずに、第1バイパス管1
67の一部と第2バイパス管177とにより第1パス1
61〜第4パス173をバイパスできる。そのため、図
18の直線181と直線185に示すように、第1パス
入口から第2パス出口までの区間では、双方とも湯温は
略等しいが、第3パス入口から第4パス出口までの区間
では、実施形態に係る熱交換器の方が図16の熱交換器
よりも湯温が高い。よって、全体として見れば、上記場
合と同様に実施形態に係る熱交換器の方が図16の熱交
換器よりも平均水温を高くすることができ、特に、平均
水温が高いことに起因して数分間の給湯使用中断後の再
出湯に際しての出湯性を高めることができると共にドレ
ン防止効果をも一層向上させることができる。
On the other hand, comparing the heat exchanger of the embodiment (FIG. 17) with the heat exchanger of FIG. 16, at least the bypass flow ratio of the first bypass
51, without being much smaller than that of the first bypass pipe 1
67 and the second bypass pipe 177, the first pass 1
61 to the fourth path 173 can be bypassed. Therefore, as shown by the straight line 181 and the straight line 185 in FIG. 18, in the section from the first pass entrance to the second pass exit, the hot water temperature is substantially the same in both sections, but in the section from the third pass entrance to the fourth pass exit. Then, the hot water temperature of the heat exchanger according to the embodiment is higher than that of the heat exchanger of FIG. Therefore, as a whole, as in the above case, the heat exchanger according to the embodiment can have a higher average water temperature than the heat exchanger of FIG. 16, and in particular, because the average water temperature is higher, It is possible to improve the tapping property at the time of tapping again after interrupting the use of hot water supply for several minutes, and to further improve the drain prevention effect.

【0059】上述した内容は、あくまで本発明の一実施
例に関するものであって、本発明が、上記内容のみに限
定されることを意味するものでないのは勿論である。
The above description relates only to one embodiment of the present invention, and does not mean that the present invention is limited to only the above-described content.

【0060】[0060]

【発明の効果】以上説明したように、本発明によれば、
給水を加熱するための吸熱管の一部をバイパスするバイ
パス管に、バイパス流量比を制御する流量制御弁を設け
なくても、給湯使用を中断した後、再出湯直後の湯温の
低下を防止することが可能な給湯機の熱交換器を提供す
ることができる。
As described above, according to the present invention,
Prevents a drop in hot water temperature immediately after resuming hot water after interrupting hot water supply, even if a bypass pipe that bypasses a part of the heat absorption pipe for heating feed water does not have a flow control valve that controls the bypass flow rate ratio The heat exchanger of the water heater which can perform the operation can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の熱交換器の各パスにおける湯温の状態を
示す説明図。
FIG. 1 is an explanatory diagram showing a state of hot water temperature in each path of a conventional heat exchanger.

【図2】従来の熱交換器の各パスにおける湯温の状態を
示す説明図。
FIG. 2 is an explanatory diagram showing a state of hot water temperature in each path of the conventional heat exchanger.

【図3】一実施形態の給湯機の全体構成を示すブロック
図。
FIG. 3 is a block diagram showing the overall configuration of the water heater of one embodiment.

【図4】図3の熱交換器の詳細構成を示す説明図。FIG. 4 is an explanatory diagram showing a detailed configuration of the heat exchanger of FIG. 3;

【図5】フィンと各パスとの位置関係を示す説明図。FIG. 5 is an explanatory diagram showing a positional relationship between a fin and each path.

【図6】フィンと各パスとの位置関係を示す説明図。FIG. 6 is an explanatory diagram showing a positional relationship between a fin and each path.

【図7】各パスにおける平均水温の状態とバイパス流量
比とを示す説明図。
FIG. 7 is an explanatory diagram showing an average water temperature state and a bypass flow rate ratio in each path.

【図8】一実施形態の各パスにおける湯温の状態を示す
説明図。
FIG. 8 is an explanatory diagram showing a state of hot water temperature in each pass of the embodiment.

【図9】他の実施形態の熱交換器の詳細構成を示す説明
FIG. 9 is an explanatory diagram showing a detailed configuration of a heat exchanger according to another embodiment.

【図10】他の実施形態の各パスにおける湯温の状態を
示す説明図。
FIG. 10 is an explanatory diagram showing a state of hot water temperature in each pass of another embodiment.

【図11】他の実施形態の第1変形例の熱交換器を示す
線図。
FIG. 11 is a diagram showing a heat exchanger of a first modified example of another embodiment.

【図12】他の実施形態の第2変形例の熱交換器を示す
線図。
FIG. 12 is a diagram showing a heat exchanger of a second modified example of another embodiment.

【図13】他の実施形態の第3変形例の熱交換器を示す
線図。
FIG. 13 is a diagram showing a heat exchanger according to a third modification of the other embodiment.

【図14】吸熱管の表面温度を求める式に係る説明図。FIG. 14 is an explanatory diagram relating to a formula for obtaining a surface temperature of a heat absorbing tube.

【図15】従来の熱交換器の構成を示す線図。FIG. 15 is a diagram showing a configuration of a conventional heat exchanger.

【図16】従来の熱交換器の構成を示す線図。FIG. 16 is a diagram showing a configuration of a conventional heat exchanger.

【図17】実施形態の熱交換器の構成を示す線図。FIG. 17 is a diagram showing a configuration of a heat exchanger of the embodiment.

【図18】実施形態と従来技術との間の各パスにおける
湯温を比較した図。
FIG. 18 is a diagram comparing the hot water temperature in each pass between the embodiment and the related art.

【符号の説明】[Explanation of symbols]

1 給水管 7 熱交換器 9 給湯管 11 吸熱部 12 第1パス 13 吸熱管 14 第2パス 15 フィン 16 第3パス 17 バイパス管 18 第4パス 20 第5パス 22 第6パス 24 第1結合管 26 第2結合管 28 第3結合管 30 第4結合管 32 第5結合管 DESCRIPTION OF SYMBOLS 1 Water supply pipe 7 Heat exchanger 9 Hot water supply pipe 11 Heat absorption part 12 1st path 13 Heat absorption pipe 14 2nd path 15 Fin 16 Third path 17 Bypass pipe 18 4th path 20 5th path 22 6th path 24 1st connection pipe 26 second connecting pipe 28 third connecting pipe 30 fourth connecting pipe 32 fifth connecting pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中野 清隆 兵庫県神戸市東灘区魚崎浜町43番1号 日本ユプロ株式会社内 (72)発明者 鶴田 透 兵庫県神戸市東灘区魚崎浜町43番1号 日本ユプロ株式会社内 (72)発明者 丸山 浩樹 兵庫県神戸市東灘区魚崎浜町43番1号 日本ユプロ株式会社内 (72)発明者 大谷 孝幸 兵庫県神戸市東灘区魚崎浜町43番1号 日本ユプロ株式会社内 (56)参考文献 実開 平5−52654(JP,U) (58)調査した分野(Int.Cl.7,DB名) F24H 1/14 F24H 9/00 F24H 1/10 302 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kiyotaka Nakano 431-1 Uozakihama-cho, Higashi-Nada-ku, Kobe-shi, Hyogo Prefecture Inside Nippon Yupro Co., Ltd. Inside Nippon Yupro Co., Ltd. (72) Inventor Hiroki Maruyama 43-1, Uozakihama-cho, Higashinada-ku, Kobe-city, Hyogo Prefecture Inside (72) Inventor Takayuki Otani 43-1 Uozakihama-cho, Higashinada-ku, Kobe-shi, Hyogo Japan Nippon Yupro Incorporated (56) References Hikaru 5-52654 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) F24H 1/14 F24H 9/00 F24H 1/10 302

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 給水管に接続された始端及び出湯管に接
続された終端を有して全体として1本の通水管路になる
よう形成された吸熱管を備える給湯機の熱交換器におい
て、 前記給水管と前記吸熱管の特定箇所とを結ぶ第1のバイ
パス管と、 前記給水管と前記吸熱管の特定箇所よりも上流側の箇所
とを結ぶ第2のバイパス管とを有し、 前記特定箇所が、前記吸熱管の終端よりも上流側の位置
であって、かつ、前記吸熱管の始端から前記特定箇所ま
での間の吸熱量が前記特定箇所から前記吸熱管の終端ま
での間の吸熱量よりも多くなる位置である給湯機の熱交
換器。
1. A heat exchanger for a water heater, comprising: a heat absorbing tube having a starting end connected to a water supply pipe and an end connected to a tapping pipe and formed as a whole as one water passage. A first bypass pipe connecting the water supply pipe and a specific location of the heat absorption pipe; and a second bypass pipe connecting the water supply pipe and a location upstream of the specific location of the heat absorption pipe. The specific location is a position on the upstream side of the end of the heat absorption tube, and the amount of heat absorbed from the start end of the heat absorption tube to the specific location is between the specific location and the end of the heat absorption tube. The heat exchanger of the water heater where the amount of heat absorbed is greater.
【請求項2】 請求項1記載の給湯機の熱交換器におい
て、 前記吸熱管は、前記特定箇所より上流側の内径が下流側
のそれより小さい給湯機の熱交換器。
2. The heat exchanger for a water heater according to claim 1, wherein the heat absorbing tube has a smaller internal diameter on the upstream side than the specific location on the downstream side.
【請求項3】 請求項1記載の給湯機の熱交換器におい
て、 前記第1のバイパス管の流水量が、前記吸熱管の前記特
定箇所より上流側の部位の流水量と等しいかより少なく
なるよう、前記第1のバイパス管の内径が選定されてい
る給湯機の熱交換器。
3. The heat exchanger of a water heater according to claim 1, wherein a flow rate of the first bypass pipe is equal to or less than a flow rate of a portion of the heat absorption pipe upstream of the specific location. As described above, the heat exchanger of the water heater in which the inner diameter of the first bypass pipe is selected.
JP27709795A 1995-09-29 1995-09-29 Water heater heat exchanger Expired - Fee Related JP3308437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27709795A JP3308437B2 (en) 1995-09-29 1995-09-29 Water heater heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27709795A JP3308437B2 (en) 1995-09-29 1995-09-29 Water heater heat exchanger

Publications (2)

Publication Number Publication Date
JPH0996443A JPH0996443A (en) 1997-04-08
JP3308437B2 true JP3308437B2 (en) 2002-07-29

Family

ID=17578741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27709795A Expired - Fee Related JP3308437B2 (en) 1995-09-29 1995-09-29 Water heater heat exchanger

Country Status (1)

Country Link
JP (1) JP3308437B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008589A (en) * 2006-06-30 2008-01-17 Osaka Gas Co Ltd Latent heat recovery type heating device
JP5790973B2 (en) * 2011-07-28 2015-10-07 株式会社ノーリツ Water heater

Also Published As

Publication number Publication date
JPH0996443A (en) 1997-04-08

Similar Documents

Publication Publication Date Title
AU2010210013B2 (en) Water heating apparatus
JP3308437B2 (en) Water heater heat exchanger
JP6939190B2 (en) Heating and hot water supply device
JP3054854B2 (en) Heat exchange equipment
JP6350864B2 (en) Hot water heater
JP3811334B2 (en) Heating system
JP2006010300A (en) Heat source device
JP2006207901A (en) Hot water apparatus
JPH056099B2 (en)
FR3073274B1 (en) DEVICE FOR PRODUCING HOT SANITARY WATER AND HEATING / REFRESHING
JP4692814B2 (en) Heat source equipment
JP3792637B2 (en) Water heater
JP3777255B2 (en) Heat exchanger
JP3801274B2 (en) Water heater
CN205783772U (en) Wall-mounted stove
JP4081116B2 (en) Heating system
JP2928005B2 (en) Instant water heater
JP2000121155A (en) Bypass mixing type hot water supply device
JP2589237Y2 (en) One-can two-circuit water heater
JP4310894B2 (en) Hot water storage water heater
JP5170470B2 (en) Water heater
JPS6118355Y2 (en)
CN105910271A (en) Wall-mounted stove
JP3992420B2 (en) Heat exchange device and hot water supply device
JPH08121874A (en) Circulation type water heater

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees