JP4081116B2 - Heating system - Google Patents

Heating system Download PDF

Info

Publication number
JP4081116B2
JP4081116B2 JP2006107671A JP2006107671A JP4081116B2 JP 4081116 B2 JP4081116 B2 JP 4081116B2 JP 2006107671 A JP2006107671 A JP 2006107671A JP 2006107671 A JP2006107671 A JP 2006107671A JP 4081116 B2 JP4081116 B2 JP 4081116B2
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
pipe
temperature
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006107671A
Other languages
Japanese (ja)
Other versions
JP2006220416A (en
Inventor
達範 原
哲司 森田
浩 市川
易司 佐野
直輝 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takagi Industrial Co Ltd
Osaka Gas Co Ltd
Original Assignee
Takagi Industrial Co Ltd
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takagi Industrial Co Ltd, Osaka Gas Co Ltd filed Critical Takagi Industrial Co Ltd
Priority to JP2006107671A priority Critical patent/JP4081116B2/en
Publication of JP2006220416A publication Critical patent/JP2006220416A/en
Application granted granted Critical
Publication of JP4081116B2 publication Critical patent/JP4081116B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Details Of Fluid Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Description

本発明は、水等の被加熱流体を熱媒とする暖房装置に関する。
The present invention relates to a heating apparatus using a fluid to be heated such as water as a heat medium.

この種の暖房装置では、メタン、プロパン、ブタン等の燃料を燃焼させ、その燃焼排気から熱を吸収する熱交換器を備え、水等の被加熱流体を加熱し、これを熱媒として放熱器に流して放熱させている。   This type of heating device includes a heat exchanger that burns fuel such as methane, propane, and butane and absorbs heat from the combustion exhaust gas, heats a fluid to be heated such as water, and uses this as a heat medium as a radiator. To dissipate heat.

燃焼排気からの熱吸収を利用した暖房装置に関し、特許文献1には、主熱交換器で燃焼排気の顕熱を吸収し、副熱交換器で燃焼排気から潜熱を吸収するガス燃焼装置を暖房機に利用することが開示されている。
特開平7−133958号公報
With respect to a heating apparatus that uses heat absorption from combustion exhaust, Patent Document 1 discloses a gas combustion apparatus that absorbs sensible heat of combustion exhaust with a main heat exchanger and absorbs latent heat from combustion exhaust with a sub-heat exchanger. It is disclosed that it is used for a machine.
JP-A-7-133958

ところで、暖房装置において、暖房運転の立上り時等の被加熱流体の温度が低いとき、又は、気温が低いとき等の暖房負荷が大きい場合には、凝縮水(ドレン水)が発生し易く、これが熱交換器の腐食等の原因になる。凝縮水の発生を抑制するには、従来、熱交換器の効率を抑制する方法が取られてきた。   By the way, in the heating device, when the temperature of the fluid to be heated at the start of the heating operation is low, or when the heating load is large such as when the temperature is low, condensed water (drain water) is likely to be generated. This may cause corrosion of the heat exchanger. In order to suppress the generation of condensed water, conventionally, a method for suppressing the efficiency of the heat exchanger has been taken.

そこで、本発明は、複数の熱交換器の設置によって熱交換効率を高めた暖房装置を提供することを課題とする。
Then, this invention makes it a subject to provide the heating apparatus which improved heat exchange efficiency by installation of a some heat exchanger.

本発明の暖房装置は、燃焼手段(バーナ8)で発生した燃焼排気(EG)中に第1及び第2の熱交換器(10、12)を設置し、第1の熱交換器を通して被加熱流体(水W)に燃焼排気(EG)から主として顕熱を吸収させるとともに、第2の熱交換器を通して被加熱流体に燃焼排気から顕熱又は潜熱を吸収させて熱交換効率を高めて燃料消費量の低減を図っている。   In the heating apparatus of the present invention, the first and second heat exchangers (10, 12) are installed in the combustion exhaust (EG) generated by the combustion means (burner 8), and the object to be heated is passed through the first heat exchanger. The fluid (water W) absorbs sensible heat mainly from the combustion exhaust (EG), and through the second heat exchanger, the heated fluid absorbs sensible heat or latent heat from the combustion exhaust to enhance heat exchange efficiency and fuel consumption. The amount is reduced.

本発明の暖房装置は、加熱した被加熱流体(水W)を熱媒とする暖房装置であって、燃料を燃焼させる燃焼手段(バーナ8)と、この燃焼手段から発生した燃焼排気(EG)を通す排気通路(84)の上流側に設置された受熱管(水管88)に流れる前記被加熱流体に前記燃焼排気から主として顕熱を吸収させる第1の熱交換器(10)と、前記排気通路の下流側に設置された受熱管(水管92)に流れる前記被加熱流体に前記第1の熱交換器を通過した前記燃焼排気から顕熱又は潜熱を吸収させる第2の熱交換器(12)と、前記第2の熱交換器で加熱された熱媒を前記第1の熱交換器へ流す流路(管路30、32)と、前記第1の熱交換器で加熱した熱媒を放熱させる第1の放熱手段に循環させる第1の循環路(管路50、52)と、前記流路を分岐し、前記第2の熱交換器で加熱した熱媒を放熱させる第2の放熱手段に循環させる第2の循環路(管路72、74)と、前記被加熱流体の設定温度により前記燃焼手段の燃焼量を制御する制御手段(制御装置120)とを備えた構成である。即ち、第1の熱交換器で燃焼排気から主として顕熱を回収し、第2の熱交換器で燃焼排気から顕熱又は潜熱を回収する。第1の熱交換器では凝縮水が発生しない程度の顕熱を回収し、第2の熱交換器では凝縮水の発生を前提として耐酸性に構成することにより顕熱又は潜熱を回収させ、2以上の熱交換器を以て熱交換効率を高めることができる。 The heating device of the present invention is a heating device using a heated fluid to be heated (water W) as a heat medium, combustion means for burning fuel (burner 8), and combustion exhaust (EG) generated from the combustion means. A first heat exchanger (10) for absorbing mainly sensible heat from the combustion exhaust to the heated fluid flowing in a heat receiving pipe (water pipe 88) installed upstream of an exhaust passage (84) through which the exhaust passes, and the exhaust A second heat exchanger (12) that absorbs sensible heat or latent heat from the combustion exhaust gas that has passed through the first heat exchanger to the heated fluid flowing in a heat receiving pipe (water pipe 92) installed on the downstream side of the passage. ), A flow path (pipe lines 30 and 32) for flowing the heat medium heated by the second heat exchanger to the first heat exchanger, and a heat medium heated by the first heat exchanger A first circulation path (pipe lines 50, 52) to be circulated to a first heat radiation means for radiating heat; Branch the flow path, the second circulation path for circulating the second heat radiating means for radiating the heat medium heated by the second heat exchanger (pipe 72, 74), the set temperature of the heated fluid And a control means (control device 120) for controlling the amount of combustion of the combustion means. That is, the sensible heat is mainly recovered from the combustion exhaust by the first heat exchanger, and the sensible heat or latent heat is recovered from the combustion exhaust by the second heat exchanger. The first heat exchanger recovers sensible heat to the extent that no condensed water is generated, and the second heat exchanger recovers sensible heat or latent heat by configuring it to be acid resistant on the assumption that condensed water is generated. With the above heat exchanger, the heat exchange efficiency can be increased.

換言すれば、第1の熱交換器で回収できない顕熱を第2の熱交換器で回収でき、このような熱回収により加熱した被加熱流体を混合するので、燃焼排気からの熱回収を高めることができる。凝縮水の発生を抑制するため、第1の熱交換器側の熱交換効率の制限を余儀なくされていたが、第2の熱交換器で顕熱を回収する結果、第1及び第2の熱交換器を以て87%程度の顕熱回収が実現できる。   In other words, sensible heat that cannot be recovered by the first heat exchanger can be recovered by the second heat exchanger, and the heated fluid heated by such heat recovery is mixed, so that heat recovery from the combustion exhaust is enhanced. be able to. In order to suppress the generation of condensed water, the heat exchange efficiency on the first heat exchanger side has been restricted, but as a result of recovering sensible heat with the second heat exchanger, the first and second heats are recovered. A sensible heat recovery of about 87% can be realized with the exchanger.

ところで、第2の熱交換器では被加熱流体の温度が55℃〜60℃であり、結露温度より高いため、潜熱の回収は殆ど無く、主として顕熱の回収が行われる。しかしながら、例えば、暖房燃焼を開始して被加熱流体の温度の上昇期間や、放熱負荷が過大になる外気温が低いとき等、被加熱流体の温度が結露温度を下回る場合には第2の熱交換器側で燃焼排気から潜熱回収が行われる。   By the way, in the 2nd heat exchanger, since the temperature of the to-be-heated fluid is 55 to 60 degreeC, and is higher than the dew condensation temperature, there is almost no recovery of latent heat and recovery of sensible heat is mainly performed. However, when the temperature of the fluid to be heated is lower than the dew condensation temperature, for example, when the temperature of the fluid to be heated is increased after the start of heating combustion or the outside air temperature at which the heat radiation load becomes excessive is low, the second heat On the exchanger side, latent heat is recovered from the combustion exhaust.

そして、前記被加熱流体の設定温度により前記燃焼手段の燃焼量を制御手段によって制御するので、その燃焼量に応じて第1の熱交換器側の加熱温度を制御することができる。   And since the combustion quantity of the said combustion means is controlled by a control means with the preset temperature of the said to-be-heated fluid, the heating temperature by the side of the 1st heat exchanger can be controlled according to the combustion quantity.

また、本発明の暖房装置において、前記第1の熱交換器(10)の前記受熱管(水管88)の吸熱フィン(90)の突出長(L)、厚さ、ピッチ又は枚数によって吸熱量を調整してもよい。即ち、吸熱フィンの突出長、厚さ、ピッチ又は枚数により、その吸熱量を調整でき、第1の熱交換器の受熱管の吸熱フィンの低温化を防止できる。   Moreover, in the heating apparatus of the present invention, the amount of heat absorption is determined by the protruding length (L), thickness, pitch, or number of heat absorbing fins (90) of the heat receiving pipe (water pipe 88) of the first heat exchanger (10). You may adjust. That is, the amount of heat absorption can be adjusted by the protrusion length, thickness, pitch, or number of the heat absorption fins, and the temperature reduction of the heat absorption fins of the heat receiving pipe of the first heat exchanger can be prevented.

本発明の暖房装置において、前記第1の熱交換器の前記受熱管に並列に接続されて前記被加熱流体の一部を流すバイパス管路(38)を備え、前記第2の熱交換器の前記受熱管に前記被加熱流体を流して加熱し、その一部を前記第1の熱交換器の前記受熱管に流して加熱するとともに、他の一部を前記バイパス管路から前記第1の熱交換器の出口側の前記被加熱流体に混合させる構成としてもよい。   The heating apparatus of the present invention includes a bypass pipe (38) connected in parallel to the heat receiving pipe of the first heat exchanger and allowing a part of the heated fluid to flow, The fluid to be heated is flowed through the heat receiving pipe and heated, and a part thereof is heated by flowing through the heat receiving pipe of the first heat exchanger, and the other part is passed through the first bypass pipe from the first pipe. It is good also as a structure mixed with the said to-be-heated fluid of the exit side of a heat exchanger.

即ち、燃料の燃焼によって生じた燃焼排気は排気通路の上流側から下流側に流れる。排気通路の上流側の第1の熱交換器の受熱管に流れる被加熱流体は燃焼排気から顕熱を吸収し、下流側の第2の熱交換器の受熱管に流れる被加熱流体は潜熱又は顕熱を吸収する。この場合、第2の熱交換器の受熱管に流れる被加熱流体が顕熱を吸収することはあり得るが、第2の熱交換器側で主として潜熱の吸収により加熱された被加熱流体が第1の熱交換器の受熱管に流れて顕熱の吸収により高温に加熱される。   That is, the combustion exhaust generated by the combustion of fuel flows from the upstream side to the downstream side of the exhaust passage. The heated fluid flowing in the heat receiving pipe of the first heat exchanger upstream of the exhaust passage absorbs sensible heat from the combustion exhaust, and the heated fluid flowing in the heat receiving pipe of the second heat exchanger downstream is latent heat or Absorbs sensible heat. In this case, the heated fluid flowing in the heat receiving pipe of the second heat exchanger may absorb sensible heat, but the heated fluid heated mainly by the absorption of latent heat on the second heat exchanger side 1 flows into the heat receiving tube of the heat exchanger 1 and is heated to a high temperature by absorbing sensible heat.

また、第2の熱交換器の出口側で分流させた被加熱流体は、バイパス管路を通じて第1の熱交換器の出口側の被加熱流体に合流する。即ち、第2の熱交換器側の低温の被加熱流体は、それを第1の熱交換器で加熱したその出口側の高温の被加熱流体と混合されるので、被加熱流体の全流量を以て第1の熱交換器の受熱管側の被加熱流体の流量とバイパス管路側の流量との比率を任意に調整できる。したがって、第1の熱交換器側の被加熱流体の加熱温度を露点温度以上に高めることができ、第1の熱交換器側の凝縮水の発生を防止できる。   In addition, the fluid to be heated divided on the outlet side of the second heat exchanger joins the fluid to be heated on the outlet side of the first heat exchanger through the bypass pipe. That is, the low-temperature heated fluid on the second heat exchanger side is mixed with the high-temperature heated fluid on the outlet side heated by the first heat exchanger, so that the total flow rate of the heated fluid is increased. The ratio of the flow rate of the heated fluid on the heat receiving pipe side of the first heat exchanger and the flow rate on the bypass pipe side can be arbitrarily adjusted. Therefore, the heating temperature of the fluid to be heated on the first heat exchanger side can be raised to the dew point temperature or higher, and the generation of condensed water on the first heat exchanger side can be prevented.

また、本発明の暖房装置において、直列に接続された前記第1の熱交換器及び前記第2の熱交換器の前記受熱管に並列に接続されて前記被加熱流体の一部を流すバイパス管路(138)を備え、前記被加熱流体の一部を前記第2の熱交換器の前記受熱管から前記第1の熱交換器の前記受熱管に流して加熱し、前記被加熱流体の他の一部を前記バイパス管路から前記第1の熱交換器の前記受熱管の出口側で混合させてもよい。   Further, in the heating device of the present invention, a bypass pipe connected in parallel to the heat receiving pipes of the first heat exchanger and the second heat exchanger connected in series to flow a part of the heated fluid A passage (138) for heating a part of the heated fluid by flowing from the heat receiving tube of the second heat exchanger to the heat receiving tube of the first heat exchanger. May be mixed on the outlet side of the heat receiving pipe of the first heat exchanger from the bypass pipe.

即ち、この場合も同様に、第2の熱交換器側で潜熱の吸収により加熱された被加熱流体は、第1の熱交換器の受熱管に流れて顕熱の吸収により高温に加熱される。   That is, in this case as well, the fluid to be heated heated by the absorption of latent heat on the second heat exchanger side flows into the heat receiving pipe of the first heat exchanger and is heated to a high temperature by absorption of sensible heat. .

そして、第2の熱交換器の入口側で分流させた被加熱流体は、バイパス管路を通じて第1の熱交換器の出口側の被加熱流体に合流する。即ち、直列に接続された第1及び第2の熱交換器に対してバイパス管路を通して被加熱流体を通過させるので、第1及び第2の熱交換器のみを通過させる場合に比較して圧力損失を大幅に低減でき、放熱手段の被加熱流体の通流量を多くでき、放熱負荷の増大に寄与することができる。   And the to-be-heated fluid shunted by the inlet side of the 2nd heat exchanger merges with the to-be-heated fluid of the exit side of a 1st heat exchanger through a bypass line. That is, since the fluid to be heated is passed through the bypass line with respect to the first and second heat exchangers connected in series, the pressure is higher than when only the first and second heat exchangers are passed. The loss can be greatly reduced, the flow rate of the fluid to be heated of the heat radiating means can be increased, and the heat radiation load can be increased.

また、本発明の暖房装置において、前記第2の熱交換器(12)の外壁部材を耐酸性素材で構成し、かつ、前記第2の熱交換器の外表面に生じた凝縮水(102)を回収する手段(回収ホッパ104)を備え、回収した前記凝縮水を中和させてもよい。即ち、外気温度の低下、湿度の上昇、暖房需要即ち、暖房負荷による被加熱流体の温度低下等に起因して第2の熱交換器に潜熱の回収により凝縮水が生じる。そこで、第2の熱交換器の外壁部材をチタン、ステンレス鋼等の耐酸性素材で構成することにより、酸性の凝縮水による腐食、腐食による機械的強度の低下や損傷の発生を防止できる。その凝縮水は、回収して中和することにより無害化でき、自由に廃棄することができる。   In the heating device of the present invention, the outer wall member of the second heat exchanger (12) is made of an acid-resistant material, and the condensed water (102) generated on the outer surface of the second heat exchanger. May be provided (recovery hopper 104) to neutralize the recovered condensed water. That is, condensed water is generated in the second heat exchanger due to the recovery of latent heat due to a decrease in outside air temperature, an increase in humidity, a heating demand, that is, a temperature decrease of a heated fluid due to a heating load, and the like. Therefore, by forming the outer wall member of the second heat exchanger with an acid-resistant material such as titanium or stainless steel, it is possible to prevent corrosion due to acidic condensate, deterioration of mechanical strength due to corrosion, and occurrence of damage. The condensed water can be rendered harmless by being recovered and neutralized, and can be disposed of freely.

また、本発明の暖房装置において、前記第2の熱交換器又は前記第1の熱交換器及び前記第2の熱交換器の前記受熱管(水管92)を複数の管路(94、96、98)で構成し、管路断面積を増加させてもよい。即ち、第2の熱交換器側の受熱管を屈曲形成すれば、燃焼排気から潜熱又は顕熱を効率的に回収することができるが、その分だけ流体抵抗が増大する。そこで、この受熱管を複数の管路を並列化して管路断面積を拡大すれば、流体抵抗を低下させることができる。その結果、所望の流量、流水速度を確保して熱交換効率を高め、燃料消費量の抑制に寄与することができる。
In the heating device of the present invention, the second heat exchanger or the first heat exchanger and the heat receiving pipe (water pipe 92) of the second heat exchanger are connected to a plurality of pipe lines (94, 96, 98), and the pipe cross-sectional area may be increased. That is, if the heat receiving pipe on the second heat exchanger side is bent, latent heat or sensible heat can be efficiently recovered from the combustion exhaust, but the fluid resistance increases accordingly. Therefore, if this heat receiving pipe has a plurality of pipes arranged in parallel to increase the pipe cross-sectional area, the fluid resistance can be reduced. As a result, it is possible to secure a desired flow rate and flowing water speed, increase heat exchange efficiency, and contribute to suppression of fuel consumption.

以上説明したように、本発明によれば、次の効果が得られる。   As described above, according to the present invention, the following effects can be obtained.

a 第1及び第2の熱交換器の併用によって燃焼排気から顕熱及び潜熱を回収し、熱交換効率を高めることができ、第1の熱交換器側の腐食、腐食による強度の低下や損傷を防止でき、熱回収効率の向上によって燃料の消費量の低減に寄与することができる。しかも、燃焼手段の燃焼量を制御して第1の熱交換器側の加熱温度を制御するので、第1の熱交換器側の加熱温度を高くでき、第1の熱交換器側の結露を抑制することができる。   a By using the first and second heat exchangers together, sensible heat and latent heat can be recovered from the combustion exhaust, and the heat exchange efficiency can be improved. Corrosion on the first heat exchanger side, strength reduction and damage due to corrosion And can contribute to a reduction in fuel consumption by improving heat recovery efficiency. In addition, since the heating temperature on the first heat exchanger side is controlled by controlling the combustion amount of the combustion means, the heating temperature on the first heat exchanger side can be increased, and the dew condensation on the first heat exchanger side can be reduced. Can be suppressed.

また、本発明によれば、第1の熱交換器の受熱管の吸熱フィンの突出長、厚さ、ピッチ又は枚数を以て吸熱量を調整するので、被加熱流体の加熱制御と相まって第1の熱交換器の受熱管の吸熱フィンの低温化を防止でき、結露を抑制できる。 In addition, according to the present invention, since the endothermic amount is adjusted by the protruding length, thickness, pitch, or number of the heat-absorbing fins of the heat-receiving tube of the first heat exchanger, the first control coupled with the heating control of the fluid to be heated. It is possible to prevent the temperature of the heat sink fins of the heat receiving pipe of the heat exchanger from being lowered, and to suppress condensation.

c また、本発明によれば、第2の熱交換器で加熱した被加熱流体を第1及び第2の熱交換器で加熱した被加熱流体と混合するので、第1の熱交換器側の加熱温度を高くして第1の熱交換器側の結露を抑制し、凝縮水による第1の熱交換器側の腐食、腐食による強度の低下や損傷の発生を防止できる。   c According to the present invention, the fluid to be heated heated by the second heat exchanger is mixed with the fluid to be heated heated by the first and second heat exchangers. By increasing the heating temperature, dew condensation on the first heat exchanger side can be suppressed, and corrosion on the first heat exchanger side due to condensed water, strength reduction due to corrosion, and occurrence of damage can be prevented.

d また、本発明によれば、加熱前の被加熱流体と第1及び第2の熱交換器で加熱した被加熱流体とを混合するので、被加熱流体の圧力損失を抑制でき、被加熱流体の流量を確保し、放熱負荷を増大させることができる。   d According to the present invention, since the heated fluid before heating and the heated fluid heated by the first and second heat exchangers are mixed, the pressure loss of the heated fluid can be suppressed, and the heated fluid The flow rate can be secured and the heat radiation load can be increased.

e また、本発明によれば、第2の熱交換器の外壁部材をチタン、ステンレス鋼等の耐酸性素材で構成するので、酸性の凝縮水による損傷を防止でき、また、その凝縮水は、回収して中和することにより無害化を達成できる。   e In addition, according to the present invention, the outer wall member of the second heat exchanger is made of an acid-resistant material such as titanium or stainless steel, so that damage due to acidic condensed water can be prevented, and the condensed water is Detoxification can be achieved by recovery and neutralization.

f また、本発明によれば、第2の熱交換器の受熱管を複数の管路を並列化して管路断面積を拡大することにより、流体抵抗が低下するので、所望の流量、流水速度を確保して熱交換効率を高め、燃料消費量の抑制に寄与することができる。
In addition, according to the present invention, the fluid resistance is reduced by parallelizing a plurality of pipes in the heat receiving pipe of the second heat exchanger, thereby reducing the fluid resistance. To increase heat exchange efficiency and contribute to the suppression of fuel consumption.

図1には本発明の暖房装置の実施形態が示されている。この暖房装置には、被加熱流体として水W(冷水及び温水の双方を含む。)が熱媒として使用されており、この水Wを加熱する装置本体部2、この装置本体部2で得られる高温水(例えば、80℃)を熱源とする第1の放熱手段である単一又は複数の室内温風ユニット4、装置本体部2で得られる低温水(例えば、60℃)を熱源とする第2の放熱手段である単一又は複数の床暖房用パネルユニット6が設置されている。   FIG. 1 shows an embodiment of the heating device of the present invention. In this heating apparatus, water W (including both cold water and hot water) is used as a fluid to be heated as a heat medium, and the apparatus main body 2 that heats the water W is obtained by the apparatus main body 2. Single or plural indoor warm air units 4 that are first heat radiating means using high-temperature water (for example, 80 ° C.) as a heat source, and low-temperature water (for example, 60 ° C.) obtained from the apparatus main body 2 as a heat source One or a plurality of floor heating panel units 6 which are two heat dissipating means are installed.

装置本体部2には、共通のバーナ8を加熱手段とした第1及び第2の熱交換器10、12が備えられ、熱交換器10は燃焼排気の上流側、熱交換器12はその下流側に設置されている。即ち、熱交換器10で回収できない顕熱を熱交換器12で回収でき、このような熱回収により加熱した水Wを混合させる。バーナ8には管路14を通じて燃料ガスGが供給され、管路14には燃料比例弁16及び燃料元弁18が設けられている。燃料元弁18の開閉によって燃料ガスGの供給又は解除が行われ、燃料比例弁16によって燃料ガスGの供給調整が行われる。バーナ8には給気ファン20を通じて燃焼用空気が供給され、また、バーナ8には放電器22が設けられている。   The apparatus main body 2 is provided with first and second heat exchangers 10 and 12 using a common burner 8 as a heating means. The heat exchanger 10 is upstream of the combustion exhaust, and the heat exchanger 12 is downstream thereof. It is installed on the side. That is, sensible heat that cannot be recovered by the heat exchanger 10 can be recovered by the heat exchanger 12, and the water W heated by such heat recovery is mixed. Fuel gas G is supplied to the burner 8 through a conduit 14, and a fuel proportional valve 16 and a fuel main valve 18 are provided in the conduit 14. Supply or release of the fuel gas G is performed by opening and closing the fuel source valve 18, and supply adjustment of the fuel gas G is performed by the fuel proportional valve 16. Combustion air is supplied to the burner 8 through an air supply fan 20, and a discharger 22 is provided in the burner 8.

この装置本体部2の膨張タンク24には管路26を通じて被加熱流体としての水Wが上水源等から供給される。管路26には開閉弁28が設けられており、開閉弁28を開き、必要な水量が膨張タンク24に供給されて全管路が水Wで満たされる。   The expansion tank 24 of the apparatus main body 2 is supplied with water W as a fluid to be heated from a water source or the like through a conduit 26. An open / close valve 28 is provided in the pipe line 26, the open / close valve 28 is opened, a necessary amount of water is supplied to the expansion tank 24, and the entire pipe line is filled with water W.

膨張タンク24には管路30、32が連結されており、管路30には熱交換器12、管路32には閉管路中に水Wを循環させるポンプ34を介して管路35が連結されている。即ち、ポンプ34を駆動すると、膨張タンク24からの水Wが矢印a、bで示すように管路33、35に分流し、熱交換器10による加熱で得られた高温水HWは、矢印c、dで示すように管路36側に流れる。管路30には熱交換器12で得られる高温水HWの温度を検出する温度センサ37が設置されている。そして、管路35と熱交換器10の出口側の管路36との間にはバイパス管路38が連結されており、管路36の高温水HWがバイパス管路38を通じて矢印eで示すように管路35側の低温水LWに合流する。管路35には温度センサ39、管路36には熱交換器10の出口側の温度を検出する温度センサ41が設置され、また、バイパス管路38には管路35からの水Wの管路36側への逆流防止手段として逆止弁40が設けられている。また、管路36と熱交換器12の入口側に連結された管路42との間にはバイパス管路としての管路44が連結されており、高温水HWをこの管路44を通じて矢印fで示すように管路42側に流すことができる。管路44には開閉弁46とともに、高温水HWから吸熱する給湯用又は追焚用の熱交換器48が設けられており、開閉弁46を開いて高温水HWにより追焚用の熱交換器48を流れる浴槽の湯水を加熱することができる。   Pipe lines 30 and 32 are connected to the expansion tank 24, and a pipe line 35 is connected to the pipe line 30 via a pump 34 that circulates water W in the closed pipe line. Has been. That is, when the pump 34 is driven, the water W from the expansion tank 24 is diverted to the pipes 33 and 35 as indicated by arrows a and b, and the high-temperature water HW obtained by heating by the heat exchanger 10 is indicated by the arrow c. , D as shown by the line 36 side. A temperature sensor 37 that detects the temperature of the high-temperature water HW obtained by the heat exchanger 12 is installed in the pipe line 30. A bypass line 38 is connected between the line 35 and the line 36 on the outlet side of the heat exchanger 10 so that the high-temperature water HW in the line 36 is indicated by an arrow e through the bypass line 38. To the low temperature water LW on the pipe 35 side. A temperature sensor 39 is installed in the pipeline 35, a temperature sensor 41 for detecting the temperature on the outlet side of the heat exchanger 10 is installed in the pipeline 36, and a water W pipe from the pipeline 35 is installed in the bypass pipeline 38. A check valve 40 is provided as means for preventing backflow to the path 36 side. Further, a pipe 44 as a bypass pipe is connected between the pipe 36 and the pipe 42 connected to the inlet side of the heat exchanger 12, and the hot water HW is passed through this pipe 44 with an arrow f. As shown in FIG. The pipe 44 is provided with a heat exchanger 48 for hot water supply or recuperation that absorbs heat from the high-temperature water HW together with the on-off valve 46. The heat exchanger 48 for replenishment with the high-temperature water HW by opening the on-off valve 46. The hot water in the bathtub flowing through 48 can be heated.

そして、管路36、42間には管路50、52を介して室内温風ユニット4が接続されており、この室内温風ユニット4の筐体54内には、熱交換器56及び開閉弁58とともにファンモータ60によって回転する放熱ファン62及び温度センサ64が設置されている。即ち、管路36からの高温水HWが管路50を通じて熱交換器56に供給された後、矢印gで示すように、管路52から管路42側に流れ、熱交換器12側に循環する。放熱ファン62を回転させると、吸気口66から空気68が筐体54内に導かれ、その空気68は熱交換器56の放熱によって加熱され、その結果、温風70が室内に放出される。開閉弁58を開いて高温水HWを熱交換器56に通流させ、放熱ファン62の回転数を可変して放熱量を制御することができるので、室温の調整が可能である。   The indoor hot air unit 4 is connected between the pipes 36 and 42 via the pipes 50 and 52, and a heat exchanger 56 and an opening / closing valve are provided in the casing 54 of the indoor hot air unit 4. A heat radiating fan 62 and a temperature sensor 64 that are rotated by a fan motor 60 together with 58 are installed. That is, after the high-temperature water HW from the pipe 36 is supplied to the heat exchanger 56 through the pipe 50, it flows from the pipe 52 to the pipe 42 side and circulates to the heat exchanger 12 side as indicated by an arrow g. To do. When the heat dissipating fan 62 is rotated, air 68 is introduced into the housing 54 from the air inlet 66, and the air 68 is heated by heat dissipated by the heat exchanger 56. As a result, the hot air 70 is discharged into the room. Since the on-off valve 58 is opened to allow the high-temperature water HW to flow through the heat exchanger 56, and the amount of heat radiation can be controlled by changing the number of rotations of the heat radiation fan 62, the room temperature can be adjusted.

また、管路35、42間には管路72、74及び開閉弁76を介して床暖房用パネルユニット6の放熱管78が接続されている。即ち、管路72を通じて低温水LWが管路72から放熱管78に供給され、その低温水LWは開閉弁76の開度に応じて床暖房用パネルユニット6の放熱管78に流れ、矢印hで示すように、管路42側に合流して循環する。この結果、放熱管78による放熱によって床が温められる。この場合、開閉弁76を開閉させることによって放熱量が調整でき、床温度の調整が可能である。   In addition, a heat radiating pipe 78 of the floor heating panel unit 6 is connected between the pipe lines 35 and 42 via pipe lines 72 and 74 and an on-off valve 76. That is, the low-temperature water LW is supplied from the pipe 72 to the heat radiating pipe 78 through the pipe 72, and the low-temperature water LW flows into the heat radiating pipe 78 of the floor heating panel unit 6 according to the opening degree of the on-off valve 76. As shown by, it joins and circulates to the pipe line 42 side. As a result, the floor is warmed by heat radiation by the heat radiating pipe 78. In this case, the heat radiation amount can be adjusted by opening and closing the on-off valve 76, and the floor temperature can be adjusted.

次に、図2は、装置本体部2の熱交換器10、12側の構成を示している。装置本体部2には胴部80が設置され、この胴部80の内部に燃焼室82が形成されている。この燃焼室82には燃焼手段であるバーナ8が設置され、このバーナ8の下側には給気部として燃焼空気を取り込む給気ファン20が設けられ、燃焼室82の上部及び側部側に胴部80を延長する形態で排気通路84が形成され、この排気通路84は排気口86に開口されている。したがって、給気ファン20からの給気Eと燃焼ガスGとを以てバーナ8の燃焼により発生した燃焼排気EGは、排気通路84を経て排気口86から外気に放出される。   Next, FIG. 2 shows a configuration of the apparatus main body 2 on the heat exchangers 10 and 12 side. A body 80 is installed in the apparatus main body 2, and a combustion chamber 82 is formed inside the body 80. The combustion chamber 82 is provided with a burner 8 as combustion means, and an air supply fan 20 that takes in combustion air as an air supply portion is provided below the burner 8. An exhaust passage 84 is formed so as to extend the body portion 80, and the exhaust passage 84 is opened to the exhaust port 86. Therefore, the combustion exhaust EG generated by the combustion of the burner 8 using the supply air E and the combustion gas G from the supply air fan 20 is discharged from the exhaust port 86 to the outside air via the exhaust passage 84.

燃焼室82には、排気通路84の上流側に第1の熱交換器10、その下流側に第2の熱交換器12が設置されている。熱交換器10は、受熱管として水管88を燃焼室82の外壁に巻き付けて設置され、その水管88の周囲には複数の吸熱フィン90が形成されている。また、熱交換器12は、排気通路84内に屈曲した受熱管としての水管92を設置したものであり、この実施形態では、複数の管路94、96、98の併設によって管路断面積を拡大した水管92が構成され、その周囲に無数の吸熱フィン100が設けられている。また、管路94、96、98をフレキシブルパイプ等の波状の管体にして吸熱効率を向上させても良い。燃焼排気EGの下流側に設置された熱交換器12には水管92を流れる水Wに燃焼排気EGから主として顕熱を吸収させる。また、燃焼開始時の温水温度の上昇時、又は、気温の低下や暖房負荷の増加に伴って管路42側を流れる湯水温度が熱交換器12の結露温度を下回るときには潜熱も回収することができる。このとき発生する強酸性の液体から熱交換器12を防護するため、熱交換器12の水管92及び吸熱フィン100等はステンレス鋼やチタン等の耐酸性素材で形成されている。   The combustion chamber 82 is provided with the first heat exchanger 10 on the upstream side of the exhaust passage 84 and the second heat exchanger 12 on the downstream side thereof. The heat exchanger 10 is installed by winding a water pipe 88 as a heat receiving pipe around the outer wall of the combustion chamber 82, and a plurality of heat absorbing fins 90 are formed around the water pipe 88. Further, the heat exchanger 12 is provided with a water pipe 92 as a heat receiving pipe bent in the exhaust passage 84. In this embodiment, the pipe cross-sectional area is increased by providing a plurality of pipes 94, 96, and 98. An enlarged water pipe 92 is formed, and an infinite number of endothermic fins 100 are provided around it. Further, the heat absorption efficiency may be improved by making the conduits 94, 96, and 98 into wavy tubular bodies such as flexible pipes. The heat exchanger 12 installed on the downstream side of the combustion exhaust EG causes the water W flowing through the water pipe 92 to absorb mainly sensible heat from the combustion exhaust EG. In addition, latent heat can also be recovered when the hot water temperature at the start of combustion rises or when the temperature of hot water flowing through the pipe line 42 is lower than the dew condensation temperature of the heat exchanger 12 as the temperature decreases or the heating load increases. it can. In order to protect the heat exchanger 12 from the strongly acidic liquid generated at this time, the water pipe 92 and the heat-absorbing fins 100 of the heat exchanger 12 are formed of an acid-resistant material such as stainless steel or titanium.

そして、熱交換器12の水管92の下側には凝縮水102を受ける回収手段としての回収ホッパ104が設けられ、この回収ホッパ104に回収された凝縮水102は、管路106を通じて中和器108に導かれる。この中和器108には酸性の凝縮水102を中和するため、アルカリ性等の中和剤110が充填されている。中和された凝縮水102は、管路112を通して外部に排出される。   A recovery hopper 104 as a recovery means for receiving the condensed water 102 is provided below the water pipe 92 of the heat exchanger 12, and the condensed water 102 recovered in the recovery hopper 104 is neutralized through the pipe 106. To 108. The neutralizer 108 is filled with a neutralizing agent 110 such as alkaline to neutralize the acidic condensed water 102. The neutralized condensed water 102 is discharged outside through the pipe 112.

次に、図3は、給湯制御部の実施の形態を示している。この給湯制御部にはマイクロコンピュータ等で構成された制御手段として制御装置120が設置され、この制御装置120は演算手段としてのCPU、記憶手段としてのROM及びRAM等を備えており、ROMには給湯制御等のプログラム、RAMには検出データ等がそれぞれ格納される。   Next, FIG. 3 shows an embodiment of the hot water supply control unit. In this hot water supply control unit, a control device 120 is installed as a control means constituted by a microcomputer or the like. The control device 120 includes a CPU as a calculation means, a ROM and a RAM as storage means, and the ROM includes Detection data and the like are stored in a program for controlling hot water supply and the RAM.

制御装置120には温度設定器122から設定温度が加えられるとともに、各種の温度センサ37、39、41等の検出出力が取り込まれ、制御出力が燃料比例弁16、燃料元弁18、ファンモータ60、給気ファン20のファンモータ124等に加えられる。   A set temperature is applied from the temperature setter 122 to the control device 120, and detection outputs from various temperature sensors 37, 39, 41 and the like are taken in. The control outputs are the fuel proportional valve 16, the fuel main valve 18, and the fan motor 60. The fan motor 124 of the air supply fan 20 is added.

次に、動作を説明すると、図4に示すように、バーナ8で燃料ガスGを燃焼させると、燃焼排気EGが発生する。この燃焼排気EGが持つ熱量をH0 、熱交換器10側の交換熱量をH1 、水温上昇をΔt1 、熱交換器12側の交換熱量をH2 、水温上昇をΔt2 とすると、燃焼排気EGの熱量H0 から熱交換器10側で熱量H1 が吸収されて熱交換器12側には熱量(H0 −H1 )の燃焼排気EGが流れ、熱交換器12を通過した燃焼排気EGの熱量は(H0 −H1 −H2 )となる。 Next, the operation will be described. As shown in FIG. 4, when the fuel gas G is burned by the burner 8, combustion exhaust EG is generated. If the heat quantity of the combustion exhaust EG is H 0 , the exchange heat quantity on the heat exchanger 10 side is H 1 , the water temperature rise is Δt 1 , the exchange heat quantity on the heat exchanger 12 side is H 2 , and the water temperature rise is Δt 2 , combustion The amount of heat H 1 is absorbed on the heat exchanger 10 side from the heat amount H 0 of the exhaust EG, and the combustion exhaust EG of the amount of heat (H 0 -H 1 ) flows on the heat exchanger 12 side, and the combustion that has passed through the heat exchanger 12 The amount of heat of the exhaust EG is (H 0 -H 1 -H 2 ).

そこで、バイパス管路38側を閉鎖した状態を想定し、熱交換器12に水温t0 の給水Wを行うと、熱交換器12の出口側、即ち、熱交換器10の入口側の水温t1 は(t0 +Δt2 )に昇温され、この温水は熱交換器10側に流れ、高温水HWの温度t2 は、(t0 +Δt2 +Δt1 )となる。 Therefore, assuming a state in which the bypass line 38 side is closed, when water supply W at the water temperature t 0 is performed on the heat exchanger 12, the water temperature t on the outlet side of the heat exchanger 12, that is, the inlet side of the heat exchanger 10. 1 is heated to (t 0 + Δt 2 ), this hot water flows to the heat exchanger 10 side, and the temperature t 2 of the high-temperature water HW becomes (t 0 + Δt 2 + Δt 1 ).

この場合、バーナ8で得られた燃焼排気EGの温度を1500℃とすると、熱交換器10を通過した燃焼排気EGの温度は220℃に低下し、さらに熱交換器12を通過した燃焼排気EGの温度は120℃に低下することとなる。   In this case, if the temperature of the combustion exhaust EG obtained by the burner 8 is 1500 ° C., the temperature of the combustion exhaust EG that has passed through the heat exchanger 10 decreases to 220 ° C., and further the combustion exhaust EG that has passed through the heat exchanger 12. The temperature will be reduced to 120 ° C.

このとき、熱量H0 に対する交換熱量H1 の比率(H1 /H0 )は、H1 /H0 =80%、熱量H0 に対する交換熱量H2 の比率(H2 /H0 )は、H2 /H0 =5%、(H1 +H2 )/H0 =85%であり、Δt2 :Δt1 =5:80、H1 :H2 =Δt1 :Δt2 である。 At this time, the ratio (H 1 / H 0 ) of the exchange heat quantity H 1 to the heat quantity H 0 is H 1 / H 0 = 80%, and the ratio of the exchange heat quantity H 2 to the heat quantity H 0 (H 2 / H 0 ) is H 2 / H 0 = 5%, (H 1 + H 2 ) / H 0 = 85%, Δt 2 : Δt 1 = 5: 80, and H 1 : H 2 = Δt 1 : Δt 2 .

ところで、暖房制御について、高温水HWのみの暖房の場合、低温水LWのみの暖房の場合、双方を用いた暖房の場合がある。高温水HWのみの暖房、即ち、ファンコンベクタ等の高温の湯水の熱量を放出する機器に温水を供給する運転を行う場合には、温度センサ41の検出温度が80℃になるように燃料比例弁16を操作して調整する。また、低温水LWのみの暖房即ち、床暖房用パネルユニット6を使用している場合は、温度センサ39の検出温度が60℃となるように燃料比例弁16を操作して出湯温度を調整する。   By the way, about heating control, in the case of heating only of the high temperature water HW, in the case of heating only of the low temperature water LW, there is a case of heating using both. When heating only the high-temperature water HW, that is, when performing an operation of supplying hot water to a device that releases the amount of heat of high-temperature hot water such as a fan convector, the fuel proportional valve is set so that the temperature detected by the temperature sensor 41 is 80 ° C. 16 is adjusted. Further, when only the low-temperature water LW is heated, that is, when the floor heating panel unit 6 is used, the fuel proportional valve 16 is operated so that the temperature detected by the temperature sensor 39 is 60 ° C., and the tapping temperature is adjusted. .

そして、高温水HW及び低温水LWを併用した暖房では、バイパス管路38を用いて高温水HW及び低温水LWを合流させ、管路36より低い湯水温度の低温水LWが管路35から得られる。管路35とバイパス管路38の混合水量は調整できないが、これは、暖房機の負荷数によるポンプ流量の変動、暖房負荷に伴う流水量の確保、暖房機の負荷数の変動に伴う放熱量の変動によって還流される湯水の温度が変動することにより、混合による温度制御ができない。低温水LWの温度は高温水HWより低く、管路36側の高温水HWの温度は、温度センサ41の検出温度を用いて設定温度を最大80℃に可変し、低温水LWの温度を調整する。   In the heating using both the high-temperature water HW and the low-temperature water LW, the high-temperature water HW and the low-temperature water LW are merged using the bypass line 38, and the low-temperature water LW having a hot water temperature lower than the line 36 is obtained from the line 35. It is done. The amount of mixed water in the pipe 35 and the bypass pipe 38 cannot be adjusted, but this is because the amount of heat released due to fluctuations in the pump flow rate due to the number of loads on the heater, securing the amount of flowing water associated with the heating load, and fluctuations in the number of loads on the heater. Since the temperature of the hot water to be refluxed fluctuates due to fluctuations in temperature, temperature control by mixing cannot be performed. The temperature of the low-temperature water LW is lower than that of the high-temperature water HW, and the temperature of the high-temperature water HW on the pipe 36 side is adjusted to a maximum temperature of 80 ° C. using the temperature detected by the temperature sensor 41 to adjust the temperature of the low-temperature water LW. To do.

そして、図5の(a)に示すように燃焼排気中の顕熱は熱交換効率90%まで回収でき、潜熱は熱交換効率が90%を越えるとき、回収される。そこで、図5の(b)に示すように熱交換効率90%の熱交換器を熱交換器10に用いた場合、理論的には顕熱の総てを回収できるが、実際には顕熱の85%程度の回収しか得られず、この場合、燃焼開始から湯水温度が上昇して、管路42に熱交換器12の露点温度を越える温度の湯水が還流されるまでは潜熱が0〜5%程度回収され、その際、熱交換器10は流水の吸熱により、その一部が露点温度(40〜50℃)以下に低下することになる。この結果、熱交換器10の表面には凝縮水が生じ、この凝縮水が酸性であるため腐食を生じさせる原因になる。このため、図5の(c)に示すように、熱交換器10側で顕熱のみを回収できる最大の熱交換効率(例えば最大燃焼時において80%の熱交換効率)を設定し、熱交換器10側で回収できない燃焼排気中の熱量を熱交換器12で吸収させて高効率化を実現している。   As shown in FIG. 5 (a), the sensible heat in the combustion exhaust can be recovered to a heat exchange efficiency of 90%, and the latent heat is recovered when the heat exchange efficiency exceeds 90%. Therefore, when a heat exchanger having a heat exchange efficiency of 90% is used for the heat exchanger 10 as shown in FIG. 5 (b), all of the sensible heat can be recovered theoretically. In this case, the hot water temperature rises from the start of combustion until the hot water at a temperature exceeding the dew point temperature of the heat exchanger 12 is returned to the pipe line 42 until the latent heat is 0 to 0%. About 5% is recovered, and at that time, a part of the heat exchanger 10 is lowered to a dew point temperature (40 to 50 ° C.) or less due to endothermic heat absorption. As a result, condensed water is generated on the surface of the heat exchanger 10, and this condensed water is acidic, causing corrosion. For this reason, as shown in FIG. 5 (c), the maximum heat exchange efficiency (for example, 80% heat exchange efficiency at the time of the maximum combustion) that can recover only the sensible heat on the heat exchanger 10 side is set. The heat exchanger 12 absorbs the amount of heat in the combustion exhaust that cannot be recovered on the side of the vessel 10 to achieve high efficiency.

ところで、熱交換器10を通過した燃焼排気EGの温度は約220℃程度に低下するため、熱交換器10の水管88の吸熱フィン90の一部等が低温化、即ち、40℃〜50℃以下の露点温度に冷却されて凝縮水を生じさせるおそれがある。これは水Wの温度t0 によっても発生する。このような露点温度以下の低温化を防止するには、水管88を通過する温水の温度を上昇させて吸熱フィン90の温度を露点温度以上に昇温させることが必要となる。熱交換器10側の対策として、吸熱フィン90から水管88への吸熱量を調整し、吸熱フィン90の熱交換面が露点温度より高くなるようにする。即ち、図6に示すように、吸熱フィン90の吸熱量は吸熱フィン90と水管88との距離Lや吸熱フィン90の厚み、フィンのピッチ又は枚数を調整して実現することができる。この結果、熱交換器10の排気側、即ち、下流側の結露、即ち、凝縮水の抑制を図ることができる。この場合、水Wは、上流側の熱量H0 を受けて加熱されると、その水温tP は水管88の下側で(tP +Δt1a)に上昇し、その上昇温度Δt1aは熱量H1aに対応する。このため、水管88の上側、即ち、下流側で熱量(H0 −H1a)を受け、熱交換器10から水温(tP +Δt1 )の湯が得られる。 By the way, since the temperature of the combustion exhaust gas EG that has passed through the heat exchanger 10 is reduced to about 220 ° C., a part of the heat-absorbing fins 90 of the water pipe 88 of the heat exchanger 10 is lowered, that is, 40 ° C. to 50 ° C. There is a risk of producing condensed water by cooling to the following dew point temperature. This also occurs due to the temperature t 0 of the water W. In order to prevent such a decrease in temperature below the dew point temperature, it is necessary to increase the temperature of the heat sink fin 90 above the dew point temperature by increasing the temperature of the hot water passing through the water pipe 88. As a countermeasure on the heat exchanger 10 side, the amount of heat absorbed from the heat sink fin 90 to the water pipe 88 is adjusted so that the heat exchange surface of the heat sink fin 90 becomes higher than the dew point temperature. That is, as shown in FIG. 6, the endothermic amount of the endothermic fin 90 can be realized by adjusting the distance L between the endothermic fin 90 and the water pipe 88, the thickness of the endothermic fin 90, the pitch of the fins, or the number of fins. As a result, condensation on the exhaust side of the heat exchanger 10, that is, the downstream side, that is, condensate water can be suppressed. In this case, when the water W is heated by receiving the upstream heat quantity H 0 , the water temperature t P rises to (t P + Δt 1a ) below the water pipe 88, and the rise temperature Δt 1a is the heat quantity H Corresponds to 1a . Therefore, hot water having a water temperature (t P + Δt 1 ) is obtained from the heat exchanger 10 by receiving heat (H 0 −H 1a ) on the upper side of the water pipe 88, that is, on the downstream side.

この場合、バイパス管路38側の水量と熱交換器10側の水量の比を1:1とすると、熱交換器12の水管92を通過した水Wは熱量H2 を吸収し、水WをΔt2 だけ昇温させることができる。図7は、この場合の等価回路を示しており、この温水はバイパス管路38と熱交換器10側とに例えば、1:1で分流され、熱交換器10側で熱量H1 が吸収され、温水は更に△t1 だけ昇温する。この場合、バイパス管路38側の温水の温度taは、
ta=(t0 +Δt2 ) ・・・(1)
であり、熱交換器10側の温水の温度tbは、
tb=(t0 +Δt2 +Δt1 ) ・・・(2)
である。混合比率は1:1であるから、管路36の高温水HWの温度tcは、
tc=(t0 +Δt2 +t0 +Δt2 +Δt1 )/2
=t0 +Δt2 +Δt1 /2 ・・・(3)
である。ここで、バイパス管路38が無い場合には、管路36の高温水HWの温度tdは、
td=t0 +Δt2 +Δt1b ・・・(4)
となる。ここで、各温度tc、tdを同一と仮定すれば、バイパス管路38の無い場合には、熱交換器10側の水量がバイパス管路38のある場合の2倍となるため、Δt1 :Δt1b=2:1の関係から、
Δt1b=Δt1 /2 ・・・(5)
となる。この結果、バイパス管路38を通じて温水を分流させて管路36で合流させる場合には、熱交換器10の水管88の温水温度を高くでき、熱交換器10側の結露を防止することができる。
In this case, if the ratio of the amount of water on the bypass conduit 38 side and the amount of water on the heat exchanger 10 side is 1: 1, the water W that has passed through the water pipe 92 of the heat exchanger 12 absorbs the amount of heat H 2 and The temperature can be raised by Δt 2 . FIG. 7 shows an equivalent circuit in this case, and this hot water is diverted, for example, 1: 1 to the bypass conduit 38 and the heat exchanger 10 side, and the heat quantity H 1 is absorbed on the heat exchanger 10 side. The hot water is further heated by Δt 1 . In this case, the temperature ta of the hot water on the bypass line 38 side is
ta = (t 0 + Δt 2 ) (1)
The temperature tb of the hot water on the heat exchanger 10 side is
tb = (t 0 + Δt 2 + Δt 1 ) (2)
It is. Since the mixing ratio is 1: 1, the temperature tc of the hot water HW in the pipeline 36 is
tc = (t 0 + Δt 2 + t 0 + Δt 2 + Δt 1 ) / 2
= T 0 + Δt 2 + Δt 1/2 (3)
It is. Here, when there is no bypass conduit 38, the temperature td of the high-temperature water HW in the conduit 36 is
td = t 0 + Δt 2 + Δt 1b (4)
It becomes. Here, if it is assumed that the temperatures tc and td are the same, the amount of water on the heat exchanger 10 side is double that when the bypass conduit 38 is present when there is no bypass conduit 38, so Δt 1 : From the relationship of Δt 1b = 2: 1,
Δt 1b = Δt 1/2 (5)
It becomes. As a result, when the hot water is diverted through the bypass pipe 38 and merged in the pipe 36, the hot water temperature of the water pipe 88 of the heat exchanger 10 can be increased, and condensation on the heat exchanger 10 side can be prevented. .

また、熱交換器10を通過する水量を多くすることによる熱交換効率の増加も期待でき、熱回収効率が高く、燃料の消費量を低減することができる。   Further, an increase in heat exchange efficiency due to an increase in the amount of water passing through the heat exchanger 10 can be expected, heat recovery efficiency is high, and fuel consumption can be reduced.

ところで、この熱交換装置及び給湯装置において、バイパス管路38と熱交換器10の熱回収率との関係、即ち、バイパス管路38による分流の熱交換器10の熱回収率への影響について見ると、熱交換器10は上述のように、1500℃程度に加熱され、一方、水温は数十℃であるため、バイパス管路38が無いとき、熱交換器10の熱交換量が大きくなるが、熱交換器10の加熱温度1500℃から見れば、無視できる程度の温度差であり、バイパス管路38による分流が熱交換器10の熱吸収率に影響することはない。   By the way, in this heat exchange device and hot water supply device, the relationship between the bypass pipe line 38 and the heat recovery rate of the heat exchanger 10, that is, the influence of the diversion by the bypass pipe line 38 on the heat recovery rate of the heat exchanger 10 is seen. As described above, the heat exchanger 10 is heated to about 1500 ° C., while the water temperature is several tens of degrees Celsius, so that when the bypass pipe 38 is not provided, the heat exchange amount of the heat exchanger 10 increases. The temperature difference is negligible when viewed from the heating temperature 1500 ° C. of the heat exchanger 10, and the diversion by the bypass pipe 38 does not affect the heat absorption rate of the heat exchanger 10.

また、バイパス管路38と熱交換器10の熱交換効率との関係、即ち、バイパス管路38による分流の熱交換器10の熱交換効率への影響について見ると、バイパス管路38を設けて分流することは、熱交換器10による加熱前と加熱後で温度差が若干縮まることであり、その結果、熱交換器10の水管88の管内流速の低下による管内伝熱係数の減少により、熱交換器10の熱交換効率が僅かに低下する。しかしながら、バイパス管路38が無い場合、熱交換器10の熱交換効率が80%、バイパス管路38を付けた場合、熱交換器10の熱交換効率が78〜79%程度であるから、バイパス管路38の設置による結露防止が遙に有利となる。   Further, when the relationship between the bypass pipe 38 and the heat exchange efficiency of the heat exchanger 10, that is, the influence of the shunt flow by the bypass pipe 38 on the heat exchange efficiency of the heat exchanger 10, the bypass pipe 38 is provided. The diversion means that the temperature difference is slightly reduced before and after heating by the heat exchanger 10, and as a result, the heat transfer coefficient decreases due to the decrease in the pipe flow velocity of the water pipe 88 of the heat exchanger 10. The heat exchange efficiency of the exchanger 10 slightly decreases. However, when there is no bypass line 38, the heat exchange efficiency of the heat exchanger 10 is 80%, and when the bypass line 38 is attached, the heat exchange efficiency of the heat exchanger 10 is about 78-79%. Prevention of condensation due to the installation of the pipe line 38 is advantageous for dredging.

また、高温水HWの水量と加熱温度との関係について見ると、水量を同一にして熱交換器10の水量を抑えた場合、即ち、総流量を変えずに熱交換器10側とバイパス管路38側との分配比を変化させ、熱交換器10の水量を少なくすれば、熱交換器10の熱交換効率がその流量に応じて低下し、熱交換器10の加熱温度が上昇することになる。また、高温水HWの水量を同一にして熱交換器10側の水量を多くした場合、熱交換器10側の加熱温度は低下することになる。   Further, looking at the relationship between the amount of high-temperature water HW and the heating temperature, the amount of water in the heat exchanger 10 is suppressed by making the amount of water the same, that is, the heat exchanger 10 side and the bypass line without changing the total flow rate. If the distribution ratio with respect to the side 38 is changed and the amount of water in the heat exchanger 10 is reduced, the heat exchange efficiency of the heat exchanger 10 is lowered according to the flow rate, and the heating temperature of the heat exchanger 10 is increased. Become. Further, when the amount of the high-temperature water HW is made the same and the amount of water on the heat exchanger 10 side is increased, the heating temperature on the heat exchanger 10 side is lowered.

また、熱交換器10側の吸熱フィン90の突出長Lや厚さにより、熱交換器10自体の熱交換効率や熱回収率を調整することができるが、吸熱フィン90の温度には適正な範囲があり、例えば、露点温度以上酸化温度(250℃)以下が好ましく、この範囲を越えて高い場合も低い場合も不都合である。また、吸熱フィン90の厚さについては、その材質に銅を用いた場合、伝熱的な要素よりも耐久的な要素の方が強く、伝熱面積を多く取る場合には、吸熱フィン90の増加、そのピッチの減少が必要である。   In addition, the heat exchange efficiency and heat recovery rate of the heat exchanger 10 itself can be adjusted by the protruding length L and thickness of the heat sink fin 90 on the heat exchanger 10 side. There is a range, for example, a dew point temperature or higher and an oxidation temperature (250 ° C.) or lower is preferable. As for the thickness of the heat sink fin 90, when copper is used as the material, the durable element is stronger than the heat transfer element. It is necessary to increase and decrease the pitch.

ところで、熱交換器10、12は直列に接続されており、水管88側の流体抵抗をR1 、水管92側の各流体抵抗をR2 とすると、通水経路は図8に示す等価回路で表すことができる。水管92側の管路94〜98の並列数をnとすると、全通水抵抗Rは、
R=R1 +R2 /n ・・・(6)
となり、水管92側の管路94〜98の並列化により全通水抵抗Rの大幅な低減が図られる。したがって、暖房負荷を増加させることができるとともに、熱効率の改善に寄与することができる。
By the way, the heat exchangers 10 and 12 are connected in series. When the fluid resistance on the water pipe 88 side is R 1 and each fluid resistance on the water pipe 92 side is R 2 , the water flow path is an equivalent circuit shown in FIG. Can be represented. When the parallel number of the pipes 94 to 98 on the water pipe 92 side is n, the total water flow resistance R is
R = R 1 + R 2 / n (6)
Thus, the parallel flow of the pipes 94 to 98 on the water pipe 92 side makes it possible to significantly reduce the total water flow resistance R. Therefore, it is possible to increase the heating load and contribute to the improvement of thermal efficiency.

そして、管路36から得られる高温水HWの水量は、開閉弁58によって制御することができ、熱交換器10側の流量を制御することができる。熱交換器10側の流量を多く設定すれば、熱交換器10の水管88の温水の温度を高くでき、凝縮水が熱交換器10側に生ずることを防止できる。   The amount of the high-temperature water HW obtained from the pipe 36 can be controlled by the on-off valve 58, and the flow rate on the heat exchanger 10 side can be controlled. If a large flow rate is set on the heat exchanger 10 side, the temperature of the hot water in the water pipe 88 of the heat exchanger 10 can be increased, and condensate can be prevented from being generated on the heat exchanger 10 side.

また、管路36から得られる高温水HWの温度は温度センサ41によって検出され、その検出温度によってバーナ8の燃焼量を加減することにより所望の設定温度の高温水HW及び低温水LWが得られる。そして、この場合も、設定温度に応じて熱交換器10側の流量を制御することが可能であり、熱交換器10の水管88の温水温度を高くすることによって熱交換器10側の結露を防止することができる。   Further, the temperature of the high-temperature water HW obtained from the pipe 36 is detected by the temperature sensor 41, and the high-temperature water HW and the low-temperature water LW having desired set temperatures are obtained by adjusting the combustion amount of the burner 8 based on the detected temperature. . In this case as well, the flow rate on the heat exchanger 10 side can be controlled according to the set temperature, and the dew condensation on the heat exchanger 10 side can be reduced by increasing the hot water temperature of the water pipe 88 of the heat exchanger 10. Can be prevented.

次に、図9に示す本発明の他の実施形態について説明すると、ポンプ34の出口側の管路33と管路36との間に熱交換器10が接続され、管路36を分岐して管路35が設けられている。ポンプ34を駆動すると、水Wの全てが熱交換器10側に流れて加熱され、その高温水HWは矢印cで示すように管路36に流れるとともに、矢印iで示すように、管路35側に分流する。この管路35と管路42との間にバイパス管路138が連結されており、このバイパス管路138には逆流防止手段として逆止弁40が設けられている。このバイパス管路138を通じて矢印jで示すように、回収された水Wが管路35側に合流している。即ち、この実施形態では、水Wを熱交換器12の入口側で例えば、1:1の比率で分流させた後、その水Wを熱交換器10の出口側の管路35の低温水LWに混合させるようにしている。   Next, another embodiment of the present invention shown in FIG. 9 will be described. The heat exchanger 10 is connected between the pipe line 33 and the pipe line 36 on the outlet side of the pump 34, and the pipe line 36 is branched. A conduit 35 is provided. When the pump 34 is driven, all of the water W flows to the heat exchanger 10 side and is heated, and the high-temperature water HW flows into the pipeline 36 as indicated by the arrow c, and the pipeline 35 as indicated by the arrow i. Shunt to the side. A bypass conduit 138 is connected between the conduit 35 and the conduit 42, and a check valve 40 is provided in the bypass conduit 138 as a backflow prevention means. As shown by the arrow j through the bypass pipe 138, the recovered water W joins the pipe 35 side. That is, in this embodiment, after the water W is diverted at a ratio of 1: 1, for example, at the inlet side of the heat exchanger 12, the water W is supplied to the low-temperature water LW in the pipe line 35 on the outlet side of the heat exchanger 10. To be mixed.

図10は、この場合の等価回路を示している。この場合、直列に接続された熱交換器10、12にバイパス管路138を設けることにより、圧力損失の抑制によってポンプ34の流量を確保することができ、接続できる負荷の増加に寄与することができる。即ち、バイパス管路138側の給水の温度はt0 であり、熱交換器10、12で加熱された温水の温度teは、
te=t0 +Δt2 +Δt1 ・・・(7)
である。混合比率は1:1であるから、管路35から得られる低温水LWの温度tfは、
tf=(t0 +t0 +Δt2 +Δt1 )/2
=t0 +(Δt2 +Δt1 )/2
=t0 +ΔT ・・・(8)
となる。ここで、バイパス管路138が無い場合の温度tgは式(4)に示した温度tdと同様であり、
tg=t0 +Δt2 +Δt1 b =t0 +ΔTb ・・・(9)
となり、ΔT:ΔTb =2:1となることから、バイパス管路138を通じて水Wを分流させ、管路35で合流させることで、熱交換器10の水管88の温水の温度を高くすることができる。
FIG. 10 shows an equivalent circuit in this case. In this case, by providing the bypass conduit 138 in the heat exchangers 10 and 12 connected in series, the flow rate of the pump 34 can be secured by suppressing the pressure loss, which contributes to an increase in load that can be connected. it can. That is, the temperature of the feed water on the bypass line 138 side is t 0 , and the temperature te of hot water heated by the heat exchangers 10 and 12 is
te = t 0 + Δt 2 + Δt 1 (7)
It is. Since the mixing ratio is 1: 1, the temperature tf of the low-temperature water LW obtained from the pipe 35 is
tf = (t 0 + t 0 + Δt 2 + Δt 1 ) / 2
= T 0 + (Δt 2 + Δt 1 ) / 2
= T 0 + ΔT (8)
It becomes. Here, the temperature tg when there is no bypass conduit 138 is the same as the temperature td shown in the equation (4),
tg = t 0 + Δt 2 + Δt 1 b = t 0 + ΔT b (9)
Since ΔT: ΔT b = 2: 1, the temperature of the hot water in the water pipe 88 of the heat exchanger 10 is increased by diverting the water W through the bypass pipe 138 and joining the water W through the pipe 35. Can do.

そして、この場合も、熱交換器10を通過する水量を多くすることによる熱交換効率の増加も期待でき、熱回収効率が高く、燃料の消費量を低減することができる。   In this case as well, an increase in heat exchange efficiency due to an increase in the amount of water passing through the heat exchanger 10 can be expected, heat recovery efficiency is high, and fuel consumption can be reduced.

以上説明したように、本発明の最も好ましい実施形態等について説明したが、本発明は、上記記載に限定されるものではなく、特許請求の範囲に記載され、又は明細書に開示された発明の要旨に基づき、当業者において様々な変形や変更が可能であることは勿論であり、斯かる変形や変更が、本発明の範囲に含まれることは言うまでもない。
As described above, the most preferable embodiment of the present invention has been described. However, the present invention is not limited to the above description, and is described in the claims or disclosed in the specification. It goes without saying that various modifications and changes can be made by those skilled in the art based on the gist, and such modifications and changes are included in the scope of the present invention.

本発明は、水等の被加熱流体を熱媒とする暖房装置に関し、燃焼排気から顕熱及び潜熱を回収し、熱交換効率を高めることができ、熱交換器の腐食、腐食による強度の低下や損傷を防止でき、熱回収効率の向上によって燃料の消費量の低減や結露を抑制等が可能であり、有用である。
The present invention relates to a heating apparatus using a heated fluid such as water as a heat medium, recovers sensible heat and latent heat from combustion exhaust, can improve heat exchange efficiency, and heat exchanger corrosion, strength reduction due to corrosion This is useful because it can prevent damage and damage, and can reduce fuel consumption and control condensation by improving heat recovery efficiency.

本発明の暖房装置の一実施形態を示す配管図である。It is a piping diagram showing one embodiment of the heating device of the present invention. 暖房装置の熱交換器側の構成を示す配管図である。It is a piping diagram which shows the structure by the side of the heat exchanger of a heating apparatus. 制御部の構成を示すブロック図である。It is a block diagram which shows the structure of a control part. バーナの発生熱量、第1及び第2の熱交換器による熱交換を示す図である。It is a figure which shows the amount of heat generated by the burner and heat exchange by the first and second heat exchangers. 熱交換器の熱交換及び熱効率を示す図である。It is a figure which shows the heat exchange and heat efficiency of a heat exchanger. 第1の熱交換器側の結露及びその防止を示す図である。It is a figure which shows the dew condensation on the 1st heat exchanger side, and its prevention. バイパス管路による温水混合を示す図である。It is a figure which shows warm water mixing by a bypass line. 第1及び第2の熱交換器における流体抵抗による等価回路を示す回路図である。It is a circuit diagram which shows the equivalent circuit by the fluid resistance in the 1st and 2nd heat exchanger. バイパス管路の他の実施形態を示す配管図である。It is a piping diagram showing other embodiments of a bypass pipeline. バイパス管路による温水混合を示す図である。It is a figure which shows warm water mixing by a bypass line.

符号の説明Explanation of symbols

G 燃料ガス
W 水
HW 高温水
LW 低温水
EG 燃焼排気
4 室内温風ユニット
6 床暖房用パネルユニット
8 バーナ(燃焼手段)
10 第1の熱交換器
12 第2の熱交換器
38、138 バイパス管路
41 温度センサ(温度検出手段)
84 排気通路
88、92 水管(受熱管)
90 吸熱フィン
94、96、98 管路
102 凝縮水
104 回収ホッパ
120 制御装置(制御手段)
G Fuel gas W Water HW High temperature water LW Low temperature water EG Combustion exhaust 4 Indoor warm air unit 6 Floor heating panel unit 8 Burner (combustion means)
DESCRIPTION OF SYMBOLS 10 1st heat exchanger 12 2nd heat exchanger 38,138 Bypass pipe line 41 Temperature sensor (temperature detection means)
84 Exhaust passage 88, 92 Water pipe (heat receiving pipe)
90 Endothermic fins 94, 96, 98 Pipe line 102 Condensed water 104 Recovery hopper 120 Control device (control means)

Claims (6)

加熱した被加熱流体を熱媒とする暖房装置であって、
燃料を燃焼させる燃焼手段と、
この燃焼手段から発生した燃焼排気を通す排気通路の上流側に設置された受熱管に流れる前記被加熱流体に前記燃焼排気から主として顕熱を吸収させる第1の熱交換器と、
前記排気通路の下流側に設置された受熱管に流れる前記被加熱流体に前記第1の熱交換器を通過した前記燃焼排気から顕熱又は潜熱を吸収させる第2の熱交換器と、
前記第2の熱交換器で加熱された熱媒を前記第1の熱交換器へ流す流路と、
前記第1の熱交換器で加熱した熱媒を放熱させる第1の放熱手段に循環させる第1の循環路と、
前記流路を分岐し、前記第2の熱交換器で加熱した熱媒を放熱させる第2の放熱手段に循環させる第2の循環路と、
前記被加熱流体の設定温度により前記燃焼手段の燃焼量を制御する制御手段と、
を備えてなることを特徴とする暖房装置。
A heating device using a heated fluid to be heated as a heat medium,
Combustion means for burning fuel;
A first heat exchanger that absorbs mainly sensible heat from the combustion exhaust to the heated fluid flowing in a heat receiving pipe installed upstream of an exhaust passage through which combustion exhaust generated from the combustion means passes;
A second heat exchanger that absorbs sensible heat or latent heat from the combustion exhaust gas that has passed through the first heat exchanger to the heated fluid flowing in a heat receiving pipe installed downstream of the exhaust passage;
A flow path for flowing the heat medium heated by the second heat exchanger to the first heat exchanger;
A first circulation path that circulates through a first heat radiating means that radiates heat of the heat medium heated by the first heat exchanger;
A second circulation path for branching the flow path to circulate to a second heat radiating means for radiating the heat medium heated by the second heat exchanger;
Control means for controlling the combustion amount of the combustion means according to a set temperature of the heated fluid;
A heating device comprising:
前記第1の熱交換器の前記受熱管の吸熱フィンの突出長、厚さ、ピッチ又は枚数によって吸熱量を調整したことを特徴とする請求項1記載の暖房装置。   The heating apparatus according to claim 1, wherein the heat absorption amount is adjusted by a protruding length, thickness, pitch, or number of heat absorbing fins of the heat receiving pipe of the first heat exchanger. 前記第1の熱交換器の前記受熱管に並列に接続されて前記被加熱流体の一部を流すバイパス管路を備え、前記第2の熱交換器の前記受熱管に前記被加熱流体を流して加熱し、その一部を前記第1の熱交換器の前記受熱管に流して加熱するとともに、他の一部を前記バイパス管路から前記第1の熱交換器の出口側の前記被加熱流体に混合させることを特徴とする請求項1記載の暖房装置。   A bypass pipe connected in parallel to the heat receiving pipe of the first heat exchanger and allowing a part of the heated fluid to flow, and flowing the heated fluid through the heat receiving pipe of the second heat exchanger; And heating a part thereof to the heat receiving pipe of the first heat exchanger and heating the other part from the bypass pipe on the outlet side of the first heat exchanger. The heating apparatus according to claim 1, wherein the heating apparatus is mixed with a fluid. 直列に接続された前記第1の熱交換器及び前記第2の熱交換器の前記受熱管に並列に接続されて前記被加熱流体の一部を流すバイパス管路を備え、前記被加熱流体の一部を前記第2の熱交換器の前記受熱管から前記第1の熱交換器の前記受熱管に流して加熱し、前記被加熱流体の他の一部を前記バイパス管路から前記第1の熱交換器の前記受熱管の出口側で混合させることを特徴とする請求項1記載の暖房装置。   A bypass pipe connected in parallel to the heat receiving pipes of the first heat exchanger and the second heat exchanger connected in series to flow a part of the heated fluid; A part is heated by flowing from the heat receiving pipe of the second heat exchanger to the heat receiving pipe of the first heat exchanger, and another part of the heated fluid is supplied from the bypass pipe to the first The heating apparatus according to claim 1, wherein mixing is performed on the outlet side of the heat receiving pipe of the heat exchanger. 前記第2の熱交換器の外壁部材を耐酸性素材で構成し、かつ、前記第2の熱交換器の外表面に生じた凝縮水を回収する手段を備え、回収した前記凝縮水を中和させることを特徴とする請求項1記載の暖房装置。   The outer wall member of the second heat exchanger is made of an acid-resistant material, and includes means for recovering condensed water generated on the outer surface of the second heat exchanger, and neutralizes the recovered condensed water The heating device according to claim 1, wherein 前記第2の熱交換器又は前記第1の熱交換器及び前記第2の熱交換器の前記受熱管を複数の管路で構成し、管路断面積を増加させたことを特徴とする請求項1記載の暖房装置。   The heat receiving pipe of the second heat exchanger or the first heat exchanger and the second heat exchanger is constituted by a plurality of pipes, and the pipe cross-sectional area is increased. Item 2. The heating device according to Item 1.
JP2006107671A 2006-04-10 2006-04-10 Heating system Expired - Lifetime JP4081116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006107671A JP4081116B2 (en) 2006-04-10 2006-04-10 Heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006107671A JP4081116B2 (en) 2006-04-10 2006-04-10 Heating system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000158660A Division JP3811334B2 (en) 2000-05-29 2000-05-29 Heating system

Publications (2)

Publication Number Publication Date
JP2006220416A JP2006220416A (en) 2006-08-24
JP4081116B2 true JP4081116B2 (en) 2008-04-23

Family

ID=36982854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006107671A Expired - Lifetime JP4081116B2 (en) 2006-04-10 2006-04-10 Heating system

Country Status (1)

Country Link
JP (1) JP4081116B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11940188B2 (en) * 2021-03-23 2024-03-26 Copeland Lp Hybrid heat-pump system

Also Published As

Publication number Publication date
JP2006220416A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
KR101058575B1 (en) Solar Heating System
JP2006084090A (en) Heat pump heat accumulator
JP4560449B2 (en) Circulating hot water storage system
JP6043635B2 (en) Heat source machine
JP5472178B2 (en) Hot water heater
JP6115754B2 (en) Heat source machine and freeze prevention control method
JP3811334B2 (en) Heating system
JP4081116B2 (en) Heating system
JP5944614B2 (en) Heat source equipment
JP3802847B2 (en) Secondary heat exchanger and water heater using the same
KR100680437B1 (en) Gas boiler with supplementary heat exchanger
JP4492634B2 (en) Heat pump system
JP2007071516A (en) Water heater system
JP5751447B2 (en) Heat exchanger and heat source device
JP2013160406A (en) Dew condensation preventing device for exhaust in latent heat recovery type combustion apparatus
JP3992420B2 (en) Heat exchange device and hot water supply device
JP4953436B2 (en) Thermal storage and heat dissipation system
JP5596216B1 (en) Waste treatment facility
US4815526A (en) Central space heating apparatus
CN108088295A (en) The method and the heat-exchange system of heat-exchange system of the operation with bypass duct
JP2003172587A (en) Exhaust heat recovering system
JP2010121843A (en) Heat pump water heater
JP5316838B2 (en) Hot water heater
JP6548144B2 (en) Hot water heater
JP2007298198A (en) Heat exchanger, heating/cooling system and waste heat recovering system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4081116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term