JP2004011967A - Control method of solar hot-water feed temperature compensating radiant heat capacity in pipe - Google Patents

Control method of solar hot-water feed temperature compensating radiant heat capacity in pipe Download PDF

Info

Publication number
JP2004011967A
JP2004011967A JP2002163734A JP2002163734A JP2004011967A JP 2004011967 A JP2004011967 A JP 2004011967A JP 2002163734 A JP2002163734 A JP 2002163734A JP 2002163734 A JP2002163734 A JP 2002163734A JP 2004011967 A JP2004011967 A JP 2004011967A
Authority
JP
Japan
Prior art keywords
hot water
temperature
storage tank
heat source
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002163734A
Other languages
Japanese (ja)
Inventor
Satoshi Ichinei
市根井 智
Koji Komata
小俣 康二
Hiroshi Shinozaki
篠崎 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Housetec Inc
Original Assignee
Housetec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Housetec Inc filed Critical Housetec Inc
Priority to JP2002163734A priority Critical patent/JP2004011967A/en
Publication of JP2004011967A publication Critical patent/JP2004011967A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To correct radiant heat capacity in a pipe using a solar hot water feeder with an auxiliary heat source machine, to provide energy saving effects, and prevent hot water from being fed in an overheated state. <P>SOLUTION: The solar hot water feeder is provided with a solar heat collector 1, a hot water storage tank 9 storing the collected heat as the hot water, and the auxiliary heat source machine connected to a slip stream of the hot water storage tank 9. When the hot water temperature TT in the upper part of the hot water storage tank 9 is a prescribed temperature Tk or more in operating, the hot water feeder calculates the radiant heat capacity (temperature lowering value) to be lost in the pipe part from an outlet of a hot/cold water mixing device 4 provided in the hot water storage tank 9 to an inlet of the auxiliary heat source machine 17, adjusts the hot/cold water mixing rate in the hot/cold water mixing device 4 so as to compensate the radiant heat capacity, and feeds the hot water without auxiliarily heating it by the auxiliary heat source machine. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、補助熱源機付きソーラ給湯器の給湯温度の制御方法に関するものである。
【0002】
【従来の技術】
日照量が多い夏場はもとより、日照量が少ない冬場や雨天等にも希望温度で給湯可能な補助熱源機付きソーラ給湯器、すなわち、太陽熱集熱器と、集熱された熱を温水として貯める貯湯タンクと、貯湯タンクの後流に接続される補助熱源機とを備えるソーラ給湯器は、従来から知られている。しかし、このような補助熱源機付きソーラ給湯器を運転する場合に、適度に温かい湯水を更に補助熱源機で加熱して過熱給湯させないための種々の工夫や制御が必要となってくる(例えば、実公平2−18428号公報、特開平7−113547号公報等)。
【0003】
【発明が解決しようとする課題】
本発明は、補助熱源機付きソーラ給湯器を用いる場合で過熱給湯させないソーラ給湯温度の制御方法、すなわち、従来の方法とは異なる自動的な制御方法で、省エネ効果が得られる制御方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記目的を達成するため、本発明では次の構成をとった。すなわち、本発明は、
太陽熱集熱器1と、前記太陽熱集熱器1で集めた熱を温水として貯める貯湯タンク9と、前記貯湯タンク9の後流に接続される補助熱源機とを備えるソーラ給湯器を運転する場合に、
前記貯湯タンク9の上部の湯温(TT)が所定温度(Tk)以上のときは、
前記貯湯タンク9に設けた湯水混合装置4の出口から補助熱源機17入口に至るまでの管路部分で失われる放射熱量(温度低下分)を計算し、
その放射熱量を補償するように前記湯水混合装置4における湯水混合を調整し、前記補助熱源機で補助加熱することなしに、そのまま給湯することを特徴とするソーラ給湯温度の制御方法である。
但し、所定温度(Tk)とは、希望給湯温度(TR;リモコン設定温度)か、その温度よりも数℃高い温度を意味する。
【0005】
なお、貯湯タンク9の上部の湯温(TT)が所定温度(Tk)未満のときは、貯湯タンク9に設けた湯水混合装置4の出口から補助熱源機17入口に至る管路部分で失われる放射熱量を計算し、湯水混合装置4での混合後の湯温を、前記放射熱量を見込んで希望給湯温度(TR)よりも補助熱源機の最小能力だけ低い温度に調整し、そののち、補助熱源機17の最小能力で補助加熱し、給湯する。
【0006】
ここで、湯水混合装置4の出口から補助熱源機17入口に至るまでの管路部分で失われる放射熱量は、湯水混合装置4出口から補助熱源機17入口に至るまでの管路の表面積と、その間の湯水の通過時間(ラグタイム;t)と、その間の熱通過率(U)と、湯水混合装置出口側の混合湯温(TS)と、雰囲気温度(T)とから計算することが好ましい。
【0007】
また、ソーラ給湯器としては、給水源からの給水パイプ5が貯湯タンク9の下部に配され、給水パイプ5からはバイパスパイプ5bが分岐して補助熱源機17へと繋がり、その貯湯タンク9の上部からは貯湯タンク出口側パイプ15が伸びるように配されてバイパスパイプ5bの途中で合流し、その合流部には湯水混合装置4が配されているソーラ給湯器が好ましく用いられる。
【0008】
【作用】
貯湯タンク9の上部の湯温(TT)が所定温度(Tk)以上のときは、補助熱源機17で補助加熱することなく給湯する。この場合、貯湯タンク側から補助熱源機入口までの管路を通過することで失われる放射熱量(温度低下)を予め計算して、その分を湯水混合装置4にて高めに調整するので、末端給湯口からは使用者が希望する温度で給湯される。
また、貯湯タンク9の上部の湯温(TT)が所定温度(Tk)未満のときは、補助熱源機17で補助加熱して給湯する。この場合、貯湯タンク側から補助熱源機入口までの管路を通過することで失われる放射熱量(温度低下)を加味して、予め湯水混合装置4で温度を上げて補助熱源機17へ供給するので、その分、補助熱源機17での燃料消費量を減らすことができる。
【0009】
【発明の実施の形態】
以下、添付図面を参照しながら、本発明を更に具体的に説明する。
図1は、本発明で用いる一例のソーラ給湯器の概略構成図である。ソーラ給湯器は、太陽熱集熱器1と、その太陽熱集熱器1の熱を温水として貯める貯湯タンク9と、貯湯タンク9の後流に接続される補助熱源機17とを備えている。貯湯タンク9の下部には給水源からの給水パイプ5が配され、その給水パイプ5からはバイパスパイプ5bが分岐して補助熱源機17側へと繋がり、貯湯タンク9の上部からは貯湯タンク出口側パイプ15が伸びるように配されている。そして、貯湯タンク出口側パイプ15の他端はバイパスパイプ5bの途中で合流し、その合流部には湯水混合装置4が配置されている。
【0010】
太陽熱集熱器1と貯湯タンク9とは、循環パイプ10(往き管10a及び戻り管10b)及び熱交換器11を介して繋がれ、太陽熱集熱器1、循環パイプ10及び熱交換器11の中には熱媒体(プロピレングリコール水溶液等)が充填されている。循環経路の途中には熱媒体を循環させる循環ポンプ12が配置され、日照がある場合は貯湯タンク9側に配した第一のコントローラ3で制御しながら集熱運転する。また、貯湯タンク9側(ケーシング2内)には雰囲気温度を測定するための温度センサ22が配置され、給水パイプ5の途中には流入水量(流速)を測定する水量センサ21も設けられている。
【0011】
給水源(通常は水道)から貯湯タンク9へ水の供給は、給水継手13、給水通路5、水量センサ21などを通って貯湯タンク9へ向かう。給水通路5は途中で貯湯タンク9への経路5aと分岐経路5bとに分かれ、湯水混合装置4において貯湯タンク出口側パイプ15の他端と合流する。
【0012】
貯湯タンク9から補助熱源機17への湯水の供給は、貯湯タンク出口パイプ15から湯水混合装置4(ここで、分岐経路5bからの水で適宜うすめられ、温度調節される)を通り、温度調節された温水は、給湯継手16から補助熱源機17へと向かう。これらの運転及び温度制御は、各所に配された温度センサ18c、18e及び18f、並びに第一のコントローラ3及び第二のコントローラ7等により行われる。また、リモコン8は、第一のコントローラ3にも第二のコントローラ7にも接続されていて、貯湯タンク側及び補助熱源機側の情報を共有できるようになっている。
【0013】
なお、各々のコントローラ(第一のコントローラ、第二のコントローラ及びリモコン)が共有し合う温度とその略記号は次のように定義する。
TT:貯湯タンク9の上部の湯温度で、温度センサ18cが検知する温度。
TS:湯水混合装置4の下流側の混合湯の温度で、温度センサ18eが検知する温度。
TB:補助熱源機入口の湯水温度で、温度センサ18fが検知する温度。
TD:末端給湯口の湯温度で、温度センサ18gが検知する温度。
TR:リモコン設定温度(希望給湯温度)。
Tk:希望給湯温度(TR)か、その温度よりも数℃高い所定の温度。
【0014】
貯湯タンク9での湯温制御は、上記集熱運転制御に加えて、貯湯タンク9の上部に配置された温度センサ18cと、貯湯タンク9入口側に配置した温度センサ18dとで検知しながら湯水混合装置4における弁の開度を調節して行う。
【0015】
補助熱源機17では、貯湯タンク9の上部の湯温(TT)が所定温度(Tk)未満のときは、燃料(ガスや石油)を燃焼させ、流入温水をそこに配置した熱交換器25で更に加熱し、出口側に設けた温度センサ18gと水量センサ20との情報から温度制御を行うことを基本とし、所望する出湯温度を得るためには、リモコン8からの信号は第一コントローラ3及び第二コントローラ7へ送られ、各装置がもつ信号情報を共有することが必要となる。
【0016】
ソーラ給湯器における管路での放射熱量(温度低下分)を計算する方法を、図2〜図4で説明する。補助熱源機付きソーラ給湯器の据付・試運転の際に、貯湯タンク側と補助熱源機側とを接続する管路の径をリモコン8にインプットする。リモコン8により補助熱源機側へ「燃焼禁止」信号、および貯湯タンク側へ湯水混合装置4の「水側全開」信号を送り、末端給湯栓を開き、貯湯タンク側も補助熱源機側も通水状態とする。このとき、貯湯タンク側の湯水混合装置4下流の温度センサ18eと補助熱源機側の入口の温度センサ18fは同じ温度を検知するはずである(図2)。次に、リモコン8により湯水混合装置4の「湯側全開」とし(図3)、その後、速やかに、「水側全開」に戻し(図4(イ))、そのまま維持する(図4(ロ))。
【0017】
管路内に取り込まれた湯塊は、給湯パイプ6から給湯継手13を通って補助熱源機入口側の温度センサ18fに到達し、検知される。貯湯タンク側の温度センサ18eの検知温度のピーク時刻と補助熱源機側の温度センサ18fの検知温度のピーク時刻との差が、この間の湯塊の通過時間(ラグタイム)tとなる。
【0018】
管路長さXは、湯水の流速(水量センサ20によって検知)、その管路の通過時間(ラグタイム)t及び管路断面積で計算できる。例えば、流量Qが6リットル/min、通過時間tが5秒(1/12min)、管径2rが16mmの場合、その5秒間に管路を流れた水量は、Q×t=0.5リットルで、管路内には0.5リットルの水が満たされていたことになり、管路内の体積Vは0.5リットルと計算される。管路の流路体積Vは、流路断面積(πr)×管路長さXで計算され、「0.5リットル=管路断面積(πr)×管路長さX」から、管路長さXは2.5mと計算される。
【0019】
放射熱量(温度低下分)を計算する方法について説明する。管路における放射熱量は、管路内の湯温、雰囲気温度(温度センサ22ので検知温度:T)及び管路の表面積により計算できる。
例えば、管路内の体積が0.5リットル、管路内の湯温(湯水混合後の湯温:TS)が40℃、雰囲気温度(T)が5℃、管路の表面積が0.6m、管路通過時間tが5秒、熱通過率Uが10W/m・Kのとき、放射熱量(Q)=U×管路表面積×(TS−T)×tの計算式から、1050Jとなる。これは、0.5リットルの水を0.5℃(=1050/(500×4.2))下げる温度であり、したがって、放熱後の湯温(すなわち、補助熱源機入口に到着時の湯温)は39.5℃となる。
【0020】
図5は、本発明の制御方法における一例のフローチャートである。これにより、給湯温度の制御を説明する。
貯湯タンク9の上部の湯温度(TT)が所定温度(Tk)と同じか高いときは、リモコン8を介して、第二のコントローラ7へ補助加熱禁止信号を送り、放熱による温度低下分を計算する。計算されたこの温度低下分の信号をもとに、第一のコントローラ3は、その温度分を上げるように(希望給湯温度よりはやや高めに)湯水混合装置4の開度を調節して、補助熱源機側へ供給し、その後、管路で失われる放射熱量により、末端給湯出口の湯温度は使用者の希望給湯温度に一致する。
【0021】
一方、貯湯タンク9の上部の湯温度(TT)が所定温度(Tk)よりも低いときは、上記と同様にして放熱による温度低下分を計算する。そして、その温度低下分を加味して、第一のコントローラ3を介して湯水混合装置4の開度を調節して、希望給湯温度(TR)より低い(補助熱源機の最小能力だけ低い)温度の湯を補助熱源機側へ供給し、補助熱源機ではその最小能力で補助加熱する。そうすれば、末端給湯出口では湯温度は使用者の希望温度となる。
【0022】
【発明の効果】
本発明の制御方法によれば、貯湯タンク側から補助熱源機までの管路で失われる放射熱量を計算して予めこれを補償(補正)するように、貯湯タンク側の湯水混合装置にて高めの温度に自動調整するので手間がかからず、また、簡単に使用者が希望する温度で給湯できる。また、管路での放射熱に因る温度低下を見込んで、その分を高めの温度に調整する(すなわち、水でうすめない)ので、省エネ効果もある。
【図面の簡単な説明】
【図1】本発明で用いられる一例のソーラ給湯器の構成図。
【図2】ソーラ給湯器における管路長さXを計算する説明図で、湯水混合装置は水側全開の状態。
【図3】同説明図で、湯水混合装置を湯側全開とした直後の状態。
【図4】同説明図で、(イ)は湯水混合装置を水側全開に戻した直後の状態、(ロ)は通過時間t経過後の状態。
【図5】本発明の制御方法における一例のフローチャート。
【符号の説明】
1:太陽熱集熱器 2:ケーシング 3:第一のコントローラ
4:湯水混合装置 5:給水パイプ
6:給湯パイプ 7:第二のコントローラ 8:リモコン
9:貯湯タンク 10:循環パイプ 11:熱交換器
12:循環ポンプ 13:給水継手 14:信号線
15:貯湯タンク出口側パイプ 16:給湯継手 17:補助熱源機
18a:温度センサ 18b:温度センサ 18c:温度センサ
18d:温度センサ 18e:温度センサ
18f:温度センサ 18g:温度センサ
19:補助タンク 20:水量センサ
21:水量センサ 22:温度センサ
23:給水継手 24:給湯継手
25:熱交換器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for controlling a hot water supply temperature of a solar water heater with an auxiliary heat source device.
[0002]
[Prior art]
A solar water heater with an auxiliary heat source unit that can supply hot water at the desired temperature in winter or rainy weather when sunlight is low, as well as in summer when sunlight is high, that is, a solar heat collector and hot water storage that stores collected heat as hot water BACKGROUND ART A solar water heater including a tank and an auxiliary heat source device connected to a downstream side of a hot water storage tank is conventionally known. However, when such a solar water heater with an auxiliary heat source device is operated, various devices and controls are required to prevent moderately hot water from being heated by the auxiliary heat source device to prevent overheating. Japanese Utility Model Publication No. 2-18428, Japanese Patent Application Laid-Open No. 7-113547, etc.).
[0003]
[Problems to be solved by the invention]
The present invention provides a control method of a solar hot water temperature that does not cause overheating in a case of using a solar water heater with an auxiliary heat source device, that is, a control method that achieves an energy saving effect by an automatic control method different from the conventional method. The purpose is to:
[0004]
[Means for Solving the Problems]
To achieve the above object, the present invention has the following configuration. That is, the present invention
When operating a solar water heater comprising a solar heat collector 1, a hot water storage tank 9 for storing heat collected by the solar heat collector 1 as hot water, and an auxiliary heat source device connected to the downstream of the hot water storage tank 9 To
When the hot water temperature (TT) in the upper part of the hot water storage tank 9 is equal to or higher than a predetermined temperature (Tk),
The amount of radiant heat (temperature decrease) lost in the pipe section from the outlet of the hot water mixing device 4 provided in the hot water storage tank 9 to the inlet of the auxiliary heat source device 17 is calculated,
A method for controlling the temperature of a solar hot water supply, characterized in that mixing of hot and cold water in the hot and cold water mixing device 4 is adjusted so as to compensate for the radiant heat amount, and hot water is supplied as it is without auxiliary heating by the auxiliary heat source device.
However, the predetermined temperature (Tk) means a desired hot water supply temperature (TR; remote control set temperature) or a temperature several degrees higher than that temperature.
[0005]
When the hot water temperature (TT) at the upper part of the hot water storage tank 9 is lower than the predetermined temperature (Tk), the hot water is lost in a pipe portion from the outlet of the hot water mixing device 4 provided in the hot water storage tank 9 to the inlet of the auxiliary heat source unit 17. The amount of radiant heat is calculated, and the temperature of the hot water after mixing in the hot and cold water mixing device 4 is adjusted to a temperature lower than the desired hot water supply temperature (TR) by the minimum capacity of the auxiliary heat source unit in consideration of the amount of radiant heat. Auxiliary heating is performed with the minimum capacity of the heat source unit 17 to supply hot water.
[0006]
Here, the amount of radiant heat lost in the pipe section from the outlet of the hot water mixing device 4 to the inlet of the auxiliary heat source device 17 is determined by the surface area of the pipe line from the outlet of the hot water mixing device 4 to the auxiliary heat source device 17, It can be calculated from the hot water passage time (lag time; t), the heat transfer rate (U), the hot water temperature (TS) at the outlet of the hot water mixing device, and the ambient temperature (T 0 ). preferable.
[0007]
In addition, as a solar water heater, a water supply pipe 5 from a water supply source is disposed below the hot water storage tank 9, and a bypass pipe 5 b branches from the water supply pipe 5 and is connected to an auxiliary heat source device 17. From the upper part, a hot water storage tank outlet side pipe 15 is arranged so as to extend and joins in the middle of the bypass pipe 5b, and a solar water heater provided with a hot water mixing device 4 is preferably used at the junction.
[0008]
[Action]
When the hot water temperature (TT) in the upper part of the hot water storage tank 9 is equal to or higher than the predetermined temperature (Tk), hot water is supplied without auxiliary heating by the auxiliary heat source device 17. In this case, the amount of radiant heat (temperature decrease) lost by passing through the pipeline from the hot water storage tank side to the inlet of the auxiliary heat source unit is calculated in advance, and the amount is adjusted higher by the hot and cold water mixing device 4. Hot water is supplied from the hot water inlet at a temperature desired by the user.
When the hot water temperature (TT) at the upper part of the hot water storage tank 9 is lower than the predetermined temperature (Tk), the auxiliary heat source device 17 performs auxiliary heating to supply hot water. In this case, taking into consideration the amount of radiant heat (temperature decrease) lost by passing through the pipeline from the hot water storage tank side to the inlet of the auxiliary heat source unit, the temperature is raised in advance by the hot water mixing device 4 and supplied to the auxiliary heat source unit 17. Therefore, the fuel consumption of the auxiliary heat source device 17 can be reduced accordingly.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described more specifically with reference to the accompanying drawings.
FIG. 1 is a schematic configuration diagram of an example of a solar water heater used in the present invention. The solar water heater includes a solar heat collector 1, a hot water storage tank 9 for storing heat of the solar heat collector 1 as hot water, and an auxiliary heat source device 17 connected to a downstream of the hot water storage tank 9. A water supply pipe 5 from a water supply source is arranged below the hot water storage tank 9, a bypass pipe 5 b branches from the water supply pipe 5 and connects to the auxiliary heat source unit 17 side, and a hot water storage tank outlet is provided from the upper part of the hot water storage tank 9. The side pipe 15 is arranged to extend. The other end of the hot-water storage tank outlet-side pipe 15 joins in the middle of the bypass pipe 5b, and the hot-water mixing device 4 is disposed at the joining portion.
[0010]
The solar heat collector 1 and the hot water storage tank 9 are connected via a circulation pipe 10 (an outgoing pipe 10a and a return pipe 10b) and a heat exchanger 11, and the solar heat collector 1, the circulation pipe 10 and the heat exchanger 11 are connected to each other. The inside is filled with a heat medium (such as an aqueous propylene glycol solution). A circulation pump 12 for circulating the heat medium is arranged in the middle of the circulation path. When there is sunshine, the heat collection operation is performed under the control of the first controller 3 arranged on the hot water storage tank 9 side. A temperature sensor 22 for measuring the ambient temperature is provided on the hot water storage tank 9 side (inside the casing 2), and a water amount sensor 21 for measuring an inflow water amount (flow velocity) is provided in the middle of the water supply pipe 5. .
[0011]
The supply of water from the water supply source (usually water supply) to the hot water storage tank 9 goes to the hot water storage tank 9 through the water supply joint 13, the water supply passage 5, the water amount sensor 21, and the like. The water supply passage 5 is divided on the way into a path 5a to the hot water storage tank 9 and a branch path 5b, and merges with the other end of the hot water storage tank outlet side pipe 15 in the hot water mixing apparatus 4.
[0012]
Hot water is supplied from the hot water storage tank 9 to the auxiliary heat source device 17 through the hot water storage tank outlet pipe 15 through the hot and cold water mixing device 4 (where the water is appropriately diluted with the water from the branch path 5b and the temperature is adjusted) to adjust the temperature. The supplied hot water flows from the hot water supply joint 16 to the auxiliary heat source unit 17. These operations and temperature control are performed by the temperature sensors 18c, 18e, and 18f, the first controller 3, the second controller 7, and the like arranged at various places. The remote controller 8 is connected to both the first controller 3 and the second controller 7 so that information on the hot water storage tank side and the auxiliary heat source unit side can be shared.
[0013]
In addition, the temperature shared by each controller (the first controller, the second controller, and the remote controller) and their abbreviations are defined as follows.
TT: the temperature of the hot water above the hot water storage tank 9 and detected by the temperature sensor 18c.
TS: the temperature of the mixed hot water on the downstream side of the hot and cold water mixing device 4, which is detected by the temperature sensor 18e.
TB: the temperature of hot water at the inlet of the auxiliary heat source device, which is detected by the temperature sensor 18f.
TD: The temperature of the hot water at the terminal hot water supply port, which is detected by the temperature sensor 18g.
TR: Remote controller set temperature (desired hot water supply temperature).
Tk: desired hot water supply temperature (TR) or a predetermined temperature several degrees higher than that temperature.
[0014]
The hot water temperature control in the hot water storage tank 9 is performed in addition to the heat collecting operation control described above, while detecting the temperature with a temperature sensor 18c disposed on the upper part of the hot water storage tank 9 and a temperature sensor 18d disposed on the inlet side of the hot water storage tank 9. The adjustment is performed by adjusting the opening of the valve in the mixing device 4.
[0015]
In the auxiliary heat source unit 17, when the hot water temperature (TT) at the upper part of the hot water storage tank 9 is lower than the predetermined temperature (Tk), the fuel (gas or oil) is burned, and the inflowing hot water is supplied to the heat exchanger 25. Further heating is performed, and temperature control is basically performed based on information from a temperature sensor 18g and a water amount sensor 20 provided on the outlet side. In order to obtain a desired tapping temperature, a signal from the remote controller 8 is transmitted to the first controller 3 and It is necessary to share the signal information sent to the second controller 7 and held by each device.
[0016]
The method of calculating the amount of radiant heat (temperature decrease) in the pipeline in the solar water heater will be described with reference to FIGS. At the time of installation and trial operation of the solar water heater with the auxiliary heat source device, the diameter of a pipe connecting the hot water storage tank side and the auxiliary heat source device side is input to the remote controller 8. The remote controller 8 sends a "combustion prohibition" signal to the auxiliary heat source unit side and a "water side fully open" signal of the hot water mixing device 4 to the hot water storage tank side, opens the terminal hot water tap, and allows both the hot water storage tank side and the auxiliary heat source unit to pass water. State. At this time, the temperature sensor 18e downstream of the hot water mixing device 4 on the hot water storage tank side and the temperature sensor 18f at the inlet on the auxiliary heat source device side should detect the same temperature (FIG. 2). Next, the hot / water mixing device 4 is set to “fully open on the hot water side” by the remote controller 8 (FIG. 3), and then quickly returned to “fully open for the water side” (FIG. 4A) and is maintained as it is (FIG. )).
[0017]
The hot water mass taken into the pipe reaches the temperature sensor 18f on the inlet side of the auxiliary heat source unit from the hot water supply pipe 6 through the hot water supply joint 13, and is detected. The difference between the peak time of the detected temperature of the temperature sensor 18e on the hot water storage tank side and the peak time of the detected temperature of the temperature sensor 18f on the auxiliary heat source device side is the passage time (lag time) t of the hot metal block during this time.
[0018]
The pipe length X can be calculated from the flow rate of hot and cold water (detected by the water volume sensor 20), the passage time (lag time) t of the pipe, and the cross-sectional area of the pipe. For example, when the flow rate Q is 6 liters / min, the passage time t is 5 seconds (1/12 min), and the pipe diameter 2r is 16 mm, the amount of water flowing through the pipe during that 5 seconds is Q × t = 0.5 liter. This means that the pipe has been filled with 0.5 liter of water, and the volume V in the pipe is calculated to be 0.5 liter. The flow volume V of the pipe is calculated by the flow cross-sectional area (πr 2 ) × the pipe length X. From “0.5 liter = the pipe cross-sectional area (πr 2 ) × the pipe length X”, The pipe length X is calculated to be 2.5 m.
[0019]
A method for calculating the amount of radiant heat (temperature decrease) will be described. The amount of radiant heat in the pipeline can be calculated from the temperature of the hot water in the pipeline, the ambient temperature (the temperature detected by the temperature sensor 22: T 0 ), and the surface area of the pipeline.
For example, the volume in the pipeline is 0.5 liter, the hot water temperature in the pipeline (water temperature after mixing hot and cold water: TS) is 40 ° C., the ambient temperature (T 0 ) is 5 ° C., and the surface area of the pipeline is 0. When 6 m 2 , the passage time t is 5 seconds, and the heat transfer rate U is 10 W / m · K, the radiant heat (Q 1 ) = U × the surface area of the conduit × (TS−T 0 ) × t. 1050J. This is a temperature at which 0.5 liter of water is reduced by 0.5 ° C. (= 1050 / (500 × 4.2)), and therefore, the temperature of the hot water after heat release (that is, the hot water when arriving at the inlet of the auxiliary heat source unit). Temperature) is 39.5 ° C.
[0020]
FIG. 5 is a flowchart of an example of the control method of the present invention. Thus, control of the hot water supply temperature will be described.
When the hot water temperature (TT) in the upper part of the hot water storage tank 9 is equal to or higher than the predetermined temperature (Tk), an auxiliary heating prohibition signal is sent to the second controller 7 via the remote controller 8 to calculate the temperature decrease due to heat radiation. I do. Based on the calculated signal of the temperature decrease, the first controller 3 adjusts the opening degree of the hot and cold water mixing device 4 so as to increase the temperature (slightly higher than the desired hot water supply temperature), The temperature of hot water at the terminal hot water supply outlet matches the user's desired hot water supply temperature due to the amount of radiant heat supplied to the auxiliary heat source unit and then lost in the pipeline.
[0021]
On the other hand, when the hot water temperature (TT) in the upper portion of the hot water storage tank 9 is lower than the predetermined temperature (Tk), the temperature decrease due to heat radiation is calculated in the same manner as described above. Then, taking into account the temperature decrease, the opening degree of the hot water mixing device 4 is adjusted via the first controller 3, and the temperature is lower than the desired hot water supply temperature (TR) (lower by the minimum capacity of the auxiliary heat source unit). Hot water is supplied to the auxiliary heat source unit, and the auxiliary heat source unit performs auxiliary heating with its minimum capacity. Then, at the terminal hot water supply outlet, the hot water temperature becomes the user's desired temperature.
[0022]
【The invention's effect】
According to the control method of the present invention, the amount of radiant heat lost in the pipeline from the hot-water storage tank side to the auxiliary heat source unit is calculated and compensated (corrected) in advance by the hot-water mixing device on the hot-water storage tank side. Since the temperature is automatically adjusted to the desired temperature, no trouble is required, and hot water can be easily supplied at a temperature desired by the user. In addition, since the temperature is expected to decrease due to the radiant heat in the pipeline, the temperature is adjusted to a higher temperature (that is, the temperature is not reduced by water), so that there is an energy saving effect.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an example of a solar water heater used in the present invention.
FIG. 2 is an explanatory diagram for calculating a pipe length X in a solar water heater, in a state where the water / water mixing device is fully opened on the water side.
FIG. 3 is an explanatory view showing a state immediately after the hot water mixing apparatus is fully opened on the hot water side.
FIGS. 4A and 4B are diagrams illustrating the state immediately after returning the hot / water mixing device to the water side fully open state, and FIG. 4B illustrates the state after the passage time t has elapsed.
FIG. 5 is a flowchart illustrating an example of a control method according to the present invention.
[Explanation of symbols]
1: Solar collector 2: Casing 3: First controller 4: Hot water mixing device 5: Water supply pipe 6: Hot water supply pipe 7: Second controller 8: Remote controller 9: Hot water storage tank 10: Circulation pipe 11: Heat exchanger 12: Circulation pump 13: Water supply joint 14: Signal line 15: Hot water storage tank outlet side pipe 16: Hot water supply joint 17: Auxiliary heat source unit 18a: Temperature sensor 18b: Temperature sensor 18c: Temperature sensor 18d: Temperature sensor 18e: Temperature sensor 18f: Temperature sensor 18g: Temperature sensor 19: Auxiliary tank 20: Water amount sensor 21: Water amount sensor 22: Temperature sensor 23: Water supply joint 24: Hot water supply joint 25: Heat exchanger

Claims (6)

太陽熱集熱器と、貯湯タンクと、補助熱源機とを備えるソーラ給湯器を運転する場合に、
前記貯湯タンクの上部の湯温(TT)が所定温度(Tk)以上のときは、
前記貯湯タンクに設けた湯水混合装置の出口から補助熱源機入口に至るまでの管路部分で失われる放射熱量を計算し、
その放射熱量を補償するように前記湯水混合装置における湯水混合を調整し、前記補助熱源機で加熱することなしに、そのまま給湯する、ソーラ給湯温度の制御方法。
When operating a solar water heater equipped with a solar heat collector, a hot water storage tank, and an auxiliary heat source device,
When the hot water temperature (TT) at the top of the hot water storage tank is equal to or higher than a predetermined temperature (Tk),
Calculate the amount of radiant heat lost in the pipe section from the outlet of the hot water mixing device provided in the hot water storage tank to the inlet of the auxiliary heat source device,
A method for controlling the temperature of solar hot water, wherein hot water and hot water in the hot water mixing apparatus are adjusted so as to compensate for the radiant heat, and hot water is supplied without being heated by the auxiliary heat source device.
湯水混合装置の出口から補助熱源機入口に至るまでの管路部分で失われる放射熱量は、湯水混合装置出口から補助熱源機入口に至る管路の表面積と、その間の湯水の通過時間と、その間の熱通過率と、湯水混合装置出口側の混合湯温(TS)と、雰囲気温度(T)とから計算する、請求項1の制御方法。The amount of radiant heat lost in the pipe section from the outlet of the hot water mixer to the inlet of the auxiliary heat source unit is determined by the surface area of the pipe line from the outlet of the hot water mixer to the inlet of the auxiliary heat source unit, the passage time of hot and cold water, The control method according to claim 1, wherein the calculation is performed based on a heat transfer coefficient, a mixed hot water temperature (TS) at an outlet side of the hot and cold water mixing device, and an ambient temperature (T 0 ). ソーラ給湯器として、
給水源からの給水パイプが貯湯タンクの下部に配され、
前記給水パイプからはバイパスパイプが分岐して補助熱源機へと繋がり、
前記貯湯タンクの上部からは貯湯タンク出口側パイプが伸びるように配されて前記バイパスパイプの途中で合流し、
その合流部には湯水混合装置が配されているソーラ給湯器を用いる、請求項1又は2の制御方法。
As a solar water heater,
A water supply pipe from the water supply source is arranged at the bottom of the hot water storage tank,
A bypass pipe branches from the water supply pipe and connects to an auxiliary heat source unit,
From the top of the hot water storage tank, the hot water storage tank outlet side pipe is arranged to extend and joins in the middle of the bypass pipe,
The control method according to claim 1, wherein a solar water heater provided with a hot water mixing device is used at the junction.
太陽熱集熱器と、貯湯タンクと、補助熱源機とを備えるソーラ給湯器を運転する場合に、
前記貯湯タンクの上部の湯温(TT)が所定温度(Tk)未満のときは、
貯湯タンクに設けた湯水混合装置の出口から補助熱源機入口に至る管路部分で失われる放射熱量を計算し、
湯水混合装置での混合後の湯温を、前記放射熱量を見込んで希望給湯温度(TR)よりも補助熱源機の最小能力だけ低い温度に調整したのち、補助熱源機の最小能力で補助加熱し、給湯する、ソーラ給湯温度の制御方法。
When operating a solar water heater equipped with a solar heat collector, a hot water storage tank, and an auxiliary heat source device,
When the hot water temperature (TT) at the top of the hot water storage tank is lower than a predetermined temperature (Tk),
Calculate the amount of radiant heat lost in the pipe section from the outlet of the hot water mixing device provided in the hot water storage tank to the inlet of the auxiliary heat source unit,
The temperature of the hot water after mixing in the hot water mixing apparatus is adjusted to a temperature lower than the desired hot water supply temperature (TR) by the minimum capacity of the auxiliary heat source unit in consideration of the radiant heat amount, and then the auxiliary heating is performed with the minimum capacity of the auxiliary heat source unit. How to control the temperature of solar hot water supply.
湯水混合装置の出口から補助熱源機入口に至るまでの管路部分で失われる放射熱量は、湯水混合装置出口から補助熱源機入口に至る管路の表面積と、その間の湯水の通過時間と、その間の熱通過率と、湯水混合装置出口側の混合湯温(TS)と、雰囲気温度(T)とから計算する、請求項4の制御方法。The amount of radiant heat lost in the pipe section from the outlet of the hot water mixer to the inlet of the auxiliary heat source unit is determined by the surface area of the pipe line from the outlet of the hot water mixer to the inlet of the auxiliary heat source unit, the passage time of hot and cold water, 5. The control method according to claim 4, wherein the calculation is performed based on the heat transmission coefficient, the mixed hot water temperature (TS) at the outlet of the hot water mixing device, and the ambient temperature (T 0 ). ソーラ給湯器として、
給水源からの給水パイプが貯湯タンクの下部に配され、
前記給水パイプからはバイパスパイプが分岐して補助熱源機へと繋がり、
前記貯湯タンクの上部からは貯湯タンク出口側パイプが伸びるように配されて前記バイパスパイプの途中で合流し、
その合流部には湯水混合装置が配されているソーラ給湯器を用いる、請求項4又は5の制御方法。
As a solar water heater,
A water supply pipe from the water supply source is arranged at the bottom of the hot water storage tank,
A bypass pipe branches from the water supply pipe and connects to an auxiliary heat source unit,
From the top of the hot water storage tank, the hot water storage tank outlet side pipe is arranged to extend and joins in the middle of the bypass pipe,
The control method according to claim 4 or 5, wherein a solar water heater provided with a hot water mixing device is used at the junction.
JP2002163734A 2002-06-05 2002-06-05 Control method of solar hot-water feed temperature compensating radiant heat capacity in pipe Pending JP2004011967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002163734A JP2004011967A (en) 2002-06-05 2002-06-05 Control method of solar hot-water feed temperature compensating radiant heat capacity in pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002163734A JP2004011967A (en) 2002-06-05 2002-06-05 Control method of solar hot-water feed temperature compensating radiant heat capacity in pipe

Publications (1)

Publication Number Publication Date
JP2004011967A true JP2004011967A (en) 2004-01-15

Family

ID=30432076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002163734A Pending JP2004011967A (en) 2002-06-05 2002-06-05 Control method of solar hot-water feed temperature compensating radiant heat capacity in pipe

Country Status (1)

Country Link
JP (1) JP2004011967A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145157A (en) * 2004-11-24 2006-06-08 Chofu Seisakusho Co Ltd Hot water supply device connection unit
JP2006170458A (en) * 2004-12-10 2006-06-29 Chofu Seisakusho Co Ltd Hot water supply device connection unit and its control method
JP2011064649A (en) * 2009-09-18 2011-03-31 Yazaki Corp Flow sensor abnormality detection unit, cutdown heat quantity calculation device and solar hot water supply system
JP2012107793A (en) * 2010-11-16 2012-06-07 Osaka Gas Co Ltd Hot water supply system
JP2013044493A (en) * 2011-08-25 2013-03-04 Gastar Corp Hot water storage system
JP2015190736A (en) * 2014-03-28 2015-11-02 株式会社ガスター heat source device
JP2016065695A (en) * 2014-09-25 2016-04-28 株式会社ノーリツ Hot water supply system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145157A (en) * 2004-11-24 2006-06-08 Chofu Seisakusho Co Ltd Hot water supply device connection unit
JP4542878B2 (en) * 2004-11-24 2010-09-15 株式会社長府製作所 Hot water supply unit connection unit
JP2006170458A (en) * 2004-12-10 2006-06-29 Chofu Seisakusho Co Ltd Hot water supply device connection unit and its control method
JP4530270B2 (en) * 2004-12-10 2010-08-25 株式会社長府製作所 Hot water supply device connection unit and control method of hot water supply device connection unit
JP2011064649A (en) * 2009-09-18 2011-03-31 Yazaki Corp Flow sensor abnormality detection unit, cutdown heat quantity calculation device and solar hot water supply system
JP2012107793A (en) * 2010-11-16 2012-06-07 Osaka Gas Co Ltd Hot water supply system
JP2013044493A (en) * 2011-08-25 2013-03-04 Gastar Corp Hot water storage system
JP2015190736A (en) * 2014-03-28 2015-11-02 株式会社ガスター heat source device
JP2016065695A (en) * 2014-09-25 2016-04-28 株式会社ノーリツ Hot water supply system

Similar Documents

Publication Publication Date Title
CN107280477A (en) Energy storage speed heat drinking equipment
JP2004011967A (en) Control method of solar hot-water feed temperature compensating radiant heat capacity in pipe
US10852036B2 (en) Heating and hot water supply apparatus
JP2586748B2 (en) Water heater
KR101797646B1 (en) Hot water proportional control device to the season of the instantaneous boiler and method thereof
JP2002349956A (en) Method for controlling fed-out hot water temperature of hot-water feeding apparatus utilizing solar heat
CN202792560U (en) Constant temperature output device of water storage type water heater
JP6147541B2 (en) Heat source equipment
CN106403259A (en) Water heater
JPH0118986Y2 (en)
JP2000346450A (en) Solar heat utilizing water heater system
CN215951754U (en) Gas water heater
JPS58224257A (en) Hot water supply device
CN217952439U (en) Solar energy and energy consumption auxiliary heating device
CN210980320U (en) Intelligent device capable of automatically heating water through backflow for water purifying equipment
JP3728266B2 (en) Hot water mixing unit for water heater and water heater
JPS58136947A (en) Hot water supplying device utilizing solar heat
JPS5818131Y2 (en) Solar thermal water heating device
JPH09170822A (en) Solar heat hot water feeding apparatus
JP2003083609A (en) Hot water mixing unit for hot water feeder
JP2002213819A (en) Solar heat utilization water heater apparatus controlling effluent hot water temperature
JP2002213817A (en) Solar heat utilizing water heater apparatus for controlling hot water outputting temperature through mutual communication
JP2000314557A (en) Water heater
JPH08121793A (en) Heat insulation operating method for circulation type water heater
JP2002213820A (en) Correction method of effluent hot water temperature and solar heat utilization water heater apparatus