JPH0992533A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH0992533A
JPH0992533A JP24813895A JP24813895A JPH0992533A JP H0992533 A JPH0992533 A JP H0992533A JP 24813895 A JP24813895 A JP 24813895A JP 24813895 A JP24813895 A JP 24813895A JP H0992533 A JPH0992533 A JP H0992533A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
magnetic field
coercive force
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24813895A
Other languages
Japanese (ja)
Inventor
Hirohide Mizunoya
博英 水野谷
Akira Shiga
章 志賀
Hideki Imamura
秀樹 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP24813895A priority Critical patent/JPH0992533A/en
Publication of JPH0992533A publication Critical patent/JPH0992533A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize low noise high output and high C/N by a method wherein the ratio between the maximum and minimum values of coercive force acquired when the magnetic field angle θimpressed longitudinally is varied within a specific angle range is specified to be at a specific value. SOLUTION: A chamber is exhausted at the pressure down to 3×10<-7> Torr and then a PET film 9.8μm thick is wound from the feeding side roll to the winding side roll at a rate of 25m/min so that the PET film may be irradiated with electron beams from two electron guns in output of 30kw and 25kw to evaporate a magnetic metal. Besides, in case of evaporating the magnetic metal particles, oxygen at 130 and 110sccm is fed from respective oxygen gas feeding nozzles. Thus, a magnetic tape for 8mm VTR having dual layer laminated magnetic films (upper and lower layer magnetic films 800Å, 1200Å thick respectively) can be formed. Through these procedures, the ratio between the maximum value Hcmax and the minimum value Hcmin of coercive force acquired when the impressed magnetic field angle of this magnetic tape is varied from 0 deg. to 180 deg. will become 4-6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁気記録媒体に関
する。
[0001] The present invention relates to a magnetic recording medium.

【0002】[0002]

【発明が解決しようとする課題】近年、高記録密度用磁
気テープとして蒸着テープが盛んに研究されている。特
に、高出力、高C/N化を目的として、保磁力Hcを高
める研究が盛んである。しかし、高Hcにすれば済むも
のでないことが判って来た。そして、研究を押し進めて
行くうちに、低ノイズ、高出力、高C/N等の特性は、
磁気記録媒体の長手方向に対して印加する磁界の印加磁
界角度θを0°から180°まで可変した際に得られる
保磁力によって大きな影響を受けることが判って来た。
In recent years, vapor deposition tape has been actively studied as a magnetic tape for high recording density. In particular, much research is being conducted to increase the coercive force Hc for the purpose of high output and high C / N. However, it has become clear that a high Hc is not enough. And while pushing forward the research, the characteristics of low noise, high output, high C / N, etc.
It has been found that the coercive force obtained when the applied magnetic field angle θ of the magnetic field applied to the longitudinal direction of the magnetic recording medium is varied from 0 ° to 180 °.

【0003】本発明はこの知見に基づいてなされたもの
であり、低ノイズ、高出力、高C/Nの磁気記録媒体を
提供することを目的とする。
The present invention has been made based on this finding, and an object thereof is to provide a magnetic recording medium having low noise, high output, and high C / N.

【0004】[0004]

【課題を解決するための手段】前記本発明の目的は、金
属薄膜型の磁性膜が支持体上に設けられた磁気記録媒体
であって、磁気記録媒体の長手方向に対して印加する磁
界の印加磁界角度θを0°から180°まで可変した際
に得られる保磁力の最大値Hcmaxと最小値Hcminとの比
Hcmax/Hcminが4〜6であることを特徴とする磁気記
録媒体によって達成される。
The object of the present invention is a magnetic recording medium in which a metal thin film type magnetic film is provided on a support, and a magnetic field applied in the longitudinal direction of the magnetic recording medium. A magnetic recording medium characterized in that the ratio Hcmax / Hcmin of the maximum value Hcmax and the minimum value Hcmin of the coercive force obtained when the applied magnetic field angle θ is varied from 0 ° to 180 ° is 4 to 6. It

【0005】特に、金属薄膜型の磁性膜が支持体上に設
けられた磁気記録媒体であって、磁気記録媒体の長手方
向に対して印加する磁界の印加磁界角度θを0°から1
80°まで可変した際に得られる保磁力の最大値Hcmax
と最小値Hcminとの比Hcmax/Hcminが4〜6であり、
印加磁界角度θが0°の時の保磁力Hc0は1100Oe
以上であることを特徴とする磁気記録媒体によって達成
される。
Particularly, in a magnetic recording medium in which a metal thin film type magnetic film is provided on a support, the applied magnetic field angle θ of the magnetic field applied to the longitudinal direction of the magnetic recording medium is 0 ° to 1
Maximum coercive force Hcmax obtained when variable up to 80 °
And the minimum value Hcmin, the ratio Hcmax / Hcmin is 4 to 6,
The coercive force Hc0 when the applied magnetic field angle θ is 0 ° is 1100 Oe.
The above is achieved by a magnetic recording medium characterized by the above.

【0006】尚、前記最小値Hcminは印加磁界角度θが
50〜80°の領域にある。又、最大値Hcmaxは印加磁
界角度θが80〜120°の領域にある。又、磁性膜の
面内方向の保磁力Hc‖(印加磁界角度θが0°の保磁
力Hc0)は1100〜2500Oe、特に1200〜1
800Oe、磁性膜に対して垂直方向の保磁力Hc⊥
(印加磁界角度θが90°の保磁力Hc90)は1500
〜3000Oe、特に2000〜2500Oeのものが
好ましい。
The minimum value Hcmin is in the region where the applied magnetic field angle θ is 50 to 80 °. The maximum value Hcmax is in the region where the applied magnetic field angle θ is 80 to 120 °. The coercive force Hc || in the in-plane direction of the magnetic film (coercive force Hc0 when the applied magnetic field angle θ is 0 °) is 1100 to 2500 Oe, and particularly 1200 to 1
800 Oe, coercive force Hc⊥ in the direction perpendicular to the magnetic film
(Coercive force Hc90 when applied magnetic field angle θ is 90 °) is 1500
˜3000 Oe, particularly 2000 to 2500 Oe is preferable.

【0007】更に、磁性膜は複数積層されたものであっ
て、上側にある磁性膜ほど厚さが薄い方が好ましい。
Further, it is preferable that a plurality of magnetic films are laminated, and that the magnetic film on the upper side has a smaller thickness.

【0008】[0008]

【発明の実施の形態】本発明は、金属薄膜型の磁性膜が
支持体上に設けられた磁気記録媒体であって、磁気記録
媒体の長手方向に対して印加する磁界の印加磁界角度θ
を0°から180°まで可変した際に得られる保磁力の
最大値Hcmaxと最小値Hcminとの比Hcmax/Hcminが4
〜6である。特に、金属薄膜型の磁性膜が支持体上に設
けられた磁気記録媒体であって、磁気記録媒体の長手方
向に対して印加する磁界の印加磁界角度θを0°から1
80°まで可変した際に得られる保磁力の最大値Hcmax
と最小値Hcminとの比Hcmax/Hcminが4〜6であり、
印加磁界角度θが0°の時の保磁力Hc0は1100Oe
以上である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is a magnetic recording medium in which a metal thin film type magnetic film is provided on a support, and an applied magnetic field angle θ of a magnetic field applied in the longitudinal direction of the magnetic recording medium.
The ratio Hcmax / Hcmin of the maximum value Hcmax and the minimum value Hcmin of the coercive force obtained when the value is varied from 0 ° to 180 ° is 4
~ 6. Particularly, in a magnetic recording medium in which a metal thin film type magnetic film is provided on a support, the applied magnetic field angle θ of the magnetic field applied to the longitudinal direction of the magnetic recording medium is from 0 ° to 1
Maximum coercive force Hcmax obtained when variable up to 80 °
And the minimum value Hcmin, the ratio Hcmax / Hcmin is 4 to 6,
The coercive force Hc0 when the applied magnetic field angle θ is 0 ° is 1100 Oe.
That is all.

【0009】最小値Hcminは印加磁界角度θが50〜8
0°の領域にあり、最大値Hcmaxは印加磁界角度θが8
0〜120°の領域にある。磁性膜の面内方向の保磁力
Hc‖(Hc0)は1100〜2500Oe、磁性膜に対
して垂直方向の保磁力Hc⊥(Hc90)は1500〜3
000Oeである。ところで、リング型磁気ヘッドを用
いての磁気テープに対する記録・再生を鑑みた場合、垂
直方向の保磁力Hc⊥が大きい方が有利である。
The minimum value Hcmin is that the applied magnetic field angle θ is 50 to 8
The maximum value Hcmax is 0 ° when the applied magnetic field angle θ is 8
It is in the range of 0 to 120 °. The coercive force Hc || (Hc0) in the in-plane direction of the magnetic film is 1100 to 2500 Oe, and the coercive force Hc⊥ (Hc90) in the direction perpendicular to the magnetic film is 1500 to 3
It is 000 Oe. By the way, in view of recording / reproducing on a magnetic tape using a ring type magnetic head, it is advantageous that the coercive force Hc⊥ in the vertical direction is large.

【0010】しかし、単に、Hc⊥が大きければ良いの
みではなかった。すなわち、同じHc⊥でも磁気記録媒
体の長手方向に対して印加する磁界の印加磁界角度θを
0°から180°まで可変した際に得られる保磁力の最
大値Hcmaxと最小値Hcminとの比Hcmax/Hcminによっ
て出力やノイズに大きな相違が認められたのである。本
発明になる蒸着テープの保磁力の印加磁界角度依存性を
示す代表例を図1〜図3に示す。これによれば、最小値
Hcminは印加磁界角度θが50〜80°、特に50〜7
0°(60°前後)の領域にあり、最大値Hcmaxは印加
磁界角度θが80〜120°、特に90〜110°(1
00°前後)の領域にある。又、図4に比較例になる蒸
着テープの保磁力の印加磁界角度依存性を示す。これに
おいても、最小値Hcminは印加磁界角度θが65°前後
の領域にあり、最大値Hcmaxは印加磁界角度θが100
°前後の領域にある。
However, it is not enough that Hc⊥ is large. That is, even with the same Hc⊥, the ratio Hcmax of the maximum value Hcmax and the minimum value Hcmin of the coercive force obtained when the applied magnetic field angle θ of the magnetic field applied to the longitudinal direction of the magnetic recording medium is changed from 0 ° to 180 °. A large difference was found in output and noise depending on / Hcmin. Representative examples showing the applied magnetic field angle dependence of the coercive force of the vapor deposition tape according to the present invention are shown in FIGS. According to this, the minimum value Hcmin is that the applied magnetic field angle θ is 50 to 80 °, especially 50 to 7
In the region of 0 ° (around 60 °), the maximum value Hcmax is 80 to 120 °, particularly 90 to 110 ° (1
(Around 00 °). In addition, FIG. 4 shows the applied magnetic field angle dependence of the coercive force of the vapor deposition tape of the comparative example. Also in this case, the minimum value Hcmin is in the region where the applied magnetic field angle θ is around 65 °, and the maximum value Hcmax is 100 cm.
° around the area.

【0011】しかし、これら図1〜図3と図4との大き
な相違点は、図1〜図3にあってはHcmax/Hcminが4
〜6の値であるのに対して、図4にあってはHcmax/H
cminが3程度である。このHcmax/Hcminによって、何
故に、出力やノイズに大きな相違が起きたかの完全な理
由は不明なるものの、Hcmax/Hcminが4未満の小さい
場合には、磁化の向きが揃っていない為と想像した。し
かし、その理由が判然としないものの、Hcmax/Hcmin
が4未満の小さ過ぎた場合には出力特性が低下し、Hcm
ax/Hcminが6を越えて大き過ぎた場合にはノイズが増
加した。
However, the major difference between FIGS. 1 to 3 and FIG. 4 is that Hcmax / Hcmin is 4 in FIGS.
In contrast to the values of ˜6 in FIG. 4, Hcmax / H
cmin is about 3. Although the complete reason why the output and noise greatly differ due to this Hcmax / Hcmin is unknown, it is supposed that the magnetization directions are not aligned when Hcmax / Hcmin is smaller than 4. However, although the reason is not clear, Hcmax / Hcmin
If the value is less than 4 and it is too small, the output characteristics deteriorate and Hcm
Noise increased when ax / Hcmin exceeded 6 and was too large.

【0012】尚、保磁力の印加磁界角度依存性は図5に
示されるようにして行われる。すなわち、X軸方向に沿
った磁界を印加し、この磁界印加方向と磁気記録媒体の
長手方向とのなす角度θを5°〜15°間隔で0°〜1
80°との間で変え、保磁力を求める。このような遣り
方で示したのが、図1〜図4の印加磁界角度依存性パタ
ーンである。尚、図5中、1は支持体、2a,2bは磁
性膜、3は保護膜、4は潤滑剤膜、5はバックコート膜
である。
The applied magnetic field angle dependency of the coercive force is performed as shown in FIG. That is, a magnetic field along the X-axis direction is applied, and the angle θ formed by the magnetic field application direction and the longitudinal direction of the magnetic recording medium is 0 ° to 1 at intervals of 5 ° to 15 °.
Change between 80 ° and obtain the coercive force. The applied magnetic field angle-dependent patterns shown in FIGS. 1 to 4 are shown in this way. In FIG. 5, 1 is a support, 2a and 2b are magnetic films, 3 is a protective film, 4 is a lubricant film, and 5 is a back coat film.

【0013】又、併せて、印加磁界角度θが0°の時の
保磁力Hc0は1100Oe以上、特に1300Oe以上
の場合には、出力特性が向上し、かつ、ノイズも小さい
ものであった。又、併せて、磁性膜の面内方向の保磁力
Hc‖(Hc0)が1100〜2500Oe、磁性膜に対
して垂直方向の保磁力Hc⊥(Hc90)が1500〜3
000Oeの場合には、出力特性が向上し、かつ、ノイ
ズも小さいものであった。
In addition, when the coercive force Hc0 when the applied magnetic field angle θ is 0 ° is 1100 Oe or more, particularly 1300 Oe or more, the output characteristics are improved and the noise is small. In addition, the coercive force Hc || (Hc0) in the in-plane direction of the magnetic film is 1100 to 2500 Oe, and the coercive force Hc⊥ (Hc90) in the direction perpendicular to the magnetic film is 1500 to 3
In the case of 000 Oe, the output characteristics were improved and the noise was small.

【0014】上記本発明のパターンを有する印加磁界角
度依存性を示す磁気記録媒体は、次のようにして得られ
る。先ず、図6の連続斜め蒸着装置を用意する。図6
中、10aは支持体1の供給側ロール、10bは支持体
1の巻取側ロール、11はクーリングドラムであり、支
持体1は供給側ロール10aからクーリングドラム11
を経て巻取側ロール10bに巻き取られて行く。支持体
1は磁性あるいは非磁性いずれのものでも良いが、一般
的には非磁性のものである。このような支持体1はPE
T等のポリエステル、ポリアミド、ポリイミド、ポリス
ルフォン、ポリカーボネート、ポリプロピレン等のオレ
フィン系の樹脂、セルロース系の樹脂、塩化ビニル系の
樹脂といった有機材料が主として用いられる。尚、支持
体の表面には、磁性膜との密着性を向上させる為のアン
ダーコート層が適宜設けられる。12a,12bはルツ
ボ、13a,13bはルツボ12a,12bに充填され
た磁性金属であり、この磁性金属13a,13bは電子
銃14a,14bからの電子ビームを受けて蒸発し、走
行する支持体1上に堆積する。金属磁性膜を形成する磁
性金属の材料としては、例えばFe,Co,Ni等の金
属の他に、Co−Ni合金、Co−Pt合金、Co−N
i−Pt合金、Fe−Co合金、Fe−Ni合金、Fe
−Co−Ni合金、Fe−Co−B合金、Co−Ni−
Fe−B合金、Co−Cr合金等が用いられる。尚、金
属磁性膜としては、前記材料の窒化物(例えば、Fe−
N,Fe−N−O)や炭化物(例えば、Fe−C−O)
等も挙げられる。そして、10-4〜10-6Torrに排
気されたチャンバー15内を走行する支持体1上に、先
ず、所定の位置にセットされたルツボ12aからの磁性
金属粒子が堆積し、下層磁性膜2aが形成される。尚、
この下層磁性膜2aの形成に際して、酸素ガス供給ノズ
ル16aから酸素が供給されており、表面酸化がなされ
る。この後、下層磁性膜2a上に、所定の位置にセット
されたルツボ12bからの磁性金属粒子が堆積し、上層
磁性膜2bが形成される。尚、この上層磁性膜2bの形
成に際して、酸素ガス供給ノズル16bから酸素が供給
されており、表面酸化がなされる。
A magnetic recording medium having the above-mentioned pattern of the present invention and showing an applied magnetic field angle dependency is obtained as follows. First, the continuous oblique vapor deposition apparatus of FIG. 6 is prepared. Figure 6
Inside, 10a is a supply side roll of the support body 1, 10b is a winding side roll of the support body 1, 11 is a cooling drum, and the support body 1 is from the supply side roll 10a to the cooling drum 11
After that, it is taken up by the take-up side roll 10b. The support 1 may be either magnetic or non-magnetic, but is generally non-magnetic. Such a support 1 is made of PE
Organic materials such as polyesters such as T, polyamides, polyimides, polysulfones, polycarbonates, olefin resins such as polypropylene, cellulose resins, and vinyl chloride resins are mainly used. An undercoat layer for improving the adhesion with the magnetic film is appropriately provided on the surface of the support. Reference numerals 12a and 12b are crucibles, 13a and 13b are magnetic metals filled in the crucibles 12a and 12b, and the magnetic metals 13a and 13b receive an electron beam from the electron guns 14a and 14b, evaporate, and run. Deposit on top. Examples of magnetic metal materials for forming the metal magnetic film include metals such as Fe, Co, and Ni, as well as Co—Ni alloys, Co—Pt alloys, and Co—N.
i-Pt alloy, Fe-Co alloy, Fe-Ni alloy, Fe
-Co-Ni alloy, Fe-Co-B alloy, Co-Ni-
Fe-B alloy, Co-Cr alloy, etc. are used. In addition, as the metal magnetic film, a nitride (for example, Fe-
N, Fe-NO) and carbides (for example, Fe-CO)
And the like. Then, first, magnetic metal particles from the crucible 12a set at a predetermined position are deposited on the support 1 running in the chamber 15 evacuated to 10 -4 to 10 -6 Torr, and the lower magnetic film 2a is formed. Is formed. still,
When forming the lower magnetic film 2a, oxygen is supplied from the oxygen gas supply nozzle 16a, and the surface is oxidized. After that, magnetic metal particles from the crucible 12b set at a predetermined position are deposited on the lower magnetic film 2a to form the upper magnetic film 2b. When forming the upper magnetic film 2b, oxygen is supplied from the oxygen gas supply nozzle 16b, and the surface is oxidized.

【0015】尚、本発明の印加磁界角度依存性パターン
を有するものを成膜するには、粒子性を向上し、膜中の
酸素分布のコントロールに注意して成膜することが好ま
しい。このようにして、下層磁性膜2a及び上層磁性膜
2bが積層された後、必要に応じて磁性膜の上に、ダイ
ヤモンドライクカーボン、炭化ホウ素、窒化珪素などか
らなる50〜200Å程度の厚さの保護膜が設けられ
る。又、パーフルオロポリエーテル等のフッ素系の潤滑
剤膜が20〜70Å程度の厚さ設けられる。
In order to form a film having the applied magnetic field angle dependence pattern of the present invention, it is preferable to improve the particle property and pay attention to the control of oxygen distribution in the film. After the lower magnetic film 2a and the upper magnetic film 2b are laminated in this way, if necessary, the magnetic film is formed on the magnetic film with a thickness of about 50 to 200Å made of diamond-like carbon, boron carbide, silicon nitride, or the like. A protective film is provided. Further, a fluorine-based lubricant film such as perfluoropolyether is provided with a thickness of about 20 to 70Å.

【0016】又、バックコート膜が設けられる。バック
コート膜を塗布により構成する場合は、粒径10〜10
0nmのカーボンブラックを塩ビ系、ウレタン系等のバ
インダ樹脂中に分散させ、グラビア方式、リバース方式
あるいはダイ塗工方式等で乾燥後の厚さが0.4〜1μ
mとなるよう塗布する。バックコート膜を蒸着などのP
VD手段で構成する場合は、Al−Cu合金などの金属
材料を蒸発源に置き、蒸発金属粒子を0.05〜1μm
の厚さ堆積させる。そして、このようなバックコート膜
の上には、走行性や耐久性を向上させる為に、トップコ
ート層を設けても良い。
A back coat film is also provided. When the back coat film is formed by coating, the particle size is 10 to 10
Carbon black of 0 nm is dispersed in a binder resin such as a vinyl chloride type or a urethane type, and the thickness after drying is 0.4 to 1 μm by a gravure method, a reverse method or a die coating method.
It is applied so that it becomes m. P for back coating film deposition
When the VD means is used, a metal material such as an Al—Cu alloy is placed in the evaporation source, and the evaporated metal particles are contained in an amount of 0.05 to 1 μm.
To deposit the thickness of. Then, a top coat layer may be provided on such a back coat film in order to improve running properties and durability.

【0017】[0017]

【実施例1】本実施例の磁気記録媒体は、図6に示した
連続斜め蒸着装置により得られた。すなわち、チャンバ
ー15内を3×10-7Torrまで排気し、厚さ9.8
μmのPETフィルムを供給側ロール10aからクーリ
ングドラム11を経て巻取側ロール10bに25m/m
inの速度で巻き取り、出力30kwの電子銃14a及
び出力25kwの電子銃14bからの電子ビームを照射
して磁性金属を蒸発せしめる。尚、電子ビームによる蒸
発粒子の蒸気量分布はガウス分布をしたものであり、こ
の中心は最大入射角と最小入射角との間にあるようルツ
ボはセットされている。又、磁性金属粒子の蒸着に際し
て、酸素ガス供給ノズル16aから130sccmの酸
素が、酸素ガス供給ノズル16bから110sccmの
酸素が供給されている。
Example 1 The magnetic recording medium of this example was obtained by the continuous oblique vapor deposition apparatus shown in FIG. That is, the chamber 15 is evacuated to 3 × 10 −7 Torr and the thickness is 9.8.
A PET film of μm is fed from the supply side roll 10a through the cooling drum 11 to the winding side roll 10b at 25 m / m.
The magnetic metal is evaporated by irradiating with an electron beam from the electron gun 14a having an output of 30 kw and the electron gun 14b having an output of 25 kw at an in speed. The vapor amount distribution of the vaporized particles by the electron beam is a Gaussian distribution, and the crucible is set so that its center lies between the maximum incident angle and the minimum incident angle. During vapor deposition of magnetic metal particles, 130 sccm of oxygen is supplied from the oxygen gas supply nozzle 16a and 110 sccm of oxygen is supplied from the oxygen gas supply nozzle 16b.

【0018】このようにして得られた二層積層磁性膜
(上層磁性膜の厚さ800Å、下層磁性膜の厚さ120
0Å)を有する8mmVTR用磁気テープの印加磁界角
度依存性パターンを図1に示す。
The two-layer laminated magnetic film thus obtained (the upper magnetic film has a thickness of 800Å and the lower magnetic film has a thickness of 120).
FIG. 1 shows an applied magnetic field angle dependence pattern of an 8 mm VTR magnetic tape having 0Å).

【0019】[0019]

【実施例2】実施例1において、チャンバー15内の真
空度を5×10-7Torr、電子銃14aの出力を27
kw、電子銃14bの出力を27kw、酸素ガス供給ノ
ズル16aからの酸素ガス供給量を100sccm、酸
素ガス供給ノズル16bからの酸素ガス供給量を100
sccmとした以外は実施例1に準じて行い、8mmV
TR用磁気テープを得た。
Second Embodiment In the first embodiment, the degree of vacuum in the chamber 15 is 5 × 10 −7 Torr and the output of the electron gun 14a is 27.
kw, the output of the electron gun 14b is 27 kw, the oxygen gas supply amount from the oxygen gas supply nozzle 16a is 100 sccm, and the oxygen gas supply amount from the oxygen gas supply nozzle 16b is 100 kcm.
8 mmV performed in the same manner as in Example 1 except that sccm was used.
A magnetic tape for TR was obtained.

【0020】このようにして得られた二層積層磁性膜
(上層磁性膜の厚さ1000Å、下層磁性膜の厚さ10
00Å)を有する8mmVTR用磁気テープの印加磁界
角度依存性パターンを図2に示す。
The two-layer laminated magnetic film thus obtained (the upper magnetic film has a thickness of 1000 Å, the lower magnetic film has a thickness of 10).
The applied magnetic field angle dependence pattern of the magnetic tape for 8 mm VTR having 00 Å) is shown in FIG.

【0021】[0021]

【実施例3】実施例1において、チャンバー15内の真
空度を2×10-7Torr、電子銃14aの出力を30
kw、電子銃14bの出力を24kw、酸素ガス供給ノ
ズル16aからの酸素ガス供給量を150sccm、酸
素ガス供給ノズル16bからの酸素ガス供給量を100
sccmとした以外は実施例1に準じて行い、8mmV
TR用磁気テープを得た。
Third Embodiment In the first embodiment, the degree of vacuum in the chamber 15 is 2 × 10 −7 Torr and the output of the electron gun 14a is 30.
kw, the output of the electron gun 14b is 24 kw, the oxygen gas supply amount from the oxygen gas supply nozzle 16a is 150 sccm, and the oxygen gas supply amount from the oxygen gas supply nozzle 16b is 100 kcm.
8 mmV performed in the same manner as in Example 1 except that sccm was used.
A magnetic tape for TR was obtained.

【0022】このようにして得られた二層積層磁性膜
(上層磁性膜の厚さ700Å、下層磁性膜の厚さ110
0Å)を有する8mmVTR用磁気テープの印加磁界角
度依存性パターンを図3に示す。
The two-layer laminated magnetic film thus obtained (the upper magnetic film has a thickness of 700Å and the lower magnetic film has a thickness of 110).
FIG. 3 shows the applied magnetic field angle dependence pattern of the 8 mm VTR magnetic tape having 0Å).

【0023】[0023]

【比較例1】実施例1において、チャンバー15内の真
空度を5×10-5Torr、電子銃14aの出力を27
kw、電子銃14bの出力を32kw、酸素ガス供給ノ
ズル16aからの酸素ガス供給量を60sccm、酸素
ガス供給ノズル16bからの酸素ガス供給量を55sc
cmとした以外は実施例1に準じて行い、8mmVTR
用磁気テープを得た。
Comparative Example 1 In Example 1, the degree of vacuum in the chamber 15 was 5 × 10 −5 Torr and the output of the electron gun 14 a was 27.
kw, the output of the electron gun 14b is 32 kw, the oxygen gas supply amount from the oxygen gas supply nozzle 16a is 60 sccm, and the oxygen gas supply amount from the oxygen gas supply nozzle 16b is 55 sc.
8 mm VTR according to Example 1 except for cm
Magnetic tape was obtained.

【0024】このようにして得られた二層積層磁性膜
(上層磁性膜の厚さ1500Å、下層磁性膜の厚さ10
00Å)を有する8mmVTR用磁気テープの印加磁界
角度依存性パターンを図4に示す。
The two-layer laminated magnetic film thus obtained (the upper magnetic film has a thickness of 1500Å and the lower magnetic film has a thickness of 10)
The applied magnetic field angle dependence pattern of the magnetic tape for 8 mm VTR having 00 Å) is shown in FIG.

【0025】[0025]

【比較例2】実施例1において、チャンバー15内の真
空度を2×10-6Torr、電子銃14aの出力を34
kw、電子銃14bの出力を27kw、酸素ガス供給ノ
ズル16aからの酸素ガス供給量を50sccm、酸素
ガス供給ノズル16bからの酸素ガス供給量を100s
ccmとした以外は実施例1に準じて行い、8mmVT
R用磁気テープを得た。
Comparative Example 2 In Example 1, the degree of vacuum in the chamber 15 was 2 × 10 −6 Torr and the output of the electron gun 14a was 34.
kw, the output of the electron gun 14b is 27 kw, the oxygen gas supply amount from the oxygen gas supply nozzle 16a is 50 sccm, and the oxygen gas supply amount from the oxygen gas supply nozzle 16b is 100 s.
8 mm VT performed in the same manner as in Example 1 except that ccm was used.
An R magnetic tape was obtained.

【0026】このようにして二層積層磁性膜(上層磁性
膜の厚さ1000Å、下層磁性膜の厚さ1500Å)を
有する8mmVTR用磁気テープを得た。
Thus, an 8 mm VTR magnetic tape having a two-layer laminated magnetic film (upper magnetic film thickness 1000 Å, lower magnetic film thickness 1500 Å) was obtained.

【0027】[0027]

【比較例3】実施例1において、チャンバー15内の真
空度を3×10-7Torr、電子銃14aの出力を37
kw、電子銃14bの出力を20kw、酸素ガス供給ノ
ズル16aからの酸素ガス供給量を30sccm、酸素
ガス供給ノズル16bからの酸素ガス供給量を120s
ccmとした以外は実施例1に準じて行い、8mmVT
R用磁気テープを得た。
COMPARATIVE EXAMPLE 3 In Example 1, the degree of vacuum in the chamber 15 was 3 × 10 −7 Torr, and the output of the electron gun 14a was 37.
kw, the output of the electron gun 14b is 20 kw, the oxygen gas supply amount from the oxygen gas supply nozzle 16a is 30 sccm, and the oxygen gas supply amount from the oxygen gas supply nozzle 16b is 120 s.
8 mm VT performed in the same manner as in Example 1 except that ccm was used.
An R magnetic tape was obtained.

【0028】このようにして二層積層磁性膜(上層磁性
膜の厚さ1800Å、下層磁性膜の厚さ500Å)を有
する8mmVTR用磁気テープを得た。
In this way, an 8 mm VTR magnetic tape having a two-layer laminated magnetic film (upper magnetic film thickness 1800 Å, lower magnetic film thickness 500 Å) was obtained.

【0029】[0029]

【特性】上記各例で得た磁気テープについて、Hc0(H
c‖),Hcmin,Hc90(Hc⊥),Hcmaxを調べたの
で、その結果を表−1に示す。又、出力及びノイズを調
べたので、併せて表−1に示す。 表−1 保磁力(Oe) Hcmax/ 出力(dB) ノイズ(dB) Hc0 Hcmin Hc90 Hcmax Hcmin 5MHz 10MHz 5MHz 10MHz 実施例11220 390 1890 1930 5.0 +1.8 +2.6 -1.5 -2.0 実施例21380 470 1930 1970 4.2 +1.6 +2.3 -1.9 -2.3 実施例31220 300 1760 1800 6.0 +2.1 +2.7 -0.9 -1.1 比較例11390 570 1890 1990 3.5 0 0 0 0 比較例21340 640 1910 1910 3.0 -0.3 -0.6 -0.7 -0.8 比較例31110 270 1700 1700 6.2 +1.5 +1.9 +1.1 +1.9
[Characteristics] For the magnetic tapes obtained in the above examples, Hc0 (H
c‖), Hcmin, Hc90 (Hc⊥), and Hcmax were examined, and the results are shown in Table-1. Also, the output and noise were examined, and are also shown in Table-1. Table-1 Coercive force (Oe) Hcmax / Output (dB) Noise (dB) Hc0 Hcmin Hc90 Hcmax Hcmin 5MHz 10MHz 5MHz 10MHz Example 11220 390 1890 1930 5.0 +1.8 +2.6 -1.5 -2.0 Example 21380 470 1930 1970 4.2 +1.6 +2.3 -1.9 -2.3 Example 3 1220 300 1760 1800 6.0 6.0 +2.1 +2.7 -0.9 -1.1 Comparative Example 11390 570 1890 1990 3.5 0 0 0 0 Comparative Example 21340 640 1910 1910 3.0 -0.3 -0.6 -0.7 -0.8 Comparative Example 3 1110 270 1700 1700 6.2 +1.5 +1.9 +1.1 +1.9

【0030】[0030]

【発明の効果】出力が高く、ノイズが小さな磁気記録媒
体が得られる。
As described above, a magnetic recording medium having high output and low noise can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の磁気記録媒体の保磁力の印加磁界角
度依存性を示すグラフ
FIG. 1 is a graph showing the applied magnetic field angle dependence of the coercive force of the magnetic recording medium of Example 1.

【図2】実施例2の磁気記録媒体の保磁力の印加磁界角
度依存性を示すグラフ
FIG. 2 is a graph showing the dependence of the coercive force of the magnetic recording medium of Example 2 on the applied magnetic field angle.

【図3】実施例3の磁気記録媒体の保磁力の印加磁界角
度依存性を示すグラフ
FIG. 3 is a graph showing the dependence of the coercive force of the magnetic recording medium of Example 3 on the applied magnetic field angle.

【図4】比較例1の磁気記録媒体の保磁力の印加磁界角
度依存性を示すグラフ
FIG. 4 is a graph showing the dependence of the coercive force of the magnetic recording medium of Comparative Example 1 on the applied magnetic field angle.

【図5】保磁力の印加磁界角度依存性を求める為の遣り
方の説明図
FIG. 5 is an explanatory diagram of how to use the magnetic field angle dependency of coercive force.

【図6】本発明の磁気記録媒体の製造装置の概略図FIG. 6 is a schematic view of an apparatus for manufacturing a magnetic recording medium of the present invention.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 金属薄膜型の磁性膜が支持体上に設けら
れた磁気記録媒体であって、 磁気記録媒体の長手方向に対して印加する磁界の印加磁
界角度θを0°から180°まで可変した際に得られる
保磁力の最大値Hcmaxと最小値Hcminとの比Hcmax/H
cminが4〜6であることを特徴とする磁気記録媒体。
1. A magnetic recording medium in which a metal thin film type magnetic film is provided on a support, and an applied magnetic field angle θ of a magnetic field applied to the longitudinal direction of the magnetic recording medium is from 0 ° to 180 °. Ratio of maximum value Hcmax and minimum value Hcmin of coercive force obtained when variable, Hcmax / H
A magnetic recording medium having a cmin of 4 to 6.
【請求項2】 金属薄膜型の磁性膜が支持体上に設けら
れた磁気記録媒体であって、 磁気記録媒体の長手方向に対して印加する磁界の印加磁
界角度θを0°から180°まで可変した際に得られる
保磁力の最大値Hcmaxと最小値Hcminとの比Hcmax/H
cminが4〜6であり、 印加磁界角度θが0°の時の保磁力Hc0は1100Oe
以上であることを特徴とする磁気記録媒体。
2. A magnetic recording medium having a metal thin film type magnetic film provided on a support, wherein an applied magnetic field angle θ of a magnetic field applied to the longitudinal direction of the magnetic recording medium is from 0 ° to 180 °. Ratio of maximum value Hcmax and minimum value Hcmin of coercive force obtained when variable, Hcmax / H
When the applied magnetic field angle θ is 0 °, the coercive force Hc0 is 1100 Oe when cmin is 4 to 6
A magnetic recording medium having the above.
【請求項3】 最小値Hcminは印加磁界角度θが50〜
80°の領域にあることを特徴とする請求項1又は請求
項2の磁気記録媒体。
3. The minimum value Hcmin has an applied magnetic field angle θ of 50 to 50.
The magnetic recording medium according to claim 1 or 2, wherein the magnetic recording medium is in an area of 80 °.
【請求項4】 最大値Hcmaxは印加磁界角度θが80〜
120°の領域にあることを特徴とする請求項1又は請
求項2の磁気記録媒体。
4. The maximum value Hcmax of the applied magnetic field angle θ is 80 to
The magnetic recording medium according to claim 1 or 2, wherein the magnetic recording medium is in an area of 120 °.
【請求項5】 磁性膜の面内方向の保磁力Hc‖が11
00〜2500Oe、磁性膜に対して垂直方向の保磁力
Hc⊥が1500〜3000Oeであることを特徴とす
る請求項1又は請求項2の磁気記録媒体。
5. The coercive force Hc.parallel. In the in-plane direction of the magnetic film is 11.
The magnetic recording medium according to claim 1 or 2, wherein the magnetic recording medium has a coercive force Hc⊥ in the direction perpendicular to the magnetic film of 0.002 to 2,500 Oe.
【請求項6】 磁性膜が複数積層されたものであり、上
側にある磁性膜ほど厚さが薄いものであることを特徴と
する請求項1又は請求項2の磁気記録媒体。
6. The magnetic recording medium according to claim 1, wherein a plurality of magnetic films are laminated, and the upper magnetic film has a smaller thickness.
JP24813895A 1995-09-26 1995-09-26 Magnetic recording medium Pending JPH0992533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24813895A JPH0992533A (en) 1995-09-26 1995-09-26 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24813895A JPH0992533A (en) 1995-09-26 1995-09-26 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0992533A true JPH0992533A (en) 1997-04-04

Family

ID=17173798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24813895A Pending JPH0992533A (en) 1995-09-26 1995-09-26 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0992533A (en)

Similar Documents

Publication Publication Date Title
US5731068A (en) Magnetic recording medium
JPH0992533A (en) Magnetic recording medium
JPH0973621A (en) Magnetic recording medium
JPH09320031A (en) Magnetic recording medium
JPH0991665A (en) Magnetic recording medium
JPH10228619A (en) Magnetic recording medium and magnetic recording method
JPH0954933A (en) Magnetic recording medium
JPH06101029A (en) Production of magnetic recording medium
JPH07254139A (en) Magnetic recording medium and transfer method
JPH0991659A (en) Magnetic recording medium and its production
JPH10228639A (en) Magnetic recording medium
JPH0991666A (en) Magnetic recording medium
JPH0773430A (en) Magnetic recording medium and its recording method
JPH10198940A (en) Magnetic recording medium, and method for magnetic recording
JPH09167330A (en) Magnetic recording medium
JPH06103571A (en) Production of magnetic recording medium
JPH0798832A (en) Magnetic recording medium, its production and producing device
JPH0992532A (en) Magnetic recording medium
JPH08306028A (en) Magnetic recording medium and its production
JPH09167326A (en) Magnetic recording medium
JPH09147345A (en) Magnetic recording medium
JPH0927110A (en) Magnetic recording medium and its production
JPH0944832A (en) Magnetic recording medium
JPH10105942A (en) Magnetic recording medium
JPH09167329A (en) Magnetic recording medium