JPH0944832A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH0944832A
JPH0944832A JP19001195A JP19001195A JPH0944832A JP H0944832 A JPH0944832 A JP H0944832A JP 19001195 A JP19001195 A JP 19001195A JP 19001195 A JP19001195 A JP 19001195A JP H0944832 A JPH0944832 A JP H0944832A
Authority
JP
Japan
Prior art keywords
magnetic film
film
column
recording medium
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19001195A
Other languages
Japanese (ja)
Inventor
Noriyuki Kitaori
典之 北折
Katsumi Sasaki
克己 佐々木
Osamu Yoshida
修 吉田
Junko Ishikawa
准子 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP19001195A priority Critical patent/JPH0944832A/en
Publication of JPH0944832A publication Critical patent/JPH0944832A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic recording medium having good characteristics suitable for high-density recording and having a high output from a low range to high range by forming a lower magnetic film in such a manner that columns in the lower magnetic film are grown oblique to the base to show a curved line which is convex over the straight line connecting the starting point and the end point of the column. SOLUTION: For example, a PET film 3 is travelled in the direction (A) in the figure at 2.0m/min velocity, while electron beams are emitted from 10-KW electron gun 8 to heat, melt and vaporize a magnetic metal (Co) in a crucible 4 to form a lower magnetic film 11a to 700Åthickness on the PET film 3 when the film is in the position on a cooling can roll 1. The columns in the magnetic film 11a are grown oblique to the base and show a curved line which is convex from the straight line connecting the starting point and the ending point of the column (with the angle θ1 =30 deg.). During the lower magnetic film 11a is formed, oxygen gas is supplied by 50 sccm rate in the direction from the upstream side to the downstream side from an oxygen gas supply nozzle 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁気記録媒体に関
する。
[0001] The present invention relates to a magnetic recording medium.

【0002】[0002]

【発明が解決しようとする課題】近年、高記録密度用磁
気テープとして、所謂、蒸着テープが有望視されてい
る。特に、多層蒸着テープが有望視されている。この観
点から、各種の多層蒸着テープが提案されている。しか
し、これまでの多層蒸着テープは、周波数特性が良くな
かったり、耐久性に問題がある。
In recent years, so-called vapor-deposited tapes are considered promising as magnetic tapes for high recording density. In particular, multilayer vapor-deposited tapes are regarded as promising. From this viewpoint, various multilayer vapor deposition tapes have been proposed. However, conventional multilayer vapor deposition tapes have poor frequency characteristics and have problems with durability.

【0003】ところで、多層蒸着テープにおける周波数
特性や耐久性に蒸着磁性膜のコラム構造が大きな影響を
与えることは誰も気付いていなかった。すなわち、周波
数特性や耐久性に関するコラム構造についての考察が全
く行われていなかった。この点について、本発明者によ
る研究が鋭意押し進められて行った結果、積層磁性膜に
おける上層磁性膜のコラムが起点と終点とを結ぶ直線よ
り下側に出っ張った曲線を有する斜めに成長したコラム
であり、下層磁性膜のコラムが起点と終点とを結ぶ直線
より上側に出っ張った曲線を有する斜めに成長したコラ
ムの場合には、周波数特性が良く、かつ、耐久性に優れ
たものであることが判って来た。
By the way, no one has noticed that the columnar structure of the vapor-deposited magnetic film has a great influence on the frequency characteristics and durability of the multilayer vapor-deposited tape. That is, no consideration has been given to the column structure regarding frequency characteristics and durability. In this regard, as a result of intensive research conducted by the present inventor, a column of the upper magnetic film in the laminated magnetic film has an obliquely grown column having a curve protruding below the straight line connecting the starting point and the ending point. If the column of the lower magnetic film is an obliquely grown column having a curve protruding above the straight line connecting the starting point and the ending point, it may have good frequency characteristics and excellent durability. I understand.

【0004】このような知見を基にして本発明が達成さ
れたものであり、本発明は、周波数特性や耐久性に優れ
た磁気記録媒体を提供することを目的とする。
The present invention has been achieved based on such knowledge, and an object of the present invention is to provide a magnetic recording medium excellent in frequency characteristics and durability.

【0005】[0005]

【課題を解決するための手段】前記本発明の目的は、コ
ラムが斜めに成長した金属薄膜型の磁性膜が支持体上に
複数層積層された磁気記録媒体であって、下層磁性膜の
コラムが、起点と終点とを結ぶ直線より上側に出っ張っ
た曲線を有する斜めに成長したコラムであり、上層磁性
膜のコラムが、起点と終点とを結ぶ直線より下側に出っ
張った曲線を有する斜めに成長したコラムであり、か
つ、下層磁性膜のコラムの成長方向と上層磁性膜のコラ
ムの成長方向とが対称方向にあることを特徴とする磁気
記録媒体によって達成される。
An object of the present invention is to provide a magnetic recording medium in which a plurality of thin metal film type magnetic films, in which columns are obliquely grown, are laminated on a support, and columns of lower magnetic film are provided. Is an obliquely grown column having a curve protruding above the straight line connecting the starting point and the end point, and the column of the upper magnetic film is an obliquely curved line protruding below the straight line connecting the starting point and the end point. It is achieved by a magnetic recording medium which is a grown column and in which the column growth direction of the lower magnetic film and the column growth direction of the upper magnetic film are symmetrical.

【0006】尚、下層磁性膜のコラムの起点と終点とを
結ぶ直線の傾斜角θ1 は20〜60°、望ましくは30
〜50°(又は、120〜160°、望ましくは130
〜150°)が好ましく、上層磁性膜のコラムの起点と
終点とを結ぶ直線の傾斜角θ 2 は120〜170°、望
ましくは130〜150°(又は、30〜80°、望ま
しくは40〜60°)が好ましい。
The starting point and the ending point of the column of the lower magnetic film are
Inclination angle θ of the connecting line1Is 20 to 60 °, preferably 30
~ 50 ° (or 120-160 °, preferably 130)
~ 150 °) is preferable, and the starting point of the column of the upper magnetic film
Inclination angle θ of the straight line connecting the end point 2120-170 °, hope
130-150 ° (or 30-80 °, preferably
40 to 60 °) is preferable.

【0007】又、「下層磁性膜のコラムの成長方向と上
層磁性膜のコラムの成長方向とが対称方向」における
「対称方向」は、完全な対称のみを意味するものではな
く、コラムの成長方向が逆方向にあることを意味し、下
層磁性膜のコラムの成長方向が例えば0〜90°の方向
にあれば、上層磁性膜のコラムの成長方向が例えば90
〜180°の方向にある程度のことを意味する。
The "symmetry direction" in the "direction in which the growth direction of the column of the lower magnetic film and the growth direction of the column of the upper magnetic film are symmetric" does not mean only complete symmetry, but the growth direction of the column. Means that the growth direction of the column of the lower magnetic film is, for example, 0 to 90 °, and the growth direction of the column of the upper magnetic film is 90, for example.
It means something in the direction of ~ 180 °.

【0008】又、コラムが斜めに成長した金属薄膜型の
磁性膜が支持体上に複数層積層された磁気記録媒体であ
って、下層の磁性膜が低入射角核生成法により成膜さ
れ、逆方向にて上層の磁性膜が高入射角核生成法により
成膜されてなることを特徴とする磁気記録媒体によって
達成される。
Further, in a magnetic recording medium in which a plurality of metal thin film type magnetic films in which columns are obliquely grown are laminated on a support, the lower magnetic film is formed by a low incidence angle nucleation method. This is achieved by a magnetic recording medium characterized in that an upper magnetic film is formed in the reverse direction by a high incidence angle nucleation method.

【0009】上記のように構成させた磁気記録媒体の耐
久性が良い理由は次の通りと考えられる。先ず、支持体
上に堆積させる下層磁性膜の成膜に際して、下側ほど高
エネルギーの磁性粒子が付着・堆積していく。この為、
支持体に対する結着強度が大きい。従って、磁性膜は支
持体に強固に結合しており、剥離し難く、耐久性に富
む。
The reason why the magnetic recording medium configured as described above has good durability is considered as follows. First, when forming the lower magnetic film to be deposited on the support, magnetic particles having higher energy are deposited and deposited toward the lower side. Therefore,
High binding strength to the support. Therefore, the magnetic film is firmly bonded to the support, is hard to peel off, and is highly durable.

【0010】又、上記のように構成させた磁気記録媒体
の周波数特性が良い(高周波領域においても高出力)理
由は次の通りと考えられる。上記磁性膜の構造である
と、上層磁性膜の保磁力が大きいのに対して、下層磁性
膜の保磁力は小さく、結果的に厚み損失が少なく、高周
波領域においても高出力が得られる。更に、下層磁性膜
のコラムの成長方向と上層磁性膜のコラムの成長方向と
が対称方向にあるよう構成させているから、オーディオ
テープのような正逆両方向の使用にあっても、高出力が
得られる。
The reason why the frequency characteristics of the magnetic recording medium configured as described above are good (high output even in a high frequency region) is considered as follows. With the structure of the above magnetic film, the coercive force of the upper magnetic film is large, whereas the coercive force of the lower magnetic film is small, resulting in less thickness loss and high output even in the high frequency region. Further, since the column growth direction of the lower magnetic film and the column growth direction of the upper magnetic film are configured to be symmetrical, high output can be obtained even when used in both forward and reverse directions such as an audio tape. can get.

【0011】尚、上層磁性膜の厚さが下層磁性膜の厚さ
より厚いことが好ましい。又、上層磁性膜は、その上側
における酸素含有量と下側における酸素含有量とを比べ
た場合、上側の酸素含有量が多く、下層磁性膜は、その
上側における酸素含有量と下側における酸素含有量とを
比べた場合、下側の酸素含有量が多いのが好ましい。
It is preferable that the upper magnetic film is thicker than the lower magnetic film. Further, when comparing the oxygen content on the upper side with the oxygen content on the lower side, the upper magnetic film has a higher oxygen content on the upper side, and the lower magnetic film has the oxygen content on the upper side and the oxygen content on the lower side. When compared with the content, it is preferable that the lower oxygen content is high.

【0012】[0012]

【発明の実施の形態】本発明は、コラムが斜めに成長し
た金属薄膜型の磁性膜が支持体上に複数層積層された磁
気記録媒体であって、下層磁性膜のコラムが、起点と終
点とを結ぶ直線より上側に出っ張った曲線を有する斜め
に成長したコラムであり、上層磁性膜のコラムが、起点
と終点とを結ぶ直線より下側に出っ張った曲線を有する
斜めに成長したコラムであり、かつ、下層磁性膜のコラ
ムの成長方向と上層磁性膜のコラムの成長方向とが対称
方向にあるものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is a magnetic recording medium in which a plurality of metal thin film type magnetic films in which columns are grown obliquely are laminated on a support, and the columns of the lower magnetic film are the starting point and the ending point. Is a diagonally grown column having a curve protruding above the straight line connecting to and the upper magnetic film column is a diagonally grown column having a curve protruding below the straight line connecting the starting point and the end point. In addition, the column growth direction of the lower magnetic film and the column growth direction of the upper magnetic film are symmetrical.

【0013】又、コラムが斜めに成長した金属薄膜型の
磁性膜が支持体上に複数層積層された磁気記録媒体であ
って、下層の磁性膜が低入射角核生成法により成膜さ
れ、逆方向にて上層の磁性膜が高入射角核生成法により
成膜されたものである。尚、下層磁性膜のコラムの起点
と終点とを結ぶ直線の傾斜角θ1 は20〜60°(又
は、120〜160°)、上層磁性膜のコラムの起点と
終点とを結ぶ直線の傾斜角θ2 は120〜170°(又
は、30〜80°)である。
A magnetic recording medium in which a plurality of metal thin film type magnetic films in which columns are grown obliquely are laminated on a support, and the lower magnetic film is formed by a low incidence angle nucleation method, The upper magnetic film is formed in the opposite direction by the high incidence angle nucleus generation method. The inclination angle θ 1 of the straight line connecting the starting point and the ending point of the column of the lower magnetic film is 20 to 60 ° (or 120 to 160 °), and the inclination angle of the straight line connecting the starting point and the ending point of the column of the upper magnetic film. θ 2 is 120 to 170 ° (or 30 to 80 °).

【0014】上記特長を有する本発明の磁気記録媒体
は、次のようにして得られる。先ず、図1の斜め蒸着装
置を用意する。図1中、1は冷却キャンロール、2aは
支持体3の供給側ロール、2bは支持体3の巻取側ロー
ルであり、支持体3は供給側ロール2aからガイドロー
ラを経て冷却キャンロール1に導かれ、巻取側ロール2
bに巻き取られる。支持体3は磁性あるいは非磁性いず
れのものでも良いが、一般的には非磁性のものである。
このような支持体3はPET等のポリエステル、ポリア
ミド、ポリイミド、ポリスルフォン、ポリカーボネー
ト、ポリプロピレン等のオレフィン系の樹脂、セルロー
ス系の樹脂、塩化ビニル系の樹脂といった有機材料が主
として用いられる。尚、支持体の表面には、磁性膜との
密着性を向上させる為のアンダーコート層が適宜設けら
れる。供給側ロール2aから冷却キャンロール1を経て
巻取側ロール2bに巻き取られる支持体3の走行経路に
おいて、すなわち冷却キャンロール1に沿って走行する
際、ルツボ4からの磁性材料5の粒子が飛来し、付着・
堆積する。金属磁性膜を形成する磁性粒子の材料として
は、例えばFe,Co,Ni等の金属の他に、Co−N
i合金、Co−Pt合金、Co−Ni−Pt合金、Fe
−Co合金、Fe−Ni合金、Fe−Co−Ni合金、
Fe−Co−B合金、Co−Ni−Fe−B合金、Co
−Cr合金、あるいはこれらにAl等の金属を含有させ
たもの、並びに窒化物(Fe4 N,Fe8 N,Fe−
N)又は炭化物(Fe3 5 )及びその複合物等が用い
られる。6は遮蔽板、7は酸素ガス供給ノズル、8は電
子銃、9は真空槽である。
The magnetic recording medium of the present invention having the above characteristics can be obtained as follows. First, the oblique vapor deposition apparatus of FIG. 1 is prepared. In FIG. 1, 1 is a cooling can roll, 2a is a supply side roll of the support body 3, 2b is a winding side roll of the support body 3, and the support body 3 is a cooling can roll 1 from the supply side roll 2a via a guide roller. To the take-up side roll 2
It is wound up in b. The support 3 may be either magnetic or non-magnetic, but is generally non-magnetic.
For such a support 3, an organic material such as polyester such as PET, polyamide, polyimide, polysulfone, polycarbonate, olefin resin such as polypropylene, cellulose resin, vinyl chloride resin is mainly used. An undercoat layer for improving the adhesion with the magnetic film is appropriately provided on the surface of the support. Particles of the magnetic material 5 from the crucible 4 are generated in the traveling path of the support 3 wound from the supply side roll 2a through the cooling can roll 1 to the winding side roll 2b, that is, when traveling along the cooling can roll 1. Flying and adhering
accumulate. Examples of the material of the magnetic particles forming the metal magnetic film include Co—N in addition to metals such as Fe, Co, and Ni.
i alloy, Co-Pt alloy, Co-Ni-Pt alloy, Fe
-Co alloy, Fe-Ni alloy, Fe-Co-Ni alloy,
Fe-Co-B alloy, Co-Ni-Fe-B alloy, Co
-Cr alloy, or those that contain a metal such as Al, as well as nitride (Fe 4 N, Fe 8 N , Fe-
N) or carbide (Fe 3 C 5 ) and their composites are used. 6 is a shielding plate, 7 is an oxygen gas supply nozzle, 8 is an electron gun, and 9 is a vacuum chamber.

【0015】上記構成の斜め蒸着装置を用い、先ず、真
空槽9内の所定の走行経路を支持体3が矢印A方向に走
行(図1に示す状態の供給側ロール2aから冷却キャン
ロール1を経て巻取側ロール2bに巻き取られるよう走
行)できるよう準備すると共に、真空槽9内を10-4
10-6Torr程度の真空度に排気する。そして、電子
銃8からの電子ビーム加熱によりルツボ4内の磁性金属
5を溶融、蒸発させ、冷却キャンロール1の位置におい
て低入射角核生成法(LIN法)により支持体3上に厚
さが400〜1500Åで、図2に示す如く、起点と終
点とを結ぶ直線(直線の傾きθ1 =20〜60°)より
上側に出っ張った曲線を有する斜めに成長したコラムの
下層磁性膜11aを形成する。
Using the oblique vapor deposition apparatus having the above-described structure, first, the support 3 travels in the direction of arrow A along a predetermined travel path in the vacuum chamber 9 (from the supply side roll 2a in the state shown in FIG. 1 to the cooling can roll 1). (Running so as to be wound up on the winding side roll 2b) and the inside of the vacuum chamber 9 is set to 10 −4 to
Evacuate to a degree of vacuum of about 10 −6 Torr. Then, the magnetic metal 5 in the crucible 4 is melted and vaporized by heating the electron beam from the electron gun 8, and the thickness of the magnetic metal 5 on the support 3 is reduced by the low incidence angle nucleus generation method (LIN method) at the position of the cooling can roll 1. At 400 to 1500 Å, as shown in FIG. 2, the lower magnetic film 11a of the column grown obliquely having a curved line protruding above the straight line connecting the starting point and the ending point (the inclination of the straight line θ 1 = 20 to 60 °) is formed. To do.

【0016】下層磁性膜11aが形成され、巻取側ロー
ル2bに巻き取られた後、今度は、前記A方向とは逆の
B方向に走行(図1に示す状態の巻取側ロール2bから
冷却キャンロール1を経て供給側ロール2aに巻き取ら
れるよう走行)させ、冷却キャンロール1の位置におい
て高入射角核生成法(HIN法)により支持体3上の下
層磁性膜11a上に厚さが800〜3000Åで、図2
に示す如く、起点と終点とを結ぶ直線(直線の傾きθ2
=120〜170°)より下側に出っ張った曲線を有す
る斜めに成長したコラムの上層磁性膜11bを形成す
る。
After the lower magnetic film 11a is formed and wound on the winding-side roll 2b, this time it travels in the direction B opposite to the direction A (from the winding-side roll 2b in the state shown in FIG. 1). It runs so as to be wound around the supply-side roll 2a via the cooling can roll 1), and at the position of the cooling can roll 1 on the lower magnetic film 11a on the support 3 by the high incidence angle nucleus generation method (HIN method). Is 800-3000Å, and Fig. 2
As shown in, the straight line connecting the starting point and the ending point (the slope of the straight line θ 2
= 120 to 170 °), the upper magnetic film 11b of the obliquely grown column having a curve protruding downward is formed.

【0017】尚、下層磁性膜11aの成膜に際しては、
上流側から下流側に向けて酸素ガスが流されているか
ら、下層磁性膜11aは下側ほど酸素含有量が多い。こ
れに対して、上層磁性膜11bの成膜に際しては、下流
側から酸素ガスが流されているから、上層磁性膜11b
は上側ほど酸素含有量が多い。上記のようにしてLIN
法磁性膜(下層磁性膜11a)、HIN法磁性膜(上層
磁性膜11b)が順に積層された磁性膜の上に、必要に
応じて、ダイヤモンドライクカーボン、炭化ホウ素、窒
化珪素などからなる50〜200Å程度の厚さの保護膜
が設けられる。又、パーフルオロポリエーテル等のフッ
素系の潤滑剤が20〜70Å程度の厚さ設けられる。
When forming the lower magnetic film 11a,
Since the oxygen gas is made to flow from the upstream side to the downstream side, the lower magnetic film 11a has a higher oxygen content toward the lower side. On the other hand, when forming the upper magnetic film 11b, oxygen gas is flown from the downstream side, so that the upper magnetic film 11b is formed.
Has a higher oxygen content toward the top. LIN as above
50 to 50 made of diamond-like carbon, boron carbide, silicon nitride, or the like, if necessary, on the magnetic film in which the method magnetic film (lower magnetic film 11a) and the HIN method magnetic film (upper magnetic film 11b) are sequentially stacked. A protective film having a thickness of about 200Å is provided. Further, a fluorine-based lubricant such as perfluoropolyether is provided with a thickness of about 20 to 70Å.

【0018】[0018]

【実施例1】本実施例の磁気記録媒体は、図1に示した
斜め蒸着装置により得られる。すなわち、非磁性の支持
体(6μm厚さのPETフィルム)3を供給側ロール2
aから冷却キャンロール1を経て巻取側ロール2bに導
かれるように掛け渡し、真空槽9内を10-4〜10-6
orr程度の真空度に排気する。そして、2.0m/m
inの速度で図1中A方向に走行するPETフィルム3
に対して10kWの電子銃8からの電子ビーム加熱によ
りルツボ4内の磁性金属(Co)を溶融、蒸発させ、冷
却キャンロール1の位置においてLIN法によりPET
フィルム3上に厚さが700Åで、図2に示す如く、起
点と終点とを結ぶ直線(直線の傾きθ1=30°)より
上側に出っ張った曲線を有する斜めに成長したコラムの
下層磁性膜11aを形成する。この下層磁性膜11aの
形成に際して、酸素ガス供給ノズル7から50sccm
の割合で酸素ガスが上流側から下流側向けて供給されて
いる。
Example 1 The magnetic recording medium of this example is obtained by the oblique vapor deposition apparatus shown in FIG. That is, the non-magnetic support (6 μm-thick PET film) 3 is attached to the supply-side roll 2
It is passed from a through the cooling can roll 1 so as to be guided to the winding side roll 2b, and the inside of the vacuum chamber 9 is set to 10 −4 to 10 −6 T.
Evacuate to a vacuum degree of about orr. And 2.0 m / m
PET film 3 running in the direction A in FIG. 1 at a speed of in
In contrast, the electron beam heating from the electron gun 8 of 10 kW melts and evaporates the magnetic metal (Co) in the crucible 4, and PET is formed at the position of the cooling can roll 1 by the LIN method.
A lower magnetic film of a column which is 700 Å thick and has a thickness of 700 Å on the film 3 and which has a curved line protruding above a straight line (inclination θ 1 = 30 ° of the straight line) connecting the starting point and the ending point. 11a is formed. When forming the lower magnetic film 11a, 50 sccm from the oxygen gas supply nozzle 7
Oxygen gas is supplied from the upstream side to the downstream side at a ratio of.

【0019】下層磁性膜11aが形成された後、この下
層磁性膜11aが形成されたPETフィルム3を2.0
m/minの速度で逆方向(図1中B方向)に走行さ
せ、15kWの電子銃8からの電子ビーム加熱によりル
ツボ4内の磁性金属(Co)を溶融、蒸発させ、冷却キ
ャンロール1の位置において、HIN法により下層磁性
膜11a上に厚さが1200Åで、図2に示す如く、起
点と終点とを結ぶ直線(直線の傾きθ2 =135°)よ
り下側に出っ張った曲線を有する斜めに成長したコラム
の上層磁性膜11bを形成する。この上層磁性膜11b
の形成に際して、酸素ガス供給ノズル7から70scc
mの割合で酸素ガスが下流側から供給されている。
After the lower magnetic film 11a is formed, the PET film 3 on which the lower magnetic film 11a is formed has a thickness of 2.0.
The magnetic can (Co) in the crucible 4 is melted and vaporized by traveling in the reverse direction (B direction in FIG. 1) at a speed of m / min by electron beam heating from the electron gun 8 of 15 kW, and the cooling can roll 1 At the position, the thickness is 1200Å on the lower magnetic film 11a by the HIN method, and as shown in FIG. 2, it has a curve protruding below the straight line (the inclination of the straight line θ 2 = 135 °) connecting the starting point and the ending point. The upper magnetic film 11b of the obliquely grown column is formed. This upper magnetic film 11b
70 scc from the oxygen gas supply nozzle 7 when forming
Oxygen gas is supplied from the downstream side at a rate of m.

【0020】上記のようにしてLIN法磁性膜(下層磁
性膜11a)及びHIN法磁性膜(上層磁性膜11b)
を形成した後、ECRプラズマCVD法によりダイヤモ
ンドライクカーボン膜を50Å厚さ形成し、この後パー
フルオロポリエーテル等のフッ素系の潤滑剤(商品名F
OMBLIN AM2001)を20Å厚さ形成した。
又、PETフィルム1の磁性膜形成面側とは反対側の面
にAl蒸着膜(バックコート膜)を0.2μm厚さ設
け、所定幅に裁断して磁気テープを作製した。
As described above, the LIN method magnetic film (lower magnetic film 11a) and the HIN method magnetic film (upper magnetic film 11b).
After forming the film, a diamond-like carbon film is formed to a thickness of 50Å by ECR plasma CVD method, and then a fluorine-based lubricant such as perfluoropolyether (trade name F
OMBLIN AM 2001) was formed to a thickness of 20Å.
Further, an Al vapor deposition film (back coat film) having a thickness of 0.2 μm was provided on the surface of the PET film 1 opposite to the surface on which the magnetic film was formed, and cut into a predetermined width to produce a magnetic tape.

【0021】[0021]

【実施例2】実施例1において、下層磁性膜11a成膜
時のPETフィルム3の走行速度1.5m/min、電
子銃8の出力12kW、酸素ガス供給ノズル7からの酸
素ガス供給量70sccm、上層磁性膜11b成膜時の
PETフィルム3の走行速度2.0m/min、電子銃
8の出力15kW、酸素ガス供給ノズル7からの酸素ガ
ス供給量70sccmとし、θ1 =50°で、1500
Å厚の下層磁性膜11a、θ2 =140°で、1000
Å厚の上層磁性膜11bを形成した外は実施例1に準じ
て行い、磁気テープを作製した。
Second Embodiment In the first embodiment, the traveling speed of the PET film 3 when forming the lower magnetic film 11a is 1.5 m / min, the output of the electron gun 8 is 12 kW, the oxygen gas supply amount from the oxygen gas supply nozzle 7 is 70 sccm, When the upper magnetic film 11b was formed, the traveling speed of the PET film 3 was 2.0 m / min, the output of the electron gun 8 was 15 kW, the oxygen gas supply amount from the oxygen gas supply nozzle 7 was 70 sccm, and θ 1 = 50 °, 1500
Å Thick lower magnetic film 11a, at θ 2 = 140 °, 1000
A magnetic tape was produced in the same manner as in Example 1 except that the upper magnetic film 11b having a thickness of Å was formed.

【0022】[0022]

【実施例3】実施例1において、下層磁性膜11a成膜
時のPETフィルム3の走行速度2.5m/min、電
子銃8の出力10kW、酸素ガス供給ノズル7からの酸
素ガス供給量45sccm、上層磁性膜11b成膜時の
PETフィルム3の走行速度2.0m/min、電子銃
8の出力15kW、酸素ガス供給ノズル7からの酸素ガ
ス供給量60sccmとし、θ1 =20°で、550Å
厚の下層磁性膜11a、θ2 =150°で、1200Å
厚の上層磁性膜11bを形成した外は実施例1に準じて
行い、磁気テープを作製した。
Third Embodiment In the first embodiment, the traveling speed of the PET film 3 when forming the lower magnetic film 11a is 2.5 m / min, the output of the electron gun 8 is 10 kW, the oxygen gas supply amount from the oxygen gas supply nozzle 7 is 45 sccm, When the upper magnetic film 11b was formed, the traveling speed of the PET film 3 was 2.0 m / min, the output of the electron gun 8 was 15 kW, the oxygen gas supply amount from the oxygen gas supply nozzle 7 was 60 sccm, and θ 1 = 20 °, 550 Å
Thickness lower magnetic film 11a, θ 2 = 150 °, 1200Å
A magnetic tape was produced in the same manner as in Example 1 except that the thick upper magnetic film 11b was formed.

【0023】[0023]

【実施例4】実施例1において、下層磁性膜11a成膜
時のPETフィルム3の走行速度2.5m/min、電
子銃8の出力12kW、酸素ガス供給ノズル7からの酸
素ガス供給量50sccm、上層磁性膜11b成膜時の
PETフィルム3の走行速度2.0m/min、電子銃
8の出力16kW、酸素ガス供給ノズル7からの酸素ガ
ス供給量70sccmとし、θ1 =135°で、650
Å厚の下層磁性膜11a、θ2 =40°で、1200Å
厚の上層磁性膜11bを形成した外は実施例1に準じて
行い、磁気テープを作製した。
Fourth Embodiment In the first embodiment, the traveling speed of the PET film 3 during film formation of the lower magnetic film 11a is 2.5 m / min, the output of the electron gun 8 is 12 kW, the oxygen gas supply amount from the oxygen gas supply nozzle 7 is 50 sccm, At the time of forming the upper magnetic film 11b, the traveling speed of the PET film 3 was 2.0 m / min, the output of the electron gun 8 was 16 kW, the oxygen gas supply amount from the oxygen gas supply nozzle 7 was 70 sccm, and θ 1 = 135 °, 650
Å Lower magnetic film 11a, θ 2 = 40 °, 1200 Å
A magnetic tape was produced in the same manner as in Example 1 except that the thick upper magnetic film 11b was formed.

【0024】[0024]

【比較例1】実施例1においては、下層磁性膜11aと
上層磁性膜11bとを形成する時のPETフィルム3の
走行方向を逆方向とした。本比較例においては、下層磁
性膜11aを形成した後、これを供給側に装填し、下層
磁性膜11aと上層磁性膜11bとを形成する時のPE
Tフィルム3の走行方向を同方向とし、そしてθ1 =5
0°で、1200Å厚の下層磁性膜11a、θ2 =50
°で、1200Å厚の上層磁性膜11bを形成した外は
実施例1に準じて行い、磁気テープを作製した。
Comparative Example 1 In Example 1, the running direction of the PET film 3 when forming the lower magnetic film 11a and the upper magnetic film 11b was set to the opposite direction. In this comparative example, after the lower magnetic film 11a is formed, the lower magnetic film 11a is loaded on the supply side to form the lower magnetic film 11a and the upper magnetic film 11b.
The traveling directions of the T film 3 are the same, and θ 1 = 5
At 0 °, the lower magnetic film 11a having a thickness of 1200 Å, θ 2 = 50
A magnetic tape was prepared by performing the same procedure as in Example 1 except that the upper magnetic film 11b having a thickness of 1200 Å was formed.

【0025】[0025]

【特性】上記各例で得た磁気テープの磁気特性(保磁力
Hc、飽和磁束密度Bs、Br/Bs)、表面粗さR
a、出力特性(1MHz,5MHz,10MHzでの出
力)、及びスチル耐久性(3時間の繰り返し走行後の出
力低下)について調べたので、その結果を表−1に示
す。
[Characteristics] Magnetic characteristics (coercive force Hc, saturation magnetic flux density Bs, Br / Bs), surface roughness R of the magnetic tapes obtained in the above examples.
A, output characteristics (outputs at 1 MHz, 5 MHz, and 10 MHz) and still durability (output reduction after repeated running for 3 hours) were examined, and the results are shown in Table-1.

【0026】 表−1 Hc(Oe)Bs(G) Br/Bs Ra(nm) 出力特性(dB) スチル耐久性 1MHz 5MHz 10MHz (dB) 実施例1 1550 6400 0.84 1.9 +0.9 +1.0 +1.2 -0.4 実施例2 1530 6600 0.78 2.1 +1.1 +0.6 +0.4 -0.2 実施例3 1490 6900 0.80 1.8 +1.4 +0.6 +0.8 -0.8 実施例4 1520 6400 0.83 2.4 +0.7 +0.7 +0.9 -1.1 比較例1 1540 6400 0.83 2.4 0 0 0 -1.9 *出力特性は比較例1を基準にした相対値 これから判る通り、本発明のものは、スチル耐久性に優
れたものであり、かつ、低域から高域にかけて高い出力
が得られたものであり、高密度記録に適している。
Table-1 Hc (Oe) Bs (G) Br / Bs Ra (nm) Output characteristics (dB) Still durability 1MHz 5MHz 10MHz (dB) Example 1 1550 6400 0.84 1.9 +0.9 +1.0 +1.2 -0.4 Example 2 1530 6600 0.78 2.1 +1.1 +0.6 +0.4 -0.2 Example 3 1490 6900 0.80 1.8 +1.4 +0.6 +0.8 -0.8 Example 4 1520 6400 0.83 2.4 +0.7 +0.7 +0.9 -1.1 Comparative Example 1 1540 6400 0.83 2.4 0 0 0 -1.9 * The output characteristics are relative values based on Comparative Example 1. As can be seen, the present invention has excellent still durability and high output from low to high ranges. Is obtained and is suitable for high density recording.

【0027】[0027]

【効果】低域から高域にかけて出力が高く、高密度記録
に適し、かつ、耐久性にも富む。
[Effect] High output from low range to high range, suitable for high-density recording, and highly durable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁気記録媒体を製造する為の斜め蒸着
装置の概略図
FIG. 1 is a schematic view of an oblique vapor deposition apparatus for manufacturing a magnetic recording medium of the present invention.

【図2】本発明の磁気記録媒体の概略図FIG. 2 is a schematic diagram of a magnetic recording medium of the present invention.

【符号の説明】[Explanation of symbols]

3 支持体 11a LIN法磁性膜(下層磁性膜) 11b HIN法磁性膜(上層磁性膜) 3 Support 11a LIN method magnetic film (lower magnetic film) 11b HIN method magnetic film (upper magnetic film)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石川 准子 栃木県芳賀郡市貝町大字赤羽2606 花王株 式会社情報科学研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Junko Ishikawa 2606 Akabane, Kai-cho, Haga-gun, Tochigi Prefecture Kao Corporation Company Information Science Laboratory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 コラムが斜めに成長した金属薄膜型の磁
性膜が支持体上に複数層積層された磁気記録媒体であっ
て、 下層磁性膜のコラムが、起点と終点とを結ぶ直線より上
側に出っ張った曲線を有する斜めに成長したコラムであ
り、 上層磁性膜のコラムが、起点と終点とを結ぶ直線より下
側に出っ張った曲線を有する斜めに成長したコラムであ
り、 かつ、下層磁性膜のコラムの成長方向と上層磁性膜のコ
ラムの成長方向とが対称方向にあることを特徴とする磁
気記録媒体。
1. A magnetic recording medium in which a column has a plurality of metal thin film type magnetic films laminated obliquely on a support, and the column of the lower magnetic film is above a straight line connecting a starting point and an ending point. The column of the upper magnetic film is a column grown obliquely, and the column of the upper magnetic film is a column grown obliquely with the curve protruding below the straight line connecting the starting point and the end point, and the lower magnetic film The magnetic recording medium is characterized in that the column growth direction and the column growth direction of the upper magnetic film are symmetrical.
【請求項2】 コラムが斜めに成長した金属薄膜型の磁
性膜が支持体上に複数層積層された磁気記録媒体であっ
て、 下層の磁性膜が低入射角核生成法により成膜され、 逆方向にて上層の磁性膜が高入射角核生成法により成膜
されてなることを特徴とする磁気記録媒体。
2. A magnetic recording medium in which a plurality of metal thin film type magnetic films in which columns are grown obliquely are laminated on a support, and the lower magnetic film is formed by a low incidence angle nucleation method. A magnetic recording medium, wherein an upper magnetic film is formed in a reverse direction by a high incidence angle nucleus generation method.
【請求項3】 上層磁性膜の厚さが下層磁性膜の厚さよ
り厚いことを特徴とする請求項1又は請求項2の磁気記
録媒体。
3. The magnetic recording medium according to claim 1, wherein the upper magnetic film is thicker than the lower magnetic film.
【請求項4】 上層磁性膜は、 その上側における酸素含有量と下側における酸素含有量
とを比べた場合、上側の酸素含有量が多く、 下層磁性膜は、 その上側における酸素含有量と下側における酸素含有量
とを比べた場合、下側の酸素含有量が多いことを特徴と
する請求項1〜請求項3いずれかの磁気記録媒体。
4. The upper magnetic film has a large oxygen content on the upper side when the oxygen content on the upper side is compared with the oxygen content on the lower side, and the lower magnetic film has a lower oxygen content than the oxygen content on the upper side. The magnetic recording medium according to claim 1, wherein the oxygen content on the lower side is higher when compared with the oxygen content on the lower side.
JP19001195A 1995-07-26 1995-07-26 Magnetic recording medium Pending JPH0944832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19001195A JPH0944832A (en) 1995-07-26 1995-07-26 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19001195A JPH0944832A (en) 1995-07-26 1995-07-26 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0944832A true JPH0944832A (en) 1997-02-14

Family

ID=16250894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19001195A Pending JPH0944832A (en) 1995-07-26 1995-07-26 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0944832A (en)

Similar Documents

Publication Publication Date Title
JPH0944832A (en) Magnetic recording medium
JP2743313B2 (en) Magnetic recording media
JPH0973621A (en) Magnetic recording medium
JPH0944834A (en) Magnetic recording medium
JP2001143235A (en) Magnetic recording medium, its manufacturing method and manufacturing device
JPH09320031A (en) Magnetic recording medium
JPH0954933A (en) Magnetic recording medium
JP3139181B2 (en) Manufacturing method of magnetic recording medium
JPH0963031A (en) Magnetic recording medium
JPH11120535A (en) Magnetic recording medium
JPH06139541A (en) Magnetic recording medium
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JPH10228641A (en) Thin film body and thin film forming device
JPH07254139A (en) Magnetic recording medium and transfer method
JPS5966106A (en) Magnetic recording medium
JPH08315347A (en) Thin film perpendicular magnetic recording medium
JPH08194931A (en) Magnetic recording medium
JPH0773430A (en) Magnetic recording medium and its recording method
JPH0992533A (en) Magnetic recording medium
JP2006048840A (en) Magnetic recording medium, its manufacturing method and recording and reproducing method of magnetic recording medium
JPH0973622A (en) Magnetic recording medium
JPH10105947A (en) Thin film magnetic recording medium
JPH10228619A (en) Magnetic recording medium and magnetic recording method
JPH1131317A (en) Magnetic recording medium
JPH1041177A (en) Manufacture of magnetic recording medium