JPH0992281A - Polymer solid electrolyte lithium secondary battery - Google Patents

Polymer solid electrolyte lithium secondary battery

Info

Publication number
JPH0992281A
JPH0992281A JP7242788A JP24278895A JPH0992281A JP H0992281 A JPH0992281 A JP H0992281A JP 7242788 A JP7242788 A JP 7242788A JP 24278895 A JP24278895 A JP 24278895A JP H0992281 A JPH0992281 A JP H0992281A
Authority
JP
Japan
Prior art keywords
solid electrolyte
polymer solid
secondary battery
lithium secondary
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7242788A
Other languages
Japanese (ja)
Other versions
JP3556743B2 (en
Inventor
Koji Higashimoto
晃二 東本
Michio Sasaoka
三千雄 笹岡
Takefumi Nakanaga
偉文 中長
Akiyoshi Inubushi
昭嘉 犬伏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Resonac Corp
Original Assignee
Otsuka Chemical Co Ltd
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd, Shin Kobe Electric Machinery Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP24278895A priority Critical patent/JP3556743B2/en
Publication of JPH0992281A publication Critical patent/JPH0992281A/en
Application granted granted Critical
Publication of JP3556743B2 publication Critical patent/JP3556743B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery with high capacity and long cycle life by covering at least part of the surface of a carbon material used as a negative electrode material with a specific polymer compound. SOLUTION: A flat type polymer solid electrolyte lithium secondary battery has such a structure that a positive active material layer 2 formed on one surface of a positive current collector 1 and a negative active material layer 4 formed on one surface of a negative current collector 3 are stacked through a polymer solid electrolyte layer 5. In the lithium secondary battery, at least part of the surface of a carbon material used as the negative material has at least one of an aromatic hydrocarbon group and a heteroaromatic hydrocarbon group, and covered with a polymer compound forming a part of the polymer solid electrolyte. The adhesion of the polymer solid electrolyte and the carbon material (negative material) is increased, and the transfer of lithium ions between the polymer solid electrolyte and the carbon material (negative material) is smoothly performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高分子固体電解質
リチウム二次電池に関するものである。
TECHNICAL FIELD The present invention relates to a polymer solid electrolyte lithium secondary battery.

【0002】[0002]

【従来の技術】電解液の液漏れを防止できる電池とし
て、固体からなる電解質を用いた固体電解質電池が知ら
れている。特に高分子化合物からなる電解質を用いた高
分子固体電解質電池は、電池反応を行うためのイオンの
伝導性が高い上、電解質が柔軟性に富んでいるため電解
質の薄膜化が可能になり、電池の厚みを薄くできる。ま
た、高分子化合物の分子設計を行うことにより各種の機
能性を得ることができる等の長所を有している。
2. Description of the Related Art As a battery capable of preventing electrolyte leakage, a solid electrolyte battery using a solid electrolyte is known. In particular, a polymer solid electrolyte battery using an electrolyte composed of a polymer compound has high ion conductivity for carrying out a battery reaction, and since the electrolyte is flexible, it is possible to make the electrolyte into a thin film. Can be made thinner. Further, it has an advantage that various functionalities can be obtained by designing the molecule of the polymer compound.

【0003】高分子固体電解質電池において、負極活物
質としてリチウムを用いると、高いエネルギーを有する
二次電池(高分子固体電解質リチウム二次電池)を得る
ことができる。しかしながら、負極活物質として純リチ
ウムを用いると、リチウムの針状結晶が負極活物質上に
析出するいわゆるデンドライトが生じる。デンドライト
が正極板に達すると電池が短絡し、電池性能が著しく低
下する。またこのような短絡が生じると過大な電流が流
れて電池が発熱し、電池の封口部に不良が生じたり、電
解質が揮発するおそれがある。そのため、電池内圧が上
昇して、最悪の場合には、電池が破裂して爆発する。
When lithium is used as the negative electrode active material in the polymer solid electrolyte battery, a secondary battery having high energy (polymer solid electrolyte lithium secondary battery) can be obtained. However, when pure lithium is used as the negative electrode active material, so-called dendrite in which needle-like crystals of lithium are deposited on the negative electrode active material occurs. When the dendrite reaches the positive electrode plate, the battery is short-circuited and the battery performance is significantly reduced. Further, when such a short circuit occurs, an excessive current may flow and the battery may generate heat, which may cause a defect in the sealing portion of the battery or volatilize the electrolyte. Therefore, the internal pressure of the battery rises, and in the worst case, the battery bursts and explodes.

【0004】そこで、負極活物質としてLi−Al等の
リチウム合金を用いることが提案された。負極活物質と
してLi合金を用いると電池の充電時にLiの合金化反
応が起こり、デンドライトの成長が抑制される。しかし
ながら、リチウムは合金にすると堅くなるため、電池の
形状が制限されてしまう。またリチウム合金を用いて
も、短絡を十分に防止することはできなかった。
Therefore, it has been proposed to use a lithium alloy such as Li-Al as the negative electrode active material. When a Li alloy is used as the negative electrode active material, an Li alloying reaction occurs at the time of charging the battery, and dendrite growth is suppressed. However, lithium alloys harden, which limits the shape of the battery. Moreover, even if a lithium alloy is used, a short circuit cannot be sufficiently prevented.

【0005】そこで、このようなデンドライトによる短
絡を防止するために、リチウムイオンの吸蔵、放出が可
能な炭素材を負極材として用いることが提案された。
Therefore, in order to prevent such a short circuit due to dendrites, it has been proposed to use a carbon material capable of inserting and extracting lithium ions as a negative electrode material.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、高分子
固体電解質を用いた電池は、負極材である炭素材料にリ
チウムイオンが吸蔵されにくく、電解質に非水電解液を
用いた電池に比べて、容量が低く、充放電サイクル特性
も低い。これは、高分子電解質から炭素材料(負極材)
にリチウムイオンがスムーズに受け渡されないためであ
ると思われる。
However, the battery using the polymer solid electrolyte is less likely to occlude lithium ions in the carbon material as the negative electrode material, and has a higher capacity than the battery using the non-aqueous electrolyte solution as the electrolyte. Is low and the charge / discharge cycle characteristics are also low. This is from polymer electrolyte to carbon material (negative electrode material)
It seems that lithium ions are not delivered smoothly.

【0007】本発明の目的は、負極材である炭素材料に
リチウムイオンが吸蔵されやすく、高容量で、充放電サ
イクル寿命の長い高分子固体電解質リチウム二次電池を
提供することにある。
An object of the present invention is to provide a polymer solid electrolyte lithium secondary battery which has a high capacity and a long charge / discharge cycle life, in which lithium ions are easily occluded in a carbon material as a negative electrode material.

【0008】[0008]

【課題を解決するための手段】本発明は、炭素材料を負
極材として用いる高分子固体電解質リチウム二次電池を
対象にする。本発明では、芳香族炭化水素基及び複素芳
香族炭化水素基の少なくとも一つを有し且つ高分子固体
電解質の一部となる高分子化合物によって炭素材料の表
面の少なくとも一部を覆う。
The present invention is directed to a polymer solid electrolyte lithium secondary battery using a carbon material as a negative electrode material. In the present invention, at least a part of the surface of the carbon material is covered with a polymer compound having at least one of an aromatic hydrocarbon group and a heteroaromatic hydrocarbon group and forming a part of the polymer solid electrolyte.

【0009】なお芳香族炭化水素基及び複素芳香族炭化
水素基は単環であってもよく、多環であってもよい。芳
香族炭化水素基としては、スチリル基、フェニル基、ト
リル基、ナフチル基、アントラニル基、ピレニル基、ビ
フェニル基、フルオレニル基、フェナンスレニル基、ビ
スフェノールA残基等がある。また複素芳香族炭化水素
基としては、ベンゾフラニル基、キノリニル基、アクリ
ジニル基等がある。またここでいう高分子固体電解質と
は、単に電解質層を形成する高分子固体電解質だけでな
く、正極材層及び負極材層に含まれている高分子固体電
解質も含むものである。
The aromatic hydrocarbon group and the heteroaromatic hydrocarbon group may be monocyclic or polycyclic. Examples of the aromatic hydrocarbon group include styryl group, phenyl group, tolyl group, naphthyl group, anthranyl group, pyrenyl group, biphenyl group, fluorenyl group, phenanthrenyl group and bisphenol A residue. Further, examples of the heteroaromatic hydrocarbon group include a benzofuranyl group, a quinolinyl group, and an acridinyl group. Further, the polymer solid electrolyte referred to herein includes not only the polymer solid electrolyte forming the electrolyte layer but also the polymer solid electrolyte contained in the positive electrode material layer and the negative electrode material layer.

【0010】芳香族炭化水素基及び複素芳香族炭化水素
基のようにベンゼン環及びベンゼン環に類似した環を有
する基は、炭素材料(負極材)と分子構造が似ているた
め、炭素材料(負極材)と密着しやすい。そのため、本
発明のように、芳香族炭化水素基及び複素芳香族炭化水
素基の少なくとも一つを有し且つ高分子固体電解質の一
部となる高分子化合物によって炭素材料の表面の少なく
とも一部を覆うと、高分子固体電解質と炭素材料(負極
材)と密着性が高くなって、高分子固体電解質と炭素材
料(負極材)との間におけるリチウムイオンの受け渡し
がスムーズになる。なお、電解質全体を芳香族炭化水素
基及び複素芳香族炭化水素基の少なくとも一つを有する
高分子化合物で形成すると、高分子固体電解質全体にお
けるリチウムイオンの移動が低下して、十分に高容量
で、サイクル寿命の長い電池を得ることができない。
A group having a benzene ring or a ring similar to a benzene ring, such as an aromatic hydrocarbon group and a heteroaromatic hydrocarbon group, has a molecular structure similar to that of the carbon material (negative electrode material). It is easy to adhere to the negative electrode material). Therefore, as in the present invention, at least a part of the surface of the carbon material is covered with a polymer compound having at least one of an aromatic hydrocarbon group and a heteroaromatic hydrocarbon group and forming a part of the polymer solid electrolyte. When covered, the adhesion between the polymer solid electrolyte and the carbon material (negative electrode material) becomes high, and the lithium ions are smoothly transferred between the polymer solid electrolyte and the carbon material (negative electrode material). When the whole electrolyte is formed of a polymer compound having at least one of an aromatic hydrocarbon group and a heteroaromatic hydrocarbon group, the migration of lithium ions in the whole polymer solid electrolyte is lowered, and the capacity is sufficiently high. , It is not possible to obtain a battery with a long cycle life.

【0011】高分子化合物は、芳香族炭化水素基を側鎖
に有するものを用いるのが好ましい。
It is preferable to use a polymer compound having an aromatic hydrocarbon group in its side chain.

【0012】このようなものは、電極反応がスムーズに
進み、電池特性が向上する利点がある。
[0012] Such a material has an advantage that the electrode reaction proceeds smoothly and the battery characteristics are improved.

【0013】高分子化合物として、メトキシオリゴエチ
レンオキシポリフォスファゼンの側鎖のメチル基を芳香
族炭化水素基に置換したものを用いると、電極反応がス
ムーズに進む上、主鎖のポリフォスファゼンがリチウム
イオンの伝導性が高いことから、電池特性が大きく向上
する利点がある。
When methoxyoligoethyleneoxy polyphosphazene having a side chain methyl group substituted with an aromatic hydrocarbon group is used as the polymer compound, the electrode reaction proceeds smoothly and the main chain polyphosphazene is Since the lithium ion conductivity is high, there is an advantage that the battery characteristics are greatly improved.

【0014】[0014]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)図1は偏平形高分子固体電解質リチウム二
次電池に適用した本発明の実施例の断面図である。本実
施例の電池は正極集電体1の片面上に形成された正極活
物質層2と、負極集電体3の片面上に形成された負極活
物質層4とが高分子固体電解質層5を介して積層された
構造を有している。
(Example 1) FIG. 1 is a sectional view of an example of the present invention applied to a flat type polymer solid electrolyte lithium secondary battery. In the battery of the present embodiment, the positive electrode active material layer 2 formed on one surface of the positive electrode current collector 1 and the negative electrode active material layer 4 formed on one surface of the negative electrode current collector 3 have the solid polymer electrolyte layer 5 It has a structure of being laminated via.

【0015】本実施例の高分子固体電解質リチウム二次
電池は次のようにして製造した。
The polymer solid electrolyte lithium secondary battery of this example was manufactured as follows.

【0016】最初に、メトキシオリゴエチレンオキシポ
リフォスファゼン(MEP)の側鎖のメチル基をスチリ
ル基に置換したものを1,2−ジメトキシエタン(DM
E)に溶解した溶液(以下、単にスチリル基含有MEP
/DMEと言う)を次のようにして作った。まずジクロ
ロフォスファゼン3量体をチッ素置換したガラス封管中
で250℃で約8時間加熱する熱開環重合を行った。こ
れにより、重合率30%のポリジクロロホスファゼンが
できる。次にこれをガラス製昇華装置に入れ、110
℃、5mmHgで約4時間昇華して未重合のジクロロフォス
ファゼンを除去し、ポリジクロロホスファゼンを作っ
た。次にオリゴエチレングリコールモノメチルエーテル
1モルと、スチレンにオリゴエチレングリコールをマイ
ケル付加させたオリゴエチレングリコールモノスチリル
エーテル1モルとを混合した混合物と、ナトリウム40
gを裁断してTHF溶液に分散させた分散溶液とを用意
した。そしてこの分散溶液中に前述の混合物を徐々に滴
下し、室温において4時間、55℃において2時間反応
させてアルコラート溶液を作った。
First, 1,2-dimethoxyethane (DM) is prepared by substituting the methyl group of the side chain of methoxyoligoethyleneoxypolyphosphazene (MEP) with a styryl group.
E) dissolved in solution (hereinafter, simply styryl group-containing MEP
/ DME) was made as follows. First, the dichlorophosphazene trimer was subjected to thermal ring-opening polymerization by heating at 250 ° C. for about 8 hours in a glass sealed tube substituted with nitrogen. As a result, polydichlorophosphazene having a polymerization rate of 30% can be obtained. Then put this in a glass sublimation device and
Sublimation was performed at 5 ° C. and 5 mmHg for about 4 hours to remove unpolymerized dichlorophosphazene to prepare polydichlorophosphazene. Next, a mixture of 1 mol of oligoethylene glycol monomethyl ether and 1 mol of oligoethylene glycol monostyryl ether obtained by Michael-adding oligoethylene glycol to styrene, and sodium 40
A dispersion solution in which g was cut and dispersed in a THF solution was prepared. Then, the above-mentioned mixture was gradually dropped into this dispersion solution and reacted at room temperature for 4 hours and at 55 ° C. for 2 hours to prepare an alcoholate solution.

【0017】次に前述のポリジクロロホスファゼン10
0gを2リットルのトルエンに溶解した。その後、この
溶解中に20〜30℃において、前述のアルコラート溶
液を滴下した後、約60℃で8時間の置換反応を行っ
た。置換反応完了後、希塩酸により中和してから、減圧
濃縮後、水を加えて限外ろ過装置により脱塩及び未反応
原料の除去を行った。次に水を濃縮除去してから、DM
Eを加えて、共沸脱水により水を50〜100ppmま
で更に除去した。その後、脱水したDMEとLiClO
4 を溶解したDMEとを加えてスチリル基含有MEP/
DMEを完成した。スチリル基含有MEP/DMEに含
まれるスチリル基含有MEPは次の式を有している。
Next, the above-mentioned polydichlorophosphazene 10
0 g was dissolved in 2 liters of toluene. Then, after adding the above-mentioned alcoholate solution at 20-30 degreeC during this melt | dissolution, the substitution reaction was performed at about 60 degreeC for 8 hours. After the substitution reaction was completed, the reaction mixture was neutralized with dilute hydrochloric acid, concentrated under reduced pressure, water was added, and desalting and removal of unreacted raw materials were performed by an ultrafiltration device. Next, water is concentrated and removed, and then DM
E was added to further remove water to 50-100 ppm by azeotropic dehydration. Then dehydrated DME and LiClO
DME in which 4 was dissolved and styryl group-containing MEP /
DME completed. The styryl group-containing MEP contained in the styryl group-containing MEP / DME has the following formula.

【0018】[0018]

【化1】 このようにスチリル基含有MEPは、MEPの側鎖のメ
チル基がスチリル基に置換された構造を有している。
Embedded image As described above, the styryl group-containing MEP has a structure in which the methyl group on the side chain of the MEP is substituted with the styryl group.

【0019】次にMEP(スチリル基を有さないもの)
を1,2−ジメトキシエタン(DME)に溶解した溶液
(以下、単にMEP/DMEと言う)を作った。MEP
/DMEは、オリゴエチレングリコールモノスチリルエ
ーテルを用いずにオリゴエチレングリコールモノメチル
エーテルのみを用いてアルコラート溶液を作り、その他
はスチリル基含有MEP/DMEと同様にして作った。
Next, MEP (without styryl group)
Was dissolved in 1,2-dimethoxyethane (DME) to prepare a solution (hereinafter, simply referred to as MEP / DME). MEP
For / DME, an alcoholate solution was prepared by using only oligoethylene glycol monomethyl ether without using oligoethylene glycol monostyryl ether, and otherwise the same as for styryl group-containing MEP / DME.

【0020】次に正極板を作った。まず、LiCoO2
粉末とカーボンブラックとを18:15の重量比で混合
してから真空乾燥した。次にこれとMEP/DME(ス
チリル基を含有しないもの)とをドライボックス中で混
合してからDMEを揮発させた。その後、これを混練し
たものをロールプレスでステンレス箔からなる正極集電
体1に、該正極集電体1の周縁部を残すように正極集電
体シ−ト状に貼り付けて正極材層2を形成した正極板
(15mAh)を完成した。
Next, a positive electrode plate was prepared. First, LiCoO 2
The powder and carbon black were mixed in a weight ratio of 18:15 and then vacuum dried. Next, this was mixed with MEP / DME (containing no styryl group) in a dry box, and then DME was volatilized. Then, the kneaded product is roll-pressed to a positive electrode current collector 1 made of stainless steel foil and attached in a positive electrode current collector sheet shape so as to leave a peripheral portion of the positive electrode current collector 1, and a positive electrode material layer. The positive electrode plate (15 mAh) on which No. 2 was formed was completed.

【0021】次に負極板を作った。まず、日本黒鉛製の
黒鉛粉末(JSP)とスチリル基含有MEP/DMEと
を85:15の重量比で混合してからDMEを揮発し
た。これにより、黒鉛粉末の表面をスチリル基含有ME
Pで約1μmの厚みに覆った炭素材料を作った。スチリ
ル基含有MEPは黒鉛粉末の表面の70%以上を覆うの
が好ましい。その後、この炭素材料とMEP/DME
(スチリル基を含有しないもの)とを70:30の重量
比で混合してからDMEを揮発させた。その後、これを
混練したものをロールプレスでステンレス箔からなる負
極集電体3に、該負極集電体3の周縁部を残すようにシ
−ト状に貼り付けて負極材層4を形成した負極板(15
mAh)を完成した。
Next, a negative electrode plate was prepared. First, graphite powder (JSP) made by Nippon Graphite and styryl group-containing MEP / DME were mixed at a weight ratio of 85:15, and then DME was volatilized. As a result, the surface of the graphite powder is
A carbon material covered with P to a thickness of about 1 μm was prepared. The styryl group-containing MEP preferably covers 70% or more of the surface of the graphite powder. After that, this carbon material and MEP / DME
(Without styryl group) was mixed at a weight ratio of 70:30, and then DME was volatilized. Then, the kneaded product was roll-pressed to a negative electrode current collector 3 made of stainless steel foil and attached in a sheet shape so as to leave a peripheral portion of the negative electrode current collector 3 to form a negative electrode material layer 4. Negative electrode plate (15
mAh) was completed.

【0022】次に正極板の正極材層の上にMEP/DM
E溶液を塗布してからDMEを揮発させて高分子固体電
解質半部を形成すると共に、正極集電体1の周縁部にポ
リオレフィン系樹脂からなる封止材半部を熱溶着して電
池の正極板側半部を作った。次に負極板の負極材層4の
上にもMEP/DMEを塗布してからDMEを揮発させ
て高分子固体電解質半部を形成すると共に、負極集電体
の周縁部にポリオレフィン系樹脂からなる封止材半部を
熱溶着して電池の負極板側半部を作った。
Next, MEP / DM was formed on the positive electrode material layer of the positive electrode plate.
After applying the E solution, the DME is volatilized to form the polymer solid electrolyte half portion, and at the same time, the sealing material half portion made of polyolefin resin is heat-welded to the peripheral portion of the positive electrode current collector 1 to form the positive electrode of the battery. I made the plate half. Next, MEP / DME is applied also on the negative electrode material layer 4 of the negative electrode plate, and then DME is volatilized to form a polymer solid electrolyte half part, and at the same time, the peripheral part of the negative electrode current collector is made of a polyolefin resin. The half of the sealing material was heat-welded to form the half on the negative electrode plate side of the battery.

【0023】次に電池の正極板側半部と電池の負極板側
半部とを接合して封止材半部を相互に溶着させて本実施
例の高分子固体電解質リチウム二次電池を完成した。
Next, the positive electrode plate side half of the battery and the negative electrode plate side half of the battery are joined and the sealing material half is welded to each other to complete the polymer solid electrolyte lithium secondary battery of this embodiment. did.

【0024】(実施例2)本実施例の電池は、下記の式
に示すようにスチリル基の代りにフェニル基でMEPの
側鎖のメチル基を置換した高分子化合物で炭素材料の表
面を覆い、その他は、実施例1と同じ構造を有してい
る。
(Example 2) In the battery of this example, as shown in the following formula, the surface of the carbon material was covered with a polymer compound in which the methyl group of the side chain of MEP was replaced with a phenyl group instead of the styryl group. The others have the same structure as the first embodiment.

【0025】[0025]

【化2】 本実施例の電池は、「スチレンにオリゴエチレングリコ
ールをマイケル付加させたオリゴエチレングリコールモ
ノスチリルエーテル」の代りに「フェノールにエチレン
オキシドを付加させたオリゴエチレングリコールモノフ
ェニルエーテル」を用い、その他は実施例1と同様にし
て製造した。
Embedded image In the battery of this example, "oligoethylene glycol monophenyl ether obtained by adding ethylene oxide to phenol" was used in place of "oligoethylene glycol monostyryl ether obtained by Michael addition of oligoethylene glycol to styrene". It was produced in the same manner as 1.

【0026】(実施例3)本実施例の電池は、下記の式
に示すようにスチリル基の代りにナフチル基でMEPの
側鎖のメチル基を置換した高分子化合物で炭素材料の表
面を覆い、その他は、実施例1と同じ構造を有してい
る。
Example 3 In the battery of this example, the surface of the carbon material was covered with a polymer compound in which the methyl group on the side chain of MEP was replaced with a naphthyl group instead of the styryl group as shown in the following formula. The others have the same structure as the first embodiment.

【0027】[0027]

【化3】 本実施例の電池は、フェノールの代りにナフトールを用
い、その他は実施例2と同様にして製造した。
Embedded image The battery of this example was manufactured in the same manner as in Example 2 except that naphthol was used instead of phenol.

【0028】(実施例4)本実施例の電池は、下記の
(A)の式と(B)の式の共重合体からなる高分子化合
物で炭素材料を覆ったもので、その他は、実施例1と同
じ構造を有している。
(Example 4) The battery of this example was prepared by coating a carbon material with a polymer compound consisting of the copolymers of the formulas (A) and (B) below. It has the same structure as in Example 1.

【0029】[0029]

【化4】 本実施例で用いる炭素材料を覆う高分子化合物は次のよ
うにして作った。まずオリゴエチレングリコールモノフ
ェニルエーテル[HO(CH2 CH2 O)m 6 5
0.1モルとオリゴエチレングリコールモノメチルエー
テル[HO(CH2 CH2 O)CH3 ]0.1モルと
トリエチルアミン2.2モルとの混合物をトルエンに溶
解した。これに、氷冷下において、メタクリル酸クロリ
ド2.2モルのトルエン溶液を滴下した。滴下後、徐々
に昇温して光を遮った状態でハイドロキノンモノメチル
エーテルを1重量%添加して50℃で6時間反応を行っ
た。反応後、水洗、脱水、濃縮を行い、これに約0.5
%のベンゾイルパーオキシドを添加してから、80〜1
00℃で5〜15分加熱して高分子化合物を完成した。
Embedded image The polymer compound covering the carbon material used in this example was prepared as follows. First, oligoethylene glycol monophenyl ether [HO (CH 2 CH 2 O) m C 6 H 5 ]
A mixture of 0.1 mol, 0.1 mol of oligoethylene glycol monomethyl ether [HO (CH 2 CH 2 O) 1 CH 3 ] and 2.2 mol of triethylamine was dissolved in toluene. To this, a toluene solution of 2.2 mol of methacrylic acid chloride was added dropwise under ice cooling. After the dropping, 1% by weight of hydroquinone monomethyl ether was added while the temperature was gradually raised and the light was shielded, and the reaction was carried out at 50 ° C. for 6 hours. After the reaction, washing with water, dehydration, and concentration are performed, and about 0.5
% Benzoyl peroxide and then 80-1
The polymer compound was completed by heating at 00 ° C. for 5 to 15 minutes.

【0030】(実施例5)本実施例の電池は、下記の
(A)の式と(B)の式の共重合体からなる高分子化合
物で炭素材料を覆ったもので、その他は、実施例1と同
じ構造を有している。
(Embodiment 5) The battery of this embodiment is one in which a carbon material is covered with a polymer compound composed of the copolymers of the following formulas (A) and (B). It has the same structure as in Example 1.

【0031】[0031]

【化5】 本実施例で用いる炭素材料を覆う高分子化合物は、オリ
ゴエチレングリコールモノフェニルエーテルの代りにオ
リゴエチレングリコールモノ(N−メチル−N−フェニ
ルアミノエチル)エーテルを用い、その他は、実施例4
と同様にして作った。
Embedded image As the polymer compound covering the carbon material used in this example, oligoethylene glycol mono (N-methyl-N-phenylaminoethyl) ether was used in place of oligoethylene glycol monophenyl ether, and in Example 4,
I made it in the same way.

【0032】(実施例6)本実施例の電池は、下記の
(A)の式と(B)の式の共重合体からなる高分子化合
物で炭素材料を覆ったもので、その他は、実施例1と同
じ構造を有している。
Example 6 The battery of this example was prepared by coating a carbon material with a polymer compound consisting of the copolymers of the formulas (A) and (B) below. It has the same structure as in Example 1.

【0033】[0033]

【化6】 本実施例で用いる高分子固体電解質は、4−(エンドメ
トキシ−オリゴエチレンオキシ)スチレンとメタクリル
酸エンドメトキシオリゴエチレングリコールエステルと
を共重合させて作った。
[Chemical 6] The polymer solid electrolyte used in this example was produced by copolymerizing 4- (endomethoxy-oligoethyleneoxy) styrene and methacrylic acid endomethoxyoligoethylene glycol ester.

【0034】(比較例1)本比較例の電池は、電解質全
体を下記の式に示すMEP(スチリル基を含有しないも
の)により形成したものであり、その他は、実施例1と
同じ構造を有している。
(Comparative Example 1) The battery of this comparative example has the same structure as that of Example 1 except that the entire electrolyte is formed of MEP (containing no styryl group) represented by the following formula. are doing.

【0035】[0035]

【化7】 (比較例2)本比較例の電池は、電解質全体をスチリル
基含有MEPにより形成したものであり、その他は、実
施例1と同じ構造を有している。
[Chemical 7] (Comparative Example 2) In the battery of this Comparative Example, the entire electrolyte was formed of styryl group-containing MEP, and the other components had the same structure as in Example 1.

【0036】次に上記各電池に25μA/cm2 の電流密度
で4.2Vまで行う充電と、同じ電流密度で2.8Vま
で行う放電とを繰り返し、各電池の充放電特性を調べ
た。図2はその測定結果を示している。本図より上記実
施例1〜6の電池は、比較例1,2の電池に比べて容量
が高く、しかも充放電サイクル寿命を延ばせることが分
る。
Next, charging and discharging characteristics of each battery were examined by repeating charging to 4.2 V at a current density of 25 μA / cm 2 and discharging to 2.8 V at the same current density. FIG. 2 shows the measurement results. From this figure, it is understood that the batteries of Examples 1 to 6 have higher capacities than the batteries of Comparative Examples 1 and 2 and can extend the charge / discharge cycle life.

【0037】なお、上記実施例では、側鎖に芳香族炭化
水素基を有する高分子化合物で炭素材料を覆った例を示
したが、本発明はこれに限定されるものではなく、下記
式に示すように主鎖に芳香族炭化水素基を有する高分子
化合物で炭素材料を覆っても構わない。
In the above examples, the carbon material was covered with a polymer compound having an aromatic hydrocarbon group in the side chain, but the present invention is not limited to this, and the following formula is used. As shown, the carbon material may be covered with a polymer compound having an aromatic hydrocarbon group in the main chain.

【0038】[0038]

【化8】 Embedded image

【化9】 また本発明は、下記式に示すように複素芳香族炭化水素
基を有する高分子化合物で炭素材料を覆っても構わな
い。
Embedded image Further, in the present invention, the carbon material may be covered with a polymer compound having a heteroaromatic hydrocarbon group as shown in the following formula.

【0039】[0039]

【化10】 また本発明は、下記式に示すように芳香族炭化水素基と
複素芳香族炭化水素基の両方を有する高分子化合物で炭
素材料を覆っても構わない。
Embedded image Further, in the present invention, the carbon material may be covered with a polymer compound having both an aromatic hydrocarbon group and a heteroaromatic hydrocarbon group as shown in the following formula.

【0040】[0040]

【化11】 なお本実施例では、負極材の炭素材料として黒鉛を用い
たが、炭素材料はリチウムイオンを吸蔵、放出できるも
のえあれば、他のものを用いても構わない。
Embedded image In this example, graphite was used as the carbon material of the negative electrode material, but other carbon materials may be used as long as they can store and release lithium ions.

【0041】以下、明細書に記載した複数の発明の中で
いくつかの発明についてその構成を示す。
The structure of some of the inventions described in the specification will be shown below.

【0042】(1) 炭素粉末を負極材として用いる高
分子固体電解質リチウム二次電池において、前記炭素粉
末の表面の少なくとも一部が、メトキシオリゴエチレン
オキシポリフォスファゼンの側鎖にあるメチル基がスチ
リル基に置換され且つ高分子固体電解質の一部となる高
分子化合物に覆われていることを特徴とする高分子固体
電解質リチウム二次電池。
(1) In a polymer solid electrolyte lithium secondary battery using carbon powder as a negative electrode material, at least a part of the surface of the carbon powder has a styryl methyl group on the side chain of methoxyoligoethyleneoxypolyphosphazene. A polymer solid electrolyte lithium secondary battery, characterized in that it is covered with a polymer compound which is substituted with a group and becomes a part of the polymer solid electrolyte.

【0043】(2) 炭素粉末を負極材として用いる高
分子固体電解質リチウム二次電池において、前記炭素粉
末の表面の少なくとも一部が、メトキシオリゴエチレン
オキシポリフォスファゼンの側鎖にあるメチル基がフェ
ニル基に置換され且つ高分子固体電解質の一部となる高
分子化合物に覆われていることを特徴とする高分子固体
電解質リチウム二次電池。
(2) In a polymer solid electrolyte lithium secondary battery using carbon powder as a negative electrode material, at least a part of the surface of the carbon powder has a phenyl group with a methyl group on the side chain of methoxyoligoethyleneoxypolyphosphazene. A polymer solid electrolyte lithium secondary battery, characterized in that it is covered with a polymer compound which is substituted with a group and becomes a part of the polymer solid electrolyte.

【0044】(3) 炭素粉末を負極材として用いる高
分子固体電解質リチウム二次電池において、前記炭素粉
末の表面の少なくとも一部が、メトキシオリゴエチレン
オキシポリフォスファゼンの側鎖にあるメチル基がナフ
チル基に置換され且つ高分子固体電解質の一部となる高
分子化合物に覆われていることを特徴とする高分子固体
電解質リチウム二次電池。
(3) In a polymer solid electrolyte lithium secondary battery using carbon powder as a negative electrode material, at least a part of the surface of the carbon powder has a naphthyl methyl group in the side chain of methoxyoligoethyleneoxypolyphosphazene. A polymer solid electrolyte lithium secondary battery, characterized in that it is covered with a polymer compound which is substituted with a group and becomes a part of the polymer solid electrolyte.

【0045】(4) 炭素粉末を負極材として用いる高
分子固体電解質リチウム二次電池において、前記炭素粉
末の表面の少なくとも一部が、式(A)と式(B)との
共重合体からなり且つ高分子固体電解質の一部となる高
分子化合物に覆われていることを特徴とする高分子固体
電解質リチウム二次電池。
(4) In a polymer solid electrolyte lithium secondary battery using carbon powder as a negative electrode material, at least a part of the surface of the carbon powder is made of a copolymer of formula (A) and formula (B). A polymer solid electrolyte lithium secondary battery characterized by being covered with a polymer compound which is a part of the polymer solid electrolyte.

【0046】[0046]

【化12】 (5) 炭素粉末を負極材として用いる高分子固体電解
質リチウム二次電池において、前記炭素粉末の表面の少
なくとも一部が、式(A)と式(B)との共重合体から
なり且つ高分子固体電解質の一部となる高分子化合物に
覆われていることを特徴とする高分子固体電解質リチウ
ム二次電池。
[Chemical 12] (5) In a polymer solid electrolyte lithium secondary battery using carbon powder as a negative electrode material, at least a part of the surface of the carbon powder is composed of a copolymer of the formula (A) and the formula (B) and is a polymer. A polymer solid electrolyte lithium secondary battery characterized by being covered with a polymer compound which is a part of a solid electrolyte.

【0047】[0047]

【化13】 (6) 炭素粉末を負極材として用いる高分子固体電解
質リチウム二次電池において、前記炭素粉末の表面の少
なくとも一部が、式(A)と式(B)との共重合体から
なり且つ高分子固体電解質の一部となる高分子化合物に
覆われていることを特徴とする高分子固体電解質リチウ
ム二次電池。
Embedded image (6) In a polymer solid electrolyte lithium secondary battery using carbon powder as a negative electrode material, at least a part of the surface of the carbon powder is composed of a copolymer of the formula (A) and the formula (B), and is a polymer. A polymer solid electrolyte lithium secondary battery characterized by being covered with a polymer compound which is a part of a solid electrolyte.

【0048】[0048]

【化14】 Embedded image

【0049】[0049]

【発明の効果】芳香族炭化水素基及び複素芳香族炭化水
素基のようにベンゼン環及びベンゼン環に類似した環を
有する基は、炭素材料(負極材)と分子構造が似ている
ため、炭素材料(負極材)と密着しやすい。そのため、
本発明によれば、芳香族炭化水素基及び複素芳香族炭化
水素基の少なくとも一つを有し且つ高分子固体電解質の
一部となる高分子化合物によって炭素材料の表面の少な
くとも一部を覆うので、高分子固体電解質と炭素材料
(負極材)と密着性が高くなって、高分子固体電解質と
炭素材料(負極材)との間におけるリチウムイオンの受
け渡しがスムーズになる。その結果、本発明によれば、
高容量で、サイクル寿命の長い電池を得ることができ
る。なお、電解質全体を芳香族炭化水素基及び複素芳香
族炭化水素基の少なくとも一つを有する高分子化合物で
形成すると、十分に高容量で、サイクル寿命の長い電池
を得ることができない。
EFFECTS OF THE INVENTION A group having a benzene ring or a ring similar to a benzene ring, such as an aromatic hydrocarbon group and a heteroaromatic hydrocarbon group, has a molecular structure similar to that of a carbon material (negative electrode material), and therefore has a carbon Easily adheres to the material (negative electrode material). for that reason,
According to the present invention, at least a part of the surface of the carbon material is covered with a polymer compound having at least one of an aromatic hydrocarbon group and a heteroaromatic hydrocarbon group and forming a part of the polymer solid electrolyte. Adhesion between the polymer solid electrolyte and the carbon material (negative electrode material) is enhanced, and lithium ions can be smoothly transferred between the polymer solid electrolyte and the carbon material (negative electrode material). As a result, according to the present invention,
It is possible to obtain a battery having a high capacity and a long cycle life. If the entire electrolyte is formed of a polymer compound having at least one of an aromatic hydrocarbon group and a heteroaromatic hydrocarbon group, a battery having a sufficiently high capacity and a long cycle life cannot be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例の高分子固体電解質リチウム
二次電池の断面図である。
FIG. 1 is a cross-sectional view of a polymer solid electrolyte lithium secondary battery of an example of the present invention.

【図2】 試験に用いた電池のサイクル寿命特性を示す
図である。
FIG. 2 is a diagram showing cycle life characteristics of a battery used in a test.

【符号の説明】[Explanation of symbols]

1 正極集電体 2 正極活物質層 3 負極集電体 4 負極活物質層 5 高分子固体電解質層 1 Positive Electrode Current Collector 2 Positive Electrode Active Material Layer 3 Negative Electrode Current Collector 4 Negative Electrode Active Material Layer 5 Polymer Solid Electrolyte Layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中長 偉文 徳島県徳島市川内町加賀須野463番地 大 塚化学株式会社徳島研究所内 (72)発明者 犬伏 昭嘉 徳島県徳島市川内町加賀須野463番地 大 塚化学株式会社徳島研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Weibun Nakanaga, Wenbun Nakano 463, Kagasuno, Kawauchi Town, Tokushima City, Tokushima Prefecture Otsuka Chemical Co., Ltd., Tokushima Institute (72) Inventor Akiyoshi Inubushi 463 Kagasuno, Kawauchi Town, Tokushima City, Tokushima Prefecture Address Otsuka Chemical Co., Ltd. Tokushima Research Center

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭素材料を負極材として用いる高分子固
体電解質リチウム二次電池において、 前記炭素材料の表面の少なくとも一部が、芳香族炭化水
素基及び複素芳香族炭化水素基の少なくとも一つを有し
且つ高分子固体電解質の一部となる高分子化合物によっ
て覆われていることを特徴とする高分子固体電解質リチ
ウム二次電池。
1. A polymer solid electrolyte lithium secondary battery using a carbon material as a negative electrode material, wherein at least a part of the surface of the carbon material has at least one of an aromatic hydrocarbon group and a heteroaromatic hydrocarbon group. A polymer solid electrolyte lithium secondary battery, characterized in that it is covered with a polymer compound that has and is a part of the polymer solid electrolyte.
【請求項2】 前記高分子化合物は、前記芳香族炭化水
素基を側鎖に有していることを特徴とする請求項1に記
載の高分子固体電解質リチウム二次電池。
2. The polymer solid electrolyte lithium secondary battery according to claim 1, wherein the polymer compound has the aromatic hydrocarbon group in a side chain.
【請求項3】 前記高分子化合物として、メトキシオリ
ゴエチレンオキシポリフォスファゼンの側鎖のメチル基
を芳香族炭化水素基に置換したものを用いることを特徴
とする請求項2に記載の高分子固体電解質リチウム二次
電池。
3. The polymer solid according to claim 2, wherein the polymer compound is methoxyoligoethyleneoxypolyphosphazene having a side chain methyl group substituted with an aromatic hydrocarbon group. Electrolyte lithium secondary battery.
JP24278895A 1995-09-21 1995-09-21 Polymer solid electrolyte lithium secondary battery Expired - Fee Related JP3556743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24278895A JP3556743B2 (en) 1995-09-21 1995-09-21 Polymer solid electrolyte lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24278895A JP3556743B2 (en) 1995-09-21 1995-09-21 Polymer solid electrolyte lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH0992281A true JPH0992281A (en) 1997-04-04
JP3556743B2 JP3556743B2 (en) 2004-08-25

Family

ID=17094309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24278895A Expired - Fee Related JP3556743B2 (en) 1995-09-21 1995-09-21 Polymer solid electrolyte lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3556743B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274268B1 (en) 1998-07-10 2001-08-14 Nec Corporation Polymer secondary battery and method of making same
KR100449761B1 (en) * 2002-05-18 2004-09-22 삼성에스디아이 주식회사 Lithium secondary battery inhibiting decomposition of electrolytic solution and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274268B1 (en) 1998-07-10 2001-08-14 Nec Corporation Polymer secondary battery and method of making same
KR100449761B1 (en) * 2002-05-18 2004-09-22 삼성에스디아이 주식회사 Lithium secondary battery inhibiting decomposition of electrolytic solution and manufacturing method thereof

Also Published As

Publication number Publication date
JP3556743B2 (en) 2004-08-25

Similar Documents

Publication Publication Date Title
US6924065B2 (en) Separators for winding-type lithium secondary batteries having gel-type polymer electrolytes and manufacturing method for the same
US6558840B1 (en) Electrode for use in a non-aqueous battery
JP4117573B2 (en) battery
JP4352475B2 (en) Solid electrolyte secondary battery
JP2004185862A (en) Lithium ion secondary battery and its manufacturing method
CA2410097A1 (en) Method for producing rechargeable lithium-polymer batteries and a battery produced according to said method
JPH1092444A (en) Solid high molecular electrolyte complex for electrochemical reaction device and electrochemical reaction device using it
JP2004063432A (en) Battery
JP3394125B2 (en) Non-aqueous electrolyte secondary battery
JP3312836B2 (en) Non-aqueous electrolyte secondary battery
JPH05314965A (en) Battery positive electrode sheet, manufacture thereof and totally solid secondary battery
JP2001319692A (en) Solid lithium-polymer battery
JPH0992281A (en) Polymer solid electrolyte lithium secondary battery
JP3524651B2 (en) Polymer solid electrolyte lithium secondary battery
JP2000299129A (en) Gel polyelectrolyte
JP4192635B2 (en) Lithium ion secondary battery electrolyte and lithium ion secondary battery using the same
JP3130341B2 (en) Solid electrolyte secondary battery
JP2003229019A (en) Composition for electrolyte, electrolyte and its manufacturing method, and battery
JP2872223B2 (en) Vinyl acetate copolymer, gel polymer electrolyte composition containing the same, and lithium polymer secondary battery
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it
JPS63136407A (en) Lithium ion conducting polymer electrolyte
JP2003317695A (en) Nonaqueous electrolyte lithium ion cell and separator there for
JP2004193041A (en) Carbon electrode for polymer battery and the polymer battery using the same
JPH08124597A (en) Solid electrolytic secondary cell
JP3276710B2 (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040513

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees