JPH0990160A - Method and device for connecting optical waveguide and optical fiber - Google Patents

Method and device for connecting optical waveguide and optical fiber

Info

Publication number
JPH0990160A
JPH0990160A JP25160495A JP25160495A JPH0990160A JP H0990160 A JPH0990160 A JP H0990160A JP 25160495 A JP25160495 A JP 25160495A JP 25160495 A JP25160495 A JP 25160495A JP H0990160 A JPH0990160 A JP H0990160A
Authority
JP
Japan
Prior art keywords
optical waveguide
optical
fiber
axis
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25160495A
Other languages
Japanese (ja)
Other versions
JP3112154B2 (en
Inventor
Fumiaki Hanawa
文明 塙
Yoshinori Hibino
善典 日比野
Motohaya Ishii
元速 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP07251604A priority Critical patent/JP3112154B2/en
Publication of JPH0990160A publication Critical patent/JPH0990160A/en
Application granted granted Critical
Publication of JP3112154B2 publication Critical patent/JP3112154B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

PROBLEM TO BE SOLVED: To always hold the intervals of connection faces to be constant, to detect pressure on the connection faces and to save a Z-axis for a desired distance by stopping movement when the contact pressure of an optical waveguide and an optical fiber is detected. SOLUTION: Output fiber parts 7 are set and light is made incident on the fibers of input fiber parts 5. After light is made incident on the fibers, the Z-axis 8 is automatically moved to the direction of the waveguide parts 4. When the end face of the fiber parts 5 touches the end face of the optical waveguide parts 4, a pressure sensor 9 detects it and an interval (ΔT) controller saves the Z-axis 8 for the prescribed distance. The intervals (ΔT) can be thus controlled. The input fiber parts 5 can automatically be aligned to X and Y-axes so that light which is made incident on the input fiber parts 5 passes through the optical waveguide 4 after contact faces are set at the prescribed intervals (ΔT). Thus, the optimum intervals for reducing a connection loss can be set.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は光導波路と光ファイ
バとを接続する方法、および該方法を実施するための接
続装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for connecting an optical waveguide and an optical fiber, and a connecting device for implementing the method.

【0002】[0002]

【従来の技術】最近、平面基板上に作製されたコアとク
ラッドよりなる光導波路を形成して各種の光導波路部品
を構成しようとする研究が盛んに進められており、光通
信や光ネットワークに応用されようとしている。
2. Description of the Related Art Recently, research has been actively conducted to form various optical waveguide components by forming an optical waveguide composed of a core and a clad formed on a flat substrate, and has been actively used in optical communication and optical networks. It is about to be applied.

【0003】このような光導波路部品を実際のシステム
で使用する場合、光信号の入出力用に光ファイバを接続
しなければならない。
When such an optical waveguide component is used in an actual system, an optical fiber must be connected for inputting / outputting an optical signal.

【0004】接続方法およびその装置に要求される条件
を以下にまとめる。
The connection method and the conditions required for the device are summarized below.

【0005】1) 接続損失が低いこと 2) 再現性が良いこと 3) 接続時間が短いこと 1)は接続技術に要求される基本条件であり、2),
3)は光部品の量産化技術や低価格化に向けて重要な条
件である。
1) Low connection loss 2) Good reproducibility 3) Short connection time 1) is a basic condition required for connection technology, 2),
3) is an important condition for mass production technology and cost reduction of optical parts.

【0006】光導波路と光ファイバとを接続するための
接続装置として従来から用いられている装置の概略的構
成を図4に示す。
FIG. 4 shows a schematic structure of a device conventionally used as a connecting device for connecting an optical waveguide and an optical fiber.

【0007】図中、参照符号1は光導波路部品固定部、
2は入力用調芯ステージ、3は出力用調芯ステージ、4
は光導波路部品、5は入力ファイバ部品、6はGIファ
イバ部品、および7は出力ファイバ部品である。
In the figure, reference numeral 1 is an optical waveguide component fixing portion,
2 is an input alignment stage, 3 is an output alignment stage, 4
Is an optical waveguide component, 5 is an input fiber component, 6 is a GI fiber component, and 7 is an output fiber component.

【0008】従来の上記接続は、図4に示すように光フ
ァイバ部品を固定する台を挟んで調芯用微動ステージ2
および3を2台配置した装置で行う。各ステージはX,
Y,Z方向の並進移動とZ軸まわりの回転運動を行う。
In the above-mentioned conventional connection, as shown in FIG. 4, a fine movement stage 2 for centering is provided with a stand for fixing optical fiber parts interposed therebetween.
This is performed by a device in which two sets of 3 and 3 are arranged. Each stage is X,
Performs translational movement in the Y and Z directions and rotational movement about the Z axis.

【0009】このような装置によって光導波路部品4と
多芯ファイバ部品を接続するには、光導波路部品4を光
導波路部品固定部1に固定し、一方のステージ2に入力
ファイバ部品5を、他方のステージ3にはまずコア径の
大きいGIファイバ部品6をセットし、ステージのZ軸
を動かして入力ファイバ部品5の接続面を光導波路部品
4の接続面に近付ける。次いで、入力ファイバ部品5に
光を入射し、入射光が光導波路部品4のコアを通過する
ように入力ファイバ部品5をX,Y方向に調芯する。光
導波路部品4を通過した出力光をGIファイバ部品6で
受光し、受光量が最大となるように入力ファイバ部品5
を調芯する。通常、この調芯は自動で行われている。そ
の後、GIファイバ部品6を出力ファイバ部品7と交換
して、光導波路部品4と出力ファイバ部品7とを同様に
調芯する。調芯終了後、接続部に接着剤を滴下して各部
品を接続固定する。
In order to connect the optical waveguide component 4 and the multi-core fiber component with such an apparatus, the optical waveguide component 4 is fixed to the optical waveguide component fixing portion 1 and the input fiber component 5 is attached to one stage 2 and the other. First, the GI fiber component 6 having a large core diameter is set on the stage 3, and the Z axis of the stage is moved to bring the connecting surface of the input fiber component 5 close to the connecting surface of the optical waveguide component 4. Next, light is incident on the input fiber component 5, and the input fiber component 5 is aligned in the X and Y directions so that the incident light passes through the core of the optical waveguide component 4. Output light that has passed through the optical waveguide component 4 is received by the GI fiber component 6, and the input fiber component 5 is designed to maximize the amount of received light.
Align. Usually, this alignment is performed automatically. After that, the GI fiber component 6 is replaced with the output fiber component 7, and the optical waveguide component 4 and the output fiber component 7 are aligned in the same manner. After the alignment is completed, an adhesive is dropped on the connecting portion to connect and fix the respective parts.

【0010】上記従来の接続方法において、低損失な接
続を実現するには調芯精度をサブミクロンオーダにする
必要がある。理論的には、0.1dBの接続損失はX方
向あるいはY方向に対して0.75μmの位置ズレで生
じる。従来、調芯ステージのX,Y軸精度としては0.
1μmのステージが多く使用されている。これにより
X,Y方向の調芯位置決めは高精度が実現されている。
In the conventional connection method described above, the alignment accuracy must be on the order of submicron in order to realize a connection with low loss. Theoretically, a connection loss of 0.1 dB occurs with a positional deviation of 0.75 μm in the X or Y direction. Conventionally, the X and Y axis accuracy of the alignment stage is 0.
A 1 μm stage is often used. As a result, high accuracy is achieved in the alignment positioning in the X and Y directions.

【0011】[0011]

【発明が解決しようとする課題】しかし、従来のZ軸
は、単に入力ファイバ部品や出力ファイバ部品の接続面
を光導波路部品の接続面に近付けるための移動軸でしか
なく、光の調芯機能としては何等関与していないので、
軸移動は手動で行われていた。このために、接続面にU
V接着剤を滴下して両部品を接続固定する際、接続面間
隔が常に一定間隔とならず、この接続間隔のバラツキに
応じて接続損失も変動する問題があった。
However, the conventional Z axis is merely a moving axis for bringing the connecting surface of the input fiber component or the output fiber component close to the connecting surface of the optical waveguide component, and has the function of aligning light. As I am not involved in anything,
The axis movement was done manually. For this purpose, the U
When V adhesive is dropped and both components are connected and fixed, there is a problem that the connection surface interval is not always constant and the connection loss varies depending on the variation in the connection interval.

【0012】また、入力ファイバ部品と光導波路部品の
コア光軸を調芯する初期状態において、GIファイバに
光が受光されない場合、受光されるまで入力ファイバ部
品をX,Y方向に例えば5μmピッチで連続的に動かす
動作を行うが、この際、接続面がコア光軸に対して90
度以外の部品では接続面が接触することがあり、これに
よって接続面に傷が付いたり、最悪の場合接続面が破損
するような問題があった。
In the initial state in which the core optical axes of the input fiber component and the optical waveguide component are aligned, if no light is received by the GI fiber, the input fiber component is moved in the X and Y directions at a pitch of, for example, 5 μm until it is received. It is operated to move continuously, but at this time, the connecting surface is 90 ° with respect to the core optical axis.
In parts other than the above, the connection surface may come into contact with each other, which causes a problem that the connection surface is scratched or, in the worst case, the connection surface is damaged.

【0013】したがって、本発明は上記問題点を解決す
るためになされたものであり、接続面間隔を常に一定に
保つことが可能で、かつ接続面の圧力検知と同時にZ軸
を所望の距離退避させることが可能な光導波路と光ファ
イバとの接続方法および接続装置を提供することを目的
とする。
Therefore, the present invention has been made to solve the above-mentioned problems, and it is possible to always keep the distance between the connecting surfaces constant, and at the same time as detecting the pressure on the connecting surface, retract the Z axis by a desired distance. An object of the present invention is to provide a connection method and a connection device between an optical waveguide and an optical fiber that can be connected.

【0014】[0014]

【課題を解決するための手段】上記課題を解決するため
に、本発明にもとづく光導波路と光ファイバとの接続方
法は、上記光導波路と上記光ファイバのコアとを光軸が
一致するよう配置する第1工程と、上記光導波路と上記
光ファイバとを上記光軸に沿う方向に移動させることに
よって互いに接近させる一方で上記光導波路と上記光フ
ァイバとの接触圧を測定し、該接触圧が検知された時点
で上記移動を停止する第2工程と、上記光導波路と上記
光ファイバとを、上記第2工程での上記移動の方向と逆
方向へ所定量移動させる第3工程とを少なくとも有する
ことを特徴とする。
In order to solve the above problems, in the method of connecting an optical waveguide and an optical fiber according to the present invention, the optical waveguide and the core of the optical fiber are arranged so that their optical axes coincide with each other. In the first step, the optical waveguide and the optical fiber are moved closer to each other by moving in the direction along the optical axis, while the contact pressure between the optical waveguide and the optical fiber is measured. It has at least a second step of stopping the movement when detected, and a third step of moving the optical waveguide and the optical fiber by a predetermined amount in a direction opposite to the direction of the movement in the second step. It is characterized by

【0015】また、上記課題を解決するために、本発明
にもとづく光導波路と光ファイバとの接続装置は、光導
波路および光ファイバの透過光を測定しながら上記光導
波路と上記光ファイバとを調芯接続する光導波路と光フ
ァイバとの接続装置において、上記光導波路と上記光フ
ァイバのコアとを光軸が一致するようにして配置するた
めの手段と、上記光導波路と上記光ファイバとを上記光
軸に沿う方向に移動させることによって互いに接近また
は離間させるための手段と、上記移動の過程で上記光導
波路と上記光ファイバとの接触圧を測定するための手段
とを有することを特徴とする。
Further, in order to solve the above-mentioned problems, a connecting device for an optical waveguide and an optical fiber according to the present invention adjusts the optical waveguide and the optical fiber while measuring the transmitted light of the optical waveguide and the optical fiber. In a connecting device of an optical waveguide and an optical fiber for core connection, a means for arranging the optical waveguide and the core of the optical fiber so that their optical axes coincide with each other, and the optical waveguide and the optical fiber described above. It is characterized in that it has means for moving them in the direction along the optical axis to move them closer to or away from each other, and means for measuring the contact pressure between the optical waveguide and the optical fiber in the process of the movement. .

【0016】[0016]

【発明の実施の形態】本発明にもとづく光導波路と光フ
ァイバとの接続装置は、入力ファイバ部品と出力ファイ
バ部品を調芯するステージのZ軸に圧力センサを設け、
この圧力センサで接続面の非接触状態から接触状態を検
知し、検知位置を間隔ゼロとして所望の距離だけ間隔を
開ける機能を具備することを特徴とした接続装置であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION A connection device for an optical waveguide and an optical fiber according to the present invention is provided with a pressure sensor on the Z axis of a stage for aligning an input fiber component and an output fiber component,
The connection device is characterized by having a function of detecting a contact state from a non-contact state of the connection surface with this pressure sensor, and setting a detection position to a zero distance to open a desired distance.

【0017】本発明の接続装置によれば、接続面間隔を
常に一定に保つことができるので、接続損失の低減化と
再現性は勿論、従来問題であった損失変動も極めて小さ
く押さえることができる。
According to the connection device of the present invention, since the connection surface distance can be always kept constant, not only the connection loss can be reduced and the reproducibility can be improved, but also the loss fluctuation which has been a problem in the related art can be suppressed to be extremely small. .

【0018】また、圧力センサを具備した本発明では、
接続面の圧力検知と同時にZ軸を所望の距離退避させる
機能を付与することで、接続面がコア光軸に対して90
度以外の部品の初期調芯で生じていた接続面の接触によ
るトラブルも解消することができる。
In the present invention equipped with a pressure sensor,
By providing the function of retracting the Z-axis by a desired distance at the same time as detecting the pressure of the connecting surface, the connecting surface can move 90 ° to the core optical axis.
It is possible to eliminate the troubles caused by the contact of the connecting surfaces, which have occurred in the initial alignment of the parts other than the above.

【0019】以下、図面を用いて詳細に説明する。A detailed description will be given below with reference to the drawings.

【0020】図1は、本発明にもとづく光導波路と光フ
ァイバとを接続するための装置の概略的構成を説明する
ための模式図である。図中、参照符号1は光導波路部品
固定部、4は光導波路部品、5は入力ファイバ部品、7
は出力ファイバ部品、8,8′はZ軸微動台、9,9′
はZ軸方向の圧力を検知する圧力センサ、10,10′
はZ軸まわりの回転を制御するθ軸、11,11′はX
軸微動台、12,12′はY軸微動台である。上記した
ように、本発明の接続装置は、入力ファイバ部品5と出
力ファイバ部品7とを調芯するステージのZ軸に圧力セ
ンサ9、9′を設け、この圧力センサ9、9′で接続面
の非接触状態から接触状態を検知し、検知位置を間隔ゼ
ロとして所望の距離だけ間隔を開ける機能を具備するこ
とを特徴とする。
FIG. 1 is a schematic diagram for explaining a schematic structure of an apparatus for connecting an optical waveguide and an optical fiber according to the present invention. In the figure, reference numeral 1 is an optical waveguide component fixing portion, 4 is an optical waveguide component, 5 is an input fiber component, 7
Is an output fiber component, 8 and 8'is a Z-axis fine movement table, and 9 and 9 '.
Is a pressure sensor for detecting pressure in the Z-axis direction, 10, 10 '
Is the θ-axis that controls the rotation around the Z-axis, and 11 and 11 'are X-axis
The axis fine movement tables 12 and 12 'are Y axis fine movement tables. As described above, in the connecting device of the present invention, the pressure sensor 9, 9'is provided on the Z axis of the stage for aligning the input fiber component 5 and the output fiber component 7, and the connecting surface is connected by this pressure sensor 9, 9 '. The contacting state is detected from the non-contacting state, and the detection position is set to zero, and the function is provided to open a desired distance.

【0021】本装置によって光導波路と多芯ファイバ部
品を接続する工程は、まず図1において出力ファイバ部
品7の代わりにGIファイバ部品(図示していない)を
セットしておく。コア径が50μm以上と大きいGIフ
ァイバ部品は、セットするだけで光導波路4のコア光軸
と位置合わせられる。このような状態で、入力ファイバ
部品のファイバに光を入射する。この際、ファイバ部品
が2芯以上の場合には、任意の2ポートに光を入射す
る。
In the step of connecting the optical waveguide and the multi-core fiber component with this apparatus, first, a GI fiber component (not shown) is set in place of the output fiber component 7 in FIG. A GI fiber component having a large core diameter of 50 μm or more can be aligned with the core optical axis of the optical waveguide 4 simply by setting it. In this state, light is incident on the fiber of the input fiber component. At this time, when the fiber component has two or more cores, light is incident on any two ports.

【0022】入射後、Z軸8を自動で光導波路部品4の
方向に移動させる。ファイバ部品5の端面が光導波路部
品4の端面に接触すると圧力センサ9がこれを検知し、
間隔(ΔT)コントローラによってZ軸8を所定の距離
退避させる。したがって、本実施例によれば、このよう
にして間隔(ΔT)を管理することができる。
After the incidence, the Z axis 8 is automatically moved toward the optical waveguide component 4. When the end face of the fiber component 5 contacts the end face of the optical waveguide component 4, the pressure sensor 9 detects this,
The Z axis 8 is retracted by a predetermined distance by the interval (ΔT) controller. Therefore, according to the present embodiment, the interval (ΔT) can be managed in this way.

【0023】接続面が所定の間隔ΔTにセットされた
後、入力ファイバ部品5に入射した光が光導波路4を通
過するように、入力ファイバ部品5をX,Y軸に自動調
芯する。両部品のコア寸法は8〜10μmと小さいので
両部品をセットしただけの初期状態では光が通過しな
い。従って、通常の調芯方法は、まず入力ファイバ部品
5を3〜5μmのピッチでX,Y方向に動かして、光導
波路4のコアにわずかでも光が通過するまで調芯する粗
調芯工程と、わずかに入射した光が最大光量となるよう
に両部品のコア光軸を0.1μmのピッチでX,Y方向
に動かす微調芯工程からなる。
After the connection surface is set to the predetermined interval ΔT, the input fiber component 5 is automatically centered on the X and Y axes so that the light incident on the input fiber component 5 passes through the optical waveguide 4. Since the core dimensions of both parts are as small as 8 to 10 μm, light does not pass through in the initial state with both parts set. Therefore, the normal alignment method is a rough alignment step in which the input fiber component 5 is first moved in the X and Y directions at a pitch of 3 to 5 μm, and alignment is performed until light slightly passes through the core of the optical waveguide 4. , A fine alignment process in which the core optical axes of both components are moved in the X and Y directions at a pitch of 0.1 μm so that the slightly incident light has the maximum light intensity.

【0024】上記微調芯工程において、図1のように接
続面が斜めの場合の粗調芯工程では、ファイバ部品が
X,Y方向に動いてもファイバ部品5と光導波路部品4
の接続面が接触しないようにΔTを大きく設定しなけれ
ばならない。各部品の寸法精度にもよるが、接続面が接
触しない間隔ΔTは100μm以上である。しかし、1
00μm以上になるとファイバ部品5と光導波路部品4
のコア位置が最適になっても通過する光パワーが弱ま
り、クラッドを伝わる光パワーとの区別がつかなくなっ
て調芯不可能となることがある。
In the fine alignment process, in the coarse alignment process when the connecting surface is slanted as shown in FIG. 1, the fiber component 5 and the optical waveguide component 4 are moved even if the fiber component moves in the X and Y directions.
.DELTA.T must be set large so that the connection surfaces of the above will not contact. Although it depends on the dimensional accuracy of each component, the interval ΔT at which the connecting surfaces do not contact each other is 100 μm or more. However, 1
If the thickness is more than 00 μm, the fiber component 5 and the optical waveguide component 4
Even if the core position is optimized, the optical power that passes through is weakened, and it may be impossible to distinguish it from the optical power that propagates through the cladding, and alignment may not be possible.

【0025】そこで、圧力センサ9で調芯時の接続面の
接触を検知することによって、粗調芯時の接触面の圧力
が管理でき、粗調芯中に接触を検知するとZ軸8を所定
の距離退避させ引き続き粗調芯を繰り返す操作ができ
る。すなわち、粗調芯工程でも間隔(ΔT)を微調芯工
程の間隔に設定することが可能となる。実験を繰り返し
た結果、間隔ΔTは粗調芯、微調芯ともに5〜10μm
で良好な調芯ができた。
Therefore, the pressure sensor 9 can detect the contact of the connection surface at the time of aligning, so that the pressure of the contact surface at the time of coarse aligning can be controlled, and if the contact is detected during the coarse aligning, the Z axis 8 is predetermined. It is possible to evacuate the distance and repeat the coarse alignment. That is, it is possible to set the interval (ΔT) to the interval of the fine alignment process even in the coarse alignment process. As a result of repeating the experiment, the interval ΔT is 5 to 10 μm for both the coarse alignment and the fine alignment.
Good alignment was achieved.

【0026】入力ファイバ部品5と光導波路部品4の調
芯が終了後、GIファイバ部品を移動させ、代わりに出
力ファイバ部品7をセットして入力ファイバ部品の調芯
工程と同様に光導波路部品4と出力ファイバ部品7を調
芯する。
After the alignment of the input fiber component 5 and the optical waveguide component 4 is completed, the GI fiber component is moved and the output fiber component 7 is set instead, and the optical waveguide component 4 is set in the same manner as the alignment process of the input fiber component. The output fiber component 7 is aligned.

【0027】入力と出力の調芯が終了後、接続面の間隔
に接着剤を滴下して接続固定する。
After the alignment of the input and the output is completed, an adhesive is dropped in the space between the connecting surfaces to fix the connection.

【0028】<実験例1>図1の装置によって2×8ス
プリッタの接続を行った。光導波路部品固定部に接続面
が8度の斜めに研磨された1×8光導波路を固定し、そ
の出力側にG Iファイバ部品を配置した。入力ファイ
バ部品として回路と同様に接続面が8度に研磨された1
芯ファイバ部品を、Z軸微動台の上部に設けられたファ
イバ部品ホルダにセットし、入力ファイバに波長1.3
μmの光を入射した。また、接続面間隔を10μm、粗
調芯時の退避間隔を5μmにそれぞれ設定した。その他
のパラメータとしては粗調芯のピッチを3μm、微調芯
時の間隔を10μm、微調芯のピッチを0.1μm、G
Iファイバで受光するしきい値を80μwとした。
<Experimental Example 1> A 2 × 8 splitter was connected by the apparatus shown in FIG. A 1 × 8 optical waveguide whose connection surface was obliquely polished at 8 degrees was fixed to the optical waveguide component fixing portion, and a GI fiber component was arranged on the output side thereof. As the input fiber component, the connecting surface was polished to 8 degrees, similar to the circuit 1
The core fiber component is set in the fiber component holder provided on the upper part of the Z-axis fine movement table, and the wavelength of 1.3
Light of μm was incident. Further, the connection surface interval was set to 10 μm, and the withdrawal interval during rough alignment was set to 5 μm. Other parameters include a coarse alignment pitch of 3 μm, a fine alignment interval of 10 μm, a fine alignment pitch of 0.1 μm, and G
The threshold value for receiving light by the I fiber was set to 80 μw.

【0029】このような状態で自動調芯を開始した。入
力ファイバ部品の接続面はZ軸微動台によって1×8光
導波路の接続面に徐々に接近し、やがて接触した。これ
を圧力センサが検知すると同時にZ軸が退避した。本発
明を確認するためにここで自動調芯をストップし、退避
した間隔を測定した結果、設定と同じ10μmの間隔で
あった。また、GIファイバでの受光量はしきい値以下
であった。確認後、引き続き自動調芯をスタートした。
入力ファイバ部品はX,Y方向に3μmのピッチで移動
を開始した。移動範囲がX,Y方向に3μmずつ広がっ
ていってもGIファイバの受光量はしきい値以下のまま
だったが、その後、圧力センサが作動し始めた。同時に
Z軸が退避し圧力センサの作動は止まった。この動作を
何度か繰り返した後、GIファイバにしきい値以上の光
が受光された。その後、微調芯工程に移行し受光量が最
大の位置で入力側の自動調芯は終了した。
In such a state, automatic centering was started. The connection surface of the input fiber component gradually approached the connection surface of the 1 × 8 optical waveguide by the Z-axis fine movement table, and eventually contacted. At the same time when the pressure sensor detected this, the Z axis retracted. In order to confirm the present invention, the automatic alignment was stopped here, and the retracted interval was measured. As a result, the interval was 10 μm, which was the same as the setting. The amount of light received by the GI fiber was below the threshold value. After confirmation, we started automatic alignment.
The input fiber parts started moving in the X and Y directions at a pitch of 3 μm. Even if the moving range was expanded by 3 μm in the X and Y directions, the amount of light received by the GI fiber remained below the threshold value, but thereafter the pressure sensor started to operate. At the same time, the Z-axis retracted and the pressure sensor stopped operating. After repeating this operation several times, the GI fiber received light above the threshold value. After that, the process shifts to the fine alignment process, and the automatic alignment on the input side is completed at the position where the amount of received light is maximum.

【0030】入力側と同様な方法で出力側も調芯した。
出力ファイバ部品には250μmピッチで整列された8
芯ファイバ部品を用いた。出力側の調芯は、8本のファ
イバのうち両端の2ポートで受光して調芯を行った。す
なわち、2ポートの受光量が最大となるようにX,Y,
θ軸を自動調芯した。
The output side was aligned in the same manner as the input side.
8 aligned on the output fiber component with a pitch of 250 μm
A core fiber component was used. Regarding the alignment on the output side, light was received by the two ports at both ends of the eight fibers to perform alignment. That is, X, Y, and
The θ axis was automatically aligned.

【0031】本発明を確認するために自動調芯をストッ
プした時間を除いた入出力の調芯時間は3分40秒であ
った。
In order to confirm the present invention, the alignment time of input and output excluding the time when the automatic alignment was stopped was 3 minutes and 40 seconds.

【0032】入力と出力ファイバ部品を調芯後、それぞ
れの接続界面にUV接着剤を滴下して紫外線を照射し1
×8スプリッタを作製した。
After aligning the input and output fiber parts, UV adhesive is dropped on each connection interface and irradiated with ultraviolet rays.
A × 8 splitter was produced.

【0033】このようにして1×8スプリッタを10個
作製してその損失を測定した。図2に接続損失のヒスト
グラムを示す。合計80ポートの平均接続損失は0.0
8dBで非常に低接続損失な結果であった。また、接続
損失の変動は最大接続損失でも0.14dB以下であ
り、変動の小さい結果であった。
In this way, 10 1 × 8 splitters were manufactured and the loss was measured. FIG. 2 shows a histogram of connection loss. The average connection loss of total 80 ports is 0.0
The result was a very low splice loss at 8 dB. Further, the fluctuation of the splice loss was 0.14 dB or less even in the maximum splice loss, which was a small fluctuation.

【0034】比較のために、従来の接続装置で1×8ス
プリッタを作製した。すなわち、Z軸に圧力センサが無
く、接続面の間隔が任意に設定できない装置である。
For comparison, a 1 × 8 splitter was manufactured with a conventional connecting device. That is, there is no pressure sensor on the Z axis, and the distance between the connecting surfaces cannot be set arbitrarily.

【0035】粗調芯開始に先立って、手動で接続面の間
隔を100μmに設定した。また、受光量のしきい値は
間隔が広いことによる光量低下を考慮して40μwとし
た。1×8スプリッタを10個作製した結果、粗調芯で
光が入射せずに調芯がストップしたケースが3回あっ
た。これらについては各パラメータを設定し直して調芯
をやり直した。
Prior to the start of rough alignment, the spacing between the connecting surfaces was manually set to 100 μm. The threshold value of the amount of received light is set to 40 μw in consideration of the decrease in the amount of light due to the wide interval. As a result of producing 10 1 × 8 splitters, there were three cases where the alignment was stopped due to the rough alignment without the incidence of light. For these, the parameters were set again and the alignment was performed again.

【0036】調芯をやり直した部品を除いた部品の調芯
時間は約25分であった。
The alignment time of the parts excluding the parts that were re-aligned was about 25 minutes.

【0037】作製した1×8スプリッタ10個、合計8
0ポートの接続損失のヒストグラムを図3に示す。平均
接続損失は0.16dBで、損失変動も大きく最大接続
損失は0.38dBであった。
10 1 × 8 splitters manufactured, total 8
FIG. 3 shows a histogram of connection loss at the 0 port. The average connection loss was 0.16 dB, the loss fluctuation was large, and the maximum connection loss was 0.38 dB.

【0038】[0038]

【発明の効果】以上のように、光導波路部品とファイバ
部品を接続する装置において、接続面の接触を検知する
圧力センサを具備した本発明によれば、粗調芯や微調芯
での接続面の間隔を管理することができるので、接続損
失の低減化に最適な間隔を設定することが可能となり、
接続損失の低減化が図られる。また、接続損失変動も最
小に押さえることができる。さらに、圧力センサを具備
することによりZ軸の管理が可能となるので、Z軸の自
動化が容易となる。
As described above, in the device for connecting the optical waveguide component and the fiber component, according to the present invention including the pressure sensor for detecting the contact of the connection surface, the connection surface in the coarse alignment or the fine alignment is provided. Since the interval of can be managed, it becomes possible to set the optimum interval for reducing the connection loss,
Connection loss can be reduced. Also, fluctuations in connection loss can be minimized. Furthermore, since the Z-axis can be controlled by providing the pressure sensor, the Z-axis can be easily automated.

【図面の簡単な説明】[Brief description of drawings]

【図1】光導波路と光ファイバとの接続を行う本発明に
もとづく接続装置の概略的構成を説明するための模式図
である。
FIG. 1 is a schematic diagram for explaining a schematic configuration of a connection device according to the present invention for connecting an optical waveguide and an optical fiber.

【図2】光導波路と光ファイバとの接続を行う本発明に
もとづく接続装置で作製した1×8スプリッタの接続損
失のヒストグラムである。
FIG. 2 is a histogram of connection loss of a 1 × 8 splitter manufactured by a connection device according to the present invention for connecting an optical waveguide and an optical fiber.

【図3】光導波路と光ファイバとの接続を行う従来の接
続装置で作製した1×8スプリッタの接続損失のヒスト
グラムである。
FIG. 3 is a histogram of connection loss of a 1 × 8 splitter manufactured by a conventional connecting device for connecting an optical waveguide and an optical fiber.

【図4】光導波路と光ファイバとの接続を行う従来の接
続装置の概略的構成を説明するための模式図である。
FIG. 4 is a schematic diagram for explaining a schematic configuration of a conventional connecting device for connecting an optical waveguide and an optical fiber.

【符号の説明】[Explanation of symbols]

1 光導波路部品固定部 2 入力用調芯ステージ 3 出力用調芯ステージ 4 光導波路部品 5 入力ファイバ部品 6 GIファイバ部品 7 出力ファイバ部品 8,8′ Z軸微動台 9,9′ 圧力センサ 10,10′ θ軸 11,11′ X軸微動台 12,12′ Y軸微動台 1 Optical Waveguide Component Fixed Part 2 Input Alignment Stage 3 Output Alignment Stage 4 Optical Waveguide Component 5 Input Fiber Component 6 GI Fiber Component 7 Output Fiber Component 8, 8'Z-axis Fine Motion Table 9, 9 'Pressure Sensor 10, 10 'θ-axis 11, 11' X-axis fine movement stage 12, 12 'Y-axis fine movement stage

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光導波路と光ファイバとの接続方法にお
いて、 前記光導波路と前記光ファイバのコアとを光軸が一致す
るよう配置する第1工程と、 前記光導波路と前記光ファイバとを前記光軸に沿う方向
に移動させることによって互いに接近させる一方で前記
光導波路と前記光ファイバとの接触圧を測定し、該接触
圧が検知された時点で前記移動を停止する第2工程と、 前記光導波路と前記光ファイバとを、前記第2工程での
前記移動の方向と逆方向へ所定量移動させる第3工程と
を少なくとも有することを特徴とする光導波路と光ファ
イバとの接続方法。
1. A method of connecting an optical waveguide and an optical fiber, the first step of arranging the optical waveguide and the core of the optical fiber so that their optical axes coincide with each other; A second step of measuring the contact pressure between the optical waveguide and the optical fiber while moving them closer to each other by moving in the direction along the optical axis, and stopping the movement when the contact pressure is detected; A method of connecting an optical waveguide and an optical fiber, comprising at least a third step of moving the optical waveguide and the optical fiber in a direction opposite to the direction of the movement in the second step by a predetermined amount.
【請求項2】 光導波路および光ファイバの透過光を測
定しながら前記光導波路と前記光ファイバとを調芯接続
する光導波路と光ファイバとの接続装置において、 前記光導波路と前記光ファイバのコアとを光軸が一致す
るようにして配置するための手段と、 前記光導波路と前記光ファイバとを前記光軸に沿う方向
に移動させることによって互いに接近または離間させる
ための手段と、 前記移動の過程で前記光導波路と前記光ファイバとの接
触圧を測定するための手段とを有することを特徴とする
光導波路と光ファイバとの接続装置。
2. A connecting device for an optical waveguide and an optical fiber, which aligns and connects the optical waveguide and the optical fiber while measuring transmitted light of the optical waveguide and the optical fiber, wherein the core of the optical waveguide and the optical fiber And a means for arranging so that the optical axes coincide with each other, a means for moving the optical waveguide and the optical fiber in the direction along the optical axis so as to approach or separate from each other, and A device for connecting an optical waveguide and an optical fiber, comprising means for measuring a contact pressure between the optical waveguide and the optical fiber in the process.
JP07251604A 1995-09-28 1995-09-28 Method and apparatus for connecting optical waveguide and optical fiber Expired - Lifetime JP3112154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07251604A JP3112154B2 (en) 1995-09-28 1995-09-28 Method and apparatus for connecting optical waveguide and optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07251604A JP3112154B2 (en) 1995-09-28 1995-09-28 Method and apparatus for connecting optical waveguide and optical fiber

Publications (2)

Publication Number Publication Date
JPH0990160A true JPH0990160A (en) 1997-04-04
JP3112154B2 JP3112154B2 (en) 2000-11-27

Family

ID=17225300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07251604A Expired - Lifetime JP3112154B2 (en) 1995-09-28 1995-09-28 Method and apparatus for connecting optical waveguide and optical fiber

Country Status (1)

Country Link
JP (1) JP3112154B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006251212A (en) * 2005-03-09 2006-09-21 Toshiba Corp Optical transmission line holding member, optical module and method for manufacturing optical module
JP2014126625A (en) * 2012-12-26 2014-07-07 Mitsubishi Electric Corp Optical alignment device and optical alignment method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002196195A (en) 2000-12-27 2002-07-10 Nippon Sheet Glass Co Ltd Method for aligning and assemblying optical demultiplexing module, and automatic aligning mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006251212A (en) * 2005-03-09 2006-09-21 Toshiba Corp Optical transmission line holding member, optical module and method for manufacturing optical module
JP2014126625A (en) * 2012-12-26 2014-07-07 Mitsubishi Electric Corp Optical alignment device and optical alignment method

Also Published As

Publication number Publication date
JP3112154B2 (en) 2000-11-27

Similar Documents

Publication Publication Date Title
US5703973A (en) Optical integrated circuit having passively aligned fibers and method using same
US6014483A (en) Method of fabricating a collective optical coupling device and device obtained by such a method
JP3852709B2 (en) Optical power monitor and manufacturing method thereof
US5340371A (en) Optical fiber splicing chuck
JPS5926006B2 (en) Manufacturing method of optical coupler
IT9067977A1 (en) INTEGRATED OPTICAL CHIP AND PROCEDURE TO CONNECT AN OPTICAL FIBER TO THIS CHIP
JPH09101431A (en) Waveguide connection method
CN110542949B (en) Optical fiber manufacturing method and heating device for silicon optical waveguide connection and coupling
JPH0990160A (en) Method and device for connecting optical waveguide and optical fiber
EP0136761B1 (en) Method and device for coupling an optical signal from a first light guide into a second light guide
US6594426B1 (en) Apparatus and method for controlling the positioning of optical fiber blocks and a planar lightwave circuit
CN113994245B (en) Optical fiber array unit with unfinished end face
JPH11133264A (en) Method for fixing optical fiber guide member
JP2008242225A (en) Optical fiber mounting system and method, and end-surface forming device
JPH0346604A (en) Optical integrated circuit
JP3574714B2 (en) Optical element connection method
JP3083402B2 (en) Optical switch and coupling position recognition method in optical switch
JP3445357B2 (en) Alignment method of optical waveguide and optical fiber
US20130129279A1 (en) Optical fiber tapping device
Webb et al. Precision laser processing for micro electronics and fiber optic manufacturing
JPH10197751A (en) Method and device for adjusting optical axes of waveguide and optical fiber
JPH02129611A (en) Structure for connection part of optical fiber
JPH087297B2 (en) Optical circuit and optical fiber connection method
JPH0456818A (en) Optical brancher/coupler and its production
JPH01128014A (en) Production of photosemiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070922

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term