JPH02129611A - Structure for connection part of optical fiber - Google Patents

Structure for connection part of optical fiber

Info

Publication number
JPH02129611A
JPH02129611A JP28145388A JP28145388A JPH02129611A JP H02129611 A JPH02129611 A JP H02129611A JP 28145388 A JP28145388 A JP 28145388A JP 28145388 A JP28145388 A JP 28145388A JP H02129611 A JPH02129611 A JP H02129611A
Authority
JP
Japan
Prior art keywords
optical fiber
single mode
mode optical
connection
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28145388A
Other languages
Japanese (ja)
Inventor
Yoshiaki Takeuchi
善明 竹内
Juichi Noda
野田 寿一
Hiroaki Hanabusa
花房 広明
Mamoru Hirayama
守 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP28145388A priority Critical patent/JPH02129611A/en
Publication of JPH02129611A publication Critical patent/JPH02129611A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To improve the degree of allowance of position accuracy and to realize a low-loss connection by fusing and connecting a multimode optical fiber to the connection side end part of a single-mode optical fiber. CONSTITUTION:The GI type multimode optical fiber 2 and single-mode optical fiber 3 are fused and connected and then the fusion part is elongated. Then a connected and elongated part 4 is fixed to a glass substrate 5 and charged in a plastic package body 6 to manufacture the connection part 1 to the optical fibers. Therefore, when the single-mode optical fiber 3 and a light source are connected to a member to be connected such as an optical device, the multimode fiber 2 which is fused and connected to the connection side end part of the single-mode optical fiber 3 and the member to be connected are only positioned. Consequently, the degree of allowance of position accuracy is increased and the low-loss connection is made.

Description

【発明の詳細な説明】 〈産業上の利用分計〉 本発明は、光信号の伝送媒体である単一モード光ファイ
バと、光源や光デバイス等の被接続部材との接続におい
て、位置精度の許容度を大幅に改善し且つ低損失接続を
実現する光ファイバの接続部構造に関する。
[Detailed Description of the Invention] <Industrial Application> The present invention improves positional accuracy in connecting a single mode optical fiber, which is a transmission medium for optical signals, and connected members such as light sources and optical devices. The present invention relates to an optical fiber connection structure that significantly improves tolerance and realizes low-loss connections.

〈従来の技術〉 導波路形光デバイス、光I!積回路などの光デバイスで
は、導波路内にい(っかの導波モードが存在した場合、
これらのモード間の干渉や僅かな撹乱による放射モード
への変換によりスペックに雑音や損失増を生じ、性能が
劣化する。このため、これらのデバイスでは、はとんど
が単一モードで構成されており、伝送路としても単一モ
ード光ファイバを用いている。また、単一モード光ファ
イバは多モード光ファイバに比しモード分散が格段に小
さいので長距離伝送時の損失が少なく、大容量幹線光通
信システムには最適な伝送路である。
<Prior art> Waveguide type optical device, optical I! In optical devices such as integrated circuits, if a waveguide mode exists in the waveguide,
Conversion to radiation mode due to interference between these modes or slight disturbance causes noise and increased loss in specifications, degrading performance. For this reason, most of these devices are configured in a single mode, and a single mode optical fiber is also used as a transmission path. In addition, single mode optical fibers have much smaller mode dispersion than multimode optical fibers, so there is less loss during long distance transmission, making them ideal transmission lines for large-capacity trunk optical communication systems.

〈発明が解決しようとする課題〉 しかしながら、単一モード光ファイバは、コアの直径が
5〜10μmと小さいため、光源や光デバイスとの接続
、光フアイバ同志の接続が多モード光ファイバに比べて
困難で、接続損失を生じ易いという欠点を有している。
<Problems to be Solved by the Invention> However, single mode optical fibers have a small core diameter of 5 to 10 μm, so it is difficult to connect them to light sources and optical devices, and to connect optical fibers to each other, compared to multimode optical fibers. It has the drawbacks of being difficult and prone to connection loss.

特に、従来における半導体レーザー(LD)や導波路形
光デバイスと単一モード光ファイバとの接続では、接続
損失を抑えて接続するにはサブミクロンの位置合わせ精
度を必要とするため、位置合わせ装置が大がかりになる
という問題があり、また、光フアイバ固定時の位置精度
が充分でな(再現性に問題がある。
In particular, in conventional connections between semiconductor lasers (LDs) or waveguide optical devices and single-mode optical fibers, submicron alignment accuracy is required to reduce connection loss and connect the alignment devices. There is a problem that the optical fiber is large-scale, and the positional accuracy when fixing the optical fiber is insufficient (problem with reproducibility).

さらに、固定後の温度、衝撃による影響を避けるための
固定治具が光デバイス自体より太き(なる欠点を有して
いる。
Furthermore, the fixing jig for avoiding the effects of temperature and impact after fixing is thicker than the optical device itself.

例えば、従来の単一モード光ファイバとLD光源との接
続においては、スポット径の相違により低損失な接続が
できないので、端面を球面状にすることによりスポット
径を整合させ結合の低損失化を図っている。しかし、光
ファイバと光源との位置ずれによる接続損失増加を1d
B以内に抑えるには位置ずれを0.15μm以内に抑え
る必要がある等、位置合わせにはサブミクロンの精度の
ある位置合わせ装置を必要とし、さらに、光フアイバ固
定時の位置ずれをサブミクロン以下に抑えなければなら
ない等、技術的に難しい問題がある。同様に、単一モー
ド光ファイバと導波路形光デバイスとの接続においても
、単一モード光ファイバと導波路との軸合わせ許容範囲
は1μm以下であや、長期間の保持が困難で、信頼性に
乏しいという問題を抱えている。
For example, when connecting a conventional single mode optical fiber and an LD light source, it is not possible to achieve a low-loss connection due to the difference in spot diameter, so by making the end face spherical, the spot diameter can be matched and the coupling loss can be reduced. I'm trying. However, the increase in connection loss due to misalignment between the optical fiber and the light source is 1 d.
In order to suppress the positional deviation within B, it is necessary to suppress the positional deviation to within 0.15 μm, and alignment equipment requires a submicron precision. There are some difficult technical issues, such as having to limit the Similarly, when connecting a single mode optical fiber and a waveguide type optical device, the tolerance for alignment between the single mode optical fiber and the waveguide is 1 μm or less, making it difficult to maintain it for a long period of time and reducing reliability. The problem is that there is a lack of

本発明は、かかる事情に鑑みなされたものであり、その
目的は単一モード光ファイバと光源、光デバイス等の被
接続部材との接続において、位置精度の許賽度を大幅に
改善し且つ低損失接続を実現する光ファイバの接続部構
造を提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to significantly improve tolerance and reduce positional accuracy in connecting a single mode optical fiber to connected members such as light sources and optical devices. An object of the present invention is to provide an optical fiber connection structure that realizes a lossy connection.

く課題を解決するための手段〉 前記目的を達成する本発明にかかる光ファイバの接続部
構造は、単一モード光ファイバと光源、光デバイス等の
被接続部材との接続部構造において、上記単一モード光
ファイバの接続側端部に多モード光ファイバを融着接続
してなることを特徴とする。
Means for Solving the Problems> An optical fiber connection structure according to the present invention that achieves the above object is a connection structure between a single mode optical fiber and a connected member such as a light source or an optical device. It is characterized in that a multimode optical fiber is fusion-spliced to the connecting end of a one-mode optical fiber.

本発明にかかる光ファイバの接続部構造を採用すると、
単一モード光ファイバを光源や光デバイス等の被接続部
材に接続する場合に、該単一モード光ファイバの接続側
端部に融着接続した多モードファイバと、上記被接続部
材との位置合せをずればよいので、位置精度に対する許
容度が太き(なると共に、低損失接続が実現される。
When the optical fiber connection structure according to the present invention is adopted,
When connecting a single mode optical fiber to a member to be connected such as a light source or an optical device, alignment of the multimode fiber fusion spliced to the connecting end of the single mode optical fiber and the member to be connected. Since it is only necessary to shift the positional accuracy, the tolerance for positional accuracy is wide (and at the same time, a low-loss connection is realized.

すなわち、単一モードファイバに融着接続する多モード
光ファイバはNA(開口数)が大きいので、単一モード
光ファイバと比べて接続位置の許容範囲が広い。この場
合、例えばLD光源との接続損失を1 dB以下にする
ための位置ずれ限界は10μm程度である。
That is, since a multimode optical fiber that is fusion spliced to a single mode fiber has a large NA (numerical aperture), the allowable range of the splicing position is wider than that of a single mode optical fiber. In this case, for example, the positional shift limit for reducing the connection loss with the LD light source to 1 dB or less is about 10 μm.

なお、単一モード光ファイバと多モード光ファイバとを
融着接続した部分での損失を小さくするためには、例え
ば多モード光ファイバとしてグレーティド型光ファイバ
を用いて単一モード光ファイバとのコア径の差を小さ(
すればよい。また、この場合、単一モード光ファイバと
多モード光ファイバとの融着接続部又はその長手方向両
側の融着接続部近傍の少なくとも1ケ所以上を延伸する
ことにより、損失を小さくすることができる。これは、
例えば、多モード光ファイバの部分を延伸した場合には
多モードの信号が低モードの信号に変換され、又、単一
モード光ファイバの部分を延伸した場合にはクラッド中
を伝搬する信号がコア中に集められる等の作用によるも
のと考えられる。なお、このような延伸は光ファイバを
融着接続した後に行ってもよいし、延伸を行った後に融
着接続を行ってもよい。
In addition, in order to reduce the loss at the part where a single mode optical fiber and a multimode optical fiber are fusion spliced, for example, a grated optical fiber is used as the multimode optical fiber, and the core with the single mode optical fiber is Reduce the difference in diameter (
do it. Additionally, in this case, the loss can be reduced by stretching the fusion splice between the single mode optical fiber and the multimode optical fiber or at least one location near the fusion splice on both sides in the longitudinal direction. . this is,
For example, when a section of multimode optical fiber is stretched, the multimode signal is converted to a low mode signal, and when a section of single mode optical fiber is stretched, the signal propagating in the cladding is converted to the core. This is thought to be due to the action of being collected inside. Note that such stretching may be performed after fusion splicing the optical fibers, or fusion splicing may be performed after stretching.

く実 施 例〉 以下に図面を参照し本発明をより具体的に詳述するが、
以下に開示する実施例は本発明の単なる例示に過ぎず、
本発明の範囲を同等限定するものではない。
Embodiment Examples The present invention will be described in more detail below with reference to the drawings.
The embodiments disclosed below are merely illustrative of the present invention;
They are not intended to similarly limit the scope of the invention.

(実施例1) 以下の手順で第1図に示す光ファイバの接続部1を作製
した。Δ=0.3%、コア径50μm、クラッド外径1
25μmのGI形多モード光ファイバ2とΔ=0.3%
、コア径8μm1クラツド外径125μmの単一モード
光ファイバ3とを融着接続した後に、その融着部を、外
径が約25μmになるまで延伸した。次にその接続・延
伸部4をガラス基板5に固定し、プラスチック実装体6
に封入した。ここで、多モード光ファイバは延伸部の中
心より約3(1)の位置で端面が鏡°面になるように切
断した。
(Example 1) The optical fiber connection portion 1 shown in FIG. 1 was produced in the following procedure. Δ=0.3%, core diameter 50μm, cladding outer diameter 1
25μm GI type multimode optical fiber 2 and Δ=0.3%
After fusion splicing a single mode optical fiber 3 with a core diameter of 8 μm and a cladding outer diameter of 125 μm, the fused portion was stretched until the outer diameter became about 25 μm. Next, the connection/extension part 4 is fixed to the glass substrate 5, and the plastic mounting body 6 is
It was enclosed in. Here, the multimode optical fiber was cut so that the end surface became a mirror surface at a position approximately 3 (1) away from the center of the stretched portion.

なお、単一モード光ファイバ3の長さは約2mとした。Note that the length of the single mode optical fiber 3 was approximately 2 m.

第2図に示す方法で、来光ファイバ形接続素子1を用い
た波長1.3μmのLD光源7と単一モード光ファイバ
3との接続損失測定試験を行った。単一モード光ファイ
バ3の端を光検出器8に接続し、接続部1を微動台9に
固定し、多モード光ファイバ2の他端をLD光源7と突
合せ相対位置による接続損失の変化を測定した。ここで
10は球レンズである。
A splice loss measurement test between an LD light source 7 with a wavelength of 1.3 μm and a single mode optical fiber 3 using the optical fiber type splicing element 1 was conducted using the method shown in FIG. The end of the single mode optical fiber 3 is connected to the photodetector 8, the connection part 1 is fixed to the fine movement table 9, and the other end of the multimode optical fiber 2 is butted against the LD light source 7 to measure the change in connection loss due to relative position. It was measured. Here, 10 is a ball lens.

この測定結果を第3図に示す。The measurement results are shown in FIG.

第3図に示すように、最適位置における接続損失は2.
0dBであった。また、その位置からの光軸垂直方向の
±15μmの軸ずれによる損失増は1 dB以内であっ
た。この結果は、従来の単一モード光ファイバのみによ
る接続の場合、位置ずれによる接続損失増加を1 dB
以内に抑えるには位置ずれを0.15μm以内に抑えろ
必要があったことに比較し、非常に安定である。
As shown in Figure 3, the connection loss at the optimum position is 2.
It was 0dB. Further, the loss increase due to an axis deviation of ±15 μm in the direction perpendicular to the optical axis from that position was within 1 dB. This result shows that in the case of a connection using only a conventional single mode optical fiber, the increase in connection loss due to misalignment is reduced by 1 dB.
This is extremely stable compared to the case where it was necessary to suppress the positional deviation to within 0.15 μm.

また、この素子によりLD光源と単一モード光ファイバ
の接続された部品を10個作製したが、何れの場合も接
続損失は2.3dB以下で安定であった。
Furthermore, ten parts in which an LD light source and a single mode optical fiber were connected were manufactured using this element, and in all cases, the connection loss was stable at 2.3 dB or less.

(実施例2) 以下の手順で光ファイバの接続部を作製した。実施例1
で用いた多モード光ファイバと単一モード光ファイバと
を融着接続した後に、融着部から約5論のところの単一
モード光ファイバを外径が約10μmになるまで延伸し
た。その次に実施例1と同様にその融着部と延伸部をガ
ラス基板に固定し、プラスチック実装体に封入した。こ
れを光ファイバ形接続素子とした。ここで、多モード光
ファイバは延伸部の中心より約3cmの所で端面が鏡面
になるように切断した。単一モード光ファイバの長さは
約2mとした。
(Example 2) An optical fiber connection portion was produced using the following procedure. Example 1
After fusion-splicing the multimode optical fiber and the single-mode optical fiber used in the above, the single-mode optical fiber was stretched from the fused portion to an outer diameter of about 10 μm. Thereafter, the fused portion and the stretched portion were fixed to a glass substrate in the same manner as in Example 1, and then sealed in a plastic package. This was made into an optical fiber type connecting element. Here, the multimode optical fiber was cut so that the end surface became a mirror surface at a location approximately 3 cm from the center of the stretched portion. The length of the single mode optical fiber was approximately 2 m.

この光ファイバの接続部を用い実施例1と同様に波長1
.3μmのLD光源と光ファイバとの接続試験を行った
。すなわち、単一モード光ファイバの端を光検出器に接
続し、光ファイバの接続部を微動台に固定し、多モード
光ファイバの他端をLD光源と突合せ相対位置による結
合損失の変化を測定した。この結果を第4図に示す。
Using this optical fiber connection part, the wavelength 1
.. A connection test was conducted between a 3 μm LD light source and an optical fiber. That is, the end of a single mode optical fiber is connected to a photodetector, the connecting part of the optical fiber is fixed to a fine movement stage, and the other end of the multimode optical fiber is butted against an LD light source to measure the change in coupling loss depending on the relative position. did. The results are shown in FIG.

第4図に示すように、最適位置に於ける接続損失は2.
1dBであった。また、その位置からの光軸垂直方向の
軸ずれが±13μmの位置変動による損失増は1dB以
内であり非常に安定であった。
As shown in Figure 4, the connection loss at the optimum position is 2.
It was 1 dB. In addition, the increase in loss due to a positional deviation of ±13 μm in the direction perpendicular to the optical axis from that position was within 1 dB, which was very stable.

(実施例3) 以下の手順で光ファイバの接続部1aを作製した。実施
例1で用いた単一モード光ファイバとΔ=0.3%、コ
ア径30μm1クラツド外径125μmのGI形多モー
ド光ファイバとを融着接続した後、接続部を融着接続用
の熱収縮チューブにより補強した。次に融着部よ抄2傭
の所で多モード光ファイバを、端面が鏡面になるように
切断した。なお、単一モード光ファイバ長は2mとした
(Example 3) An optical fiber connection portion 1a was produced by the following procedure. After fusion splicing the single mode optical fiber used in Example 1 and a GI type multimode optical fiber with Δ=0.3% and a core diameter of 30 μm and a clad outer diameter of 125 μm, the spliced portion was heated for fusion splicing. Reinforced with shrink tubing. Next, the multimode optical fiber was cut 2 minutes from the fusion part so that the end surface became a mirror surface. Note that the single mode optical fiber length was 2 m.

第5図に示すように、1.3μmLD光源7aを用い、
上記接続部1aii!微動台9aに固定し、石英ガラス
系直線導波路11との光信号の接続損失を測定した。な
お、図中、8aは光検出器である。この測定結果を第6
図に示す。
As shown in FIG. 5, using a 1.3 μm LD light source 7a,
The above connection part 1aii! It was fixed on a fine movement table 9a, and the connection loss of the optical signal with the silica glass linear waveguide 11 was measured. In addition, in the figure, 8a is a photodetector. This measurement result is
As shown in the figure.

第6図に示すように、最適位置に於ける接続損失は2.
5dBであった。また、その位置からの光軸垂直方向の
軸ずれの影響は±10μmの変動によっても損失増加は
1 dB以内で非常に安定であった。
As shown in Figure 6, the connection loss at the optimum position is 2.
It was 5 dB. Furthermore, the effect of axis deviation in the direction perpendicular to the optical axis from that position was very stable, with loss increasing within 1 dB even with a variation of ±10 μm.

〈発明の効果〉 以上述べたように、本発明にかかる光ファイバの接続部
構造を採用すれば、単一モード光ファイバと半導体レー
ザー、単一モード光導波路デバイスあるいは他の単一モ
ード光ファイバ等の被接続部材とを接続する場合に、位
置精度誤差の許容度が太き(、且つ低損失接続が可能と
なゆ、長期信頼性が高くなるという効果を得ることがで
きる。また、アレイ形の単一モード光素子と多心単一モ
ード光ファイバとの接続や、多心単一モード光ファイバ
同志の接続に本発明の接続部構造を用いた場合には、ア
レイ化単一モード光部品の実装が極めて容易化される。
<Effects of the Invention> As described above, if the optical fiber connection structure according to the present invention is adopted, it is possible to connect a single mode optical fiber to a semiconductor laser, a single mode optical waveguide device, or other single mode optical fiber, etc. When connecting the connected members of When the connection part structure of the present invention is used to connect a single mode optical element and a multi-core single mode optical fiber or to connect multi-core single mode optical fibers, an arrayed single mode optical component can be formed. implementation becomes extremely easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例IIこかかる光ファイバの接続
部構造を示す説明図、第2図はそれを用いた接続損失変
化系を示す説明図、第3図はその測定結果を示すグラフ
、第4図は実施例2の接続損失変化の測定結果を示すグ
ラフ、第5図は実施例3の接続損失系を示す説明図、第
6図はその測定結果を示すグラフである。 図面中、 1.1aは接続部、 2は多モード光ファイバ) 3は単一モード光ファイバ、 4は接続・延伸部、 5はガラス基板、 6はプラスチック実装体、 7.7aは1.3μmLD光源、 8.8aは光検出器、 9.9aは微動台、 10は球形レンズ、 11は石英ガラス系直線導波路である。
Fig. 1 is an explanatory diagram showing the splicing structure of an optical fiber according to Example II of the present invention, Fig. 2 is an explanatory diagram showing a splice loss variation system using the same, and Fig. 3 is a graph showing the measurement results. , FIG. 4 is a graph showing the measurement results of splice loss changes in Example 2, FIG. 5 is an explanatory diagram showing the splice loss system in Example 3, and FIG. 6 is a graph showing the measurement results. In the drawings, 1.1a is a connection part, 2 is a multimode optical fiber) 3 is a single mode optical fiber, 4 is a connection/extension part, 5 is a glass substrate, 6 is a plastic mounting body, 7.7a is a 1.3 μm LD A light source, 8.8a is a photodetector, 9.9a is a fine movement table, 10 is a spherical lens, and 11 is a silica glass linear waveguide.

Claims (1)

【特許請求の範囲】[Claims] 単一モード光ファイバと光源、光デバイス等の被接続部
材との接続部構造において、上記単一モード光ファイバ
の接続側端部に多モード光ファイバを融着接続してなる
ことを特徴とする光ファイバの接続部構造。
A structure for connecting a single mode optical fiber to a member to be connected such as a light source or an optical device, characterized in that a multimode optical fiber is fusion spliced to the connecting end of the single mode optical fiber. Optical fiber connection structure.
JP28145388A 1988-11-09 1988-11-09 Structure for connection part of optical fiber Pending JPH02129611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28145388A JPH02129611A (en) 1988-11-09 1988-11-09 Structure for connection part of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28145388A JPH02129611A (en) 1988-11-09 1988-11-09 Structure for connection part of optical fiber

Publications (1)

Publication Number Publication Date
JPH02129611A true JPH02129611A (en) 1990-05-17

Family

ID=17639393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28145388A Pending JPH02129611A (en) 1988-11-09 1988-11-09 Structure for connection part of optical fiber

Country Status (1)

Country Link
JP (1) JPH02129611A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5149665A (en) * 1991-07-10 1992-09-22 Micron Technology, Inc. Conductive source line for high density programmable read-only memory applications
US5270240A (en) * 1991-07-10 1993-12-14 Micron Semiconductor, Inc. Four poly EPROM process and structure comprising a conductive source line structure and self-aligned polycrystalline silicon digit lines
JP5058798B2 (en) * 2005-07-11 2012-10-24 三菱電機株式会社 Lighting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5149665A (en) * 1991-07-10 1992-09-22 Micron Technology, Inc. Conductive source line for high density programmable read-only memory applications
US5270240A (en) * 1991-07-10 1993-12-14 Micron Semiconductor, Inc. Four poly EPROM process and structure comprising a conductive source line structure and self-aligned polycrystalline silicon digit lines
JP5058798B2 (en) * 2005-07-11 2012-10-24 三菱電機株式会社 Lighting device

Similar Documents

Publication Publication Date Title
CA1272896A (en) Fiber-lens optical coupler
US6014483A (en) Method of fabricating a collective optical coupling device and device obtained by such a method
US5138676A (en) Miniature fiberoptic bend device and method
US5095519A (en) Apparatus and method for producing an in-line optical fiber attenuator
US4164363A (en) Single mode fiber-to-channel waveguide through-line coupler
JPH09101431A (en) Waveguide connection method
US6430337B1 (en) Optical alignment system
JPH01118811A (en) Mode field modifier
JPH023A (en) Method of accessing optical fiber circuit and connector plug thereof
JP7487810B2 (en) Optical connection structure
WO2021064916A1 (en) Optical branching circuit manufacturing method and optical branching circuit manufacturing device
US4911522A (en) Core alignment system for optical fibers
US5285516A (en) Fused fiber optic attenuator having axially overlapping fiber end portions
JPH02129611A (en) Structure for connection part of optical fiber
CN212341524U (en) Space removes collimater making devices who disturbs mould
JPS59146004A (en) Optical integrated circuit
Bourhis Fiber-to-waveguide connection
JPH02129609A (en) Structure for connection part of mode converting element and optical fiber
CN111897056B (en) Collimator manufacturing device and method for spatial disturbance removal mode
WO2020116146A1 (en) Optical connection structure
US10670807B2 (en) Lens assembly for optical fiber coupling to target and associated methods
JPH0425804A (en) Optical connecting structure
WO2020255379A1 (en) Optical connection structure
JPH0498206A (en) Optical fiber terminal optical connector
Shiraishi et al. Wide-beam propagating fiber for inline optical components