JPH01128014A - Production of photosemiconductor device - Google Patents

Production of photosemiconductor device

Info

Publication number
JPH01128014A
JPH01128014A JP62286640A JP28664087A JPH01128014A JP H01128014 A JPH01128014 A JP H01128014A JP 62286640 A JP62286640 A JP 62286640A JP 28664087 A JP28664087 A JP 28664087A JP H01128014 A JPH01128014 A JP H01128014A
Authority
JP
Japan
Prior art keywords
optical fiber
optical
light
clad
propagation mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62286640A
Other languages
Japanese (ja)
Inventor
Hidekazu Kitamura
英一 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62286640A priority Critical patent/JPH01128014A/en
Publication of JPH01128014A publication Critical patent/JPH01128014A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To minimize clad propagation mode component light and to maximize core propagation mode component light by measuring the clad leak light of an optical fiber and adjusting the relative position of an optical element and the optical fiber so as to minimize the leak light at the time of coupling and assembling said element and fiber. CONSTITUTION:The focus of the light radiated from the optical element 1 is aligned to the end face of the core 3a on the element 1 side side of the optical fiber 3 by adjusting the Z direction of an X-Y-Z stage 9. A photodetector B6 is then provided to the side face of the optical fiber 3 to detect the clad leak light radiated from the side face of the clad 3b of the optical fiber 3. The detected light is amplified by an amplifier 7 and the position in the X-Y directions of the element 1 is adjusted by the X-Y-Z stage 9 while said light is measured by an optical power meter B8. The element 1 is fixed to the position where the clad leak light is minimized. The clad propagation mode component light propagating in the clad 3b is minimized and the core propagation mode component light propagating in the core 3a is maximized if the device is assembled in such a manner.

Description

【発明の詳細な説明】 〔概 要〕 光半導体装置の光素子と光ファイバとの結合方法の改良
に関し、 クラッド伝播モード成分光を最小にし、コア伝播モード
成分光を最大にすることが可能な光半導体装置の製造方
法の提供を目的とし、 光素子と光ファイバとを結合し組み立てる際に、前記光
ファイバのクラッド漏洩光を測定し、前記クラッド漏洩
光が最小となるように、前記光素子と前記光ファイバと
の相対位置を調節して組み立てるよう構成する。
[Detailed Description of the Invention] [Summary] Regarding the improvement of the coupling method between an optical element of an optical semiconductor device and an optical fiber, it is possible to minimize the clad propagation mode component light and maximize the core propagation mode component light. The purpose of the present invention is to provide a method for manufacturing an optical semiconductor device, which measures the cladding leakage light of the optical fiber when coupling and assembling an optical element and an optical fiber, and measures the cladding leakage light of the optical fiber so that the cladding leakage light is minimized. and the optical fiber are assembled by adjusting their relative positions.

〔産業上の利用分野〕[Industrial application field]

本発明は、光半導体装置の製造方法に係り、特に光素子
と光ファイバとの結合方法の改良に関するものである。
The present invention relates to a method for manufacturing an optical semiconductor device, and particularly to an improvement in a method for coupling an optical element and an optical fiber.

光半導体装置は光素子と約1e;の光ファイバとを結合
して組み立てたものであり、その組立方法として、光素
子から放射される光を光ファイバで伝播させ、光素子と
結合していない光ファイバの端面から放射される、コア
伝播モード成分光とクラッド伝播モード成分光とからな
る全光パワーを、光検知器で検知し、全光パワーの最大
値を求め、その位置で光チップがマウントされているス
テムと光ファイバとを固定する方法゛をとっている。
An optical semiconductor device is assembled by coupling an optical element and an optical fiber of about 1e; the method of assembly is to propagate the light emitted from the optical element through the optical fiber, and the light is not coupled to the optical element. The total optical power consisting of the core propagation mode component light and the cladding propagation mode component light emitted from the end face of the optical fiber is detected by a photodetector, the maximum value of the total optical power is determined, and the optical chip is installed at that position. A method is used to fix the mounted stem and optical fiber.

光ファイバで伝播される成分光の内、−有効なのはコア
伝播モード成分光であり、クラッド伝播モ−ド成分光は
光ファイバの長さが長くなると、光ファイバの外へ放射
されて減衰するため、クラッド伝播モード成分光は伝送
信号としては無効な成分であり、光半導体装置の製造の
際の光素子と光ファイバとの結合時にこのクラッド伝播
モード成分光を除去することが可能であれば、伝送シス
テムの設計に際して、使用時に必要なパワー以外の余分
なマージンをとることが必要でなくなる。
Among the component lights propagated in an optical fiber, the effective one is the core propagation mode component light, and the cladding propagation mode component light is radiated out of the optical fiber and attenuated as the length of the optical fiber increases. , the cladding propagation mode component light is an invalid component as a transmission signal, and if it is possible to remove this cladding propagation mode component light when coupling an optical element and an optical fiber during the manufacture of an optical semiconductor device, When designing a transmission system, it is no longer necessary to take extra margins other than the power required during use.

以上のような状況からコア伝播モード成分光が最大にな
るように光素子と光ファイバとを結合することが可能な
光半導体装置の製造方法が要望されている。
Under the above circumstances, there is a need for a method of manufacturing an optical semiconductor device that can couple an optical element and an optical fiber so that the core propagation mode component light is maximized.

〔従来の技術〕[Conventional technology]

従来の光半導体装置の製造方法を第2図により説明する
A conventional method for manufacturing an optical semiconductor device will be explained with reference to FIG.

先ず図に示すように、X−Y−Zステージ9の上に光素
子lを固定してドライブ電源2にて作動させ、光ファイ
バ3を光素子1のレンズ1cの上に位置させる。
First, as shown in the figure, the optical element 1 is fixed on the X-Y-Z stage 9 and operated by the drive power supply 2, and the optical fiber 3 is positioned above the lens 1c of the optical element 1.

X−Y−Zステージ9のZ方向を調節して光素子1から
放射される光の焦点を光ファイバ3の光素子1側のコア
3aの端面に合わせる。
The Z direction of the X-Y-Z stage 9 is adjusted to focus the light emitted from the optical element 1 onto the end face of the core 3a of the optical fiber 3 on the optical element 1 side.

次にX−Y−Zステージ9のX及びY方向を調節して光
ファイバ3のコア3aの中心と光素子lから放射される
光の光軸とを一致させて、光検知器A4により光ファイ
バ3の光検知器A4側の端面から放射される光を検知し
、光パワーメータA5が最大値を指示するようにし、こ
の状態で光素子1と光ファイバ3とを固定して光半導体
装置の製造が完了する。
Next, the X-Y-Z stage 9 is adjusted in the X and Y directions to align the center of the core 3a of the optical fiber 3 with the optical axis of the light emitted from the optical element 1, and the light is detected by the photodetector A4. The light emitted from the end face of the fiber 3 on the photodetector A4 side is detected, the optical power meter A5 indicates the maximum value, and in this state, the optical element 1 and the optical fiber 3 are fixed to complete the optical semiconductor device. Manufacturing is completed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上説明の従来の光半導体装置の製造方法で問題となる
のは、光ファイバ3の光検知器A4側の端面から放射さ
れる、コア3aを伝播するコア伝播モード成分光と、ク
ラッド3bを伝播するクラッド伝播モード成分光とから
なる全光パワーを光検知器A4により検知し、光パワー
メータA5の指示によって全光パワーを測定しているこ
とである。
The problem with the conventional optical semiconductor device manufacturing method described above is that the core propagation mode component light, which is emitted from the end face of the optical fiber 3 on the photodetector A4 side and propagates through the core 3a, and the core propagation mode component light which propagates through the cladding 3b. The total optical power consisting of the cladding propagation mode component light is detected by the photodetector A4, and the total optical power is measured according to the instruction from the optical power meter A5.

伝送システムの設計に際しては、使用時に必要なパワー
、即ち、コア伝播モード成分光の値のみが有効であるか
ら、この成分光を最大にすることが要求されるのである
When designing a transmission system, only the power required during use, ie, the value of the core propagation mode component light, is effective, so it is required to maximize this component light.

本発明は以上のような状況からクラッド伝播モード成分
光を最小にし、コア伝播モード成分光を最大にすること
が可能な光半導体装置の製造方法の提供を目的としたも
のである。
In view of the above-mentioned circumstances, it is an object of the present invention to provide a method for manufacturing an optical semiconductor device that can minimize the clad propagation mode component light and maximize the core propagation mode component light.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、光素子と光ファイバとを結合し組み立て
る際に、この光ファイバのクラッド漏洩光を測定し、こ
のクラッド漏洩光が最小となるように、゛光素子と光フ
ァイバとの相対位置を調節して組み立てる本発明による
光半導体装置の製造方法によって解決される。
The above problem is solved by measuring the cladding leakage light of the optical fiber when coupling and assembling the optical element and the optical fiber, and adjusting the relative position of the optical element and the optical fiber so that the cladding leakage light is minimized. This problem is solved by the method of manufacturing an optical semiconductor device according to the present invention, which adjusts and assembles the optical semiconductor device.

〔作用〕[Effect]

即ち本発明においては、光素子と光ファイバとを結合し
組み立てる際に、この光ファイバのクラッドの側面から
放射されるクラッド漏洩光を測定し、このクラッド漏洩
光が最小となるように光素子と光ファイバとの相対位置
を調節して組み立てるので、光ファイバの光検知器側の
端面から放射されるコア伝播モード成分光を最大にした
状態で光素子と光ファイバとを結合する光半導体装置の
製造が可能となる。
That is, in the present invention, when an optical element and an optical fiber are coupled and assembled, the cladding leakage light emitted from the side surface of the cladding of the optical fiber is measured, and the optical element and the optical fiber are connected so that this cladding leakage light is minimized. Since the relative position with the optical fiber is adjusted and assembled, the optical semiconductor device connects the optical element and the optical fiber while maximizing the core propagation mode component light emitted from the end face of the optical fiber on the photodetector side. Manufacturing becomes possible.

〔実施例〕〔Example〕

以下第1図について本発明の一実施例を説明する。 An embodiment of the present invention will be described below with reference to FIG.

先ず図に示すように、x−y−zステージ9の上に光素
子1を固定してドライブ電源2にて作動させ、光ファイ
バ3を光素子1のレンズ1cの上に位置させる。
First, as shown in the figure, the optical element 1 is fixed on the xyz stage 9 and operated by the drive power supply 2, and the optical fiber 3 is positioned above the lens 1c of the optical element 1.

X−Y−Zステージ9のZ方向、を調節して光素子lか
ら放射される光の焦点を光ファイバ3の光素子1側のコ
ア3aの端面に合わせる。
The Z direction of the XYZ stage 9 is adjusted to focus the light emitted from the optical element 1 onto the end face of the core 3a of the optical fiber 3 on the optical element 1 side.

次に本発明では第1図に示すように、従来の光半導体装
置の製造方法に加えて、光ファイバ3の側面に光検知器
B6を設け、光ファイバ3のクラッド3bの側面から放
射されるクラッド漏洩光を検知し、アンプ7で増幅して
光パワーメータB8で測定しながら光素子1のX−Y方
向の位置をx−y−Zステージ9により調節し、このク
ラッド漏洩光が最小となる位置に光素子1を固定する。
Next, in the present invention, as shown in FIG. 1, in addition to the conventional method for manufacturing an optical semiconductor device, a photodetector B6 is provided on the side surface of the optical fiber 3, and the light emitted from the side surface of the cladding 3b of the optical fiber 3 is The cladding leakage light is detected, amplified by the amplifier 7, and measured by the optical power meter B8, while the position of the optical element 1 in the X-Y direction is adjusted by the x-y-Z stage 9, and this cladding leakage light is minimized. The optical element 1 is fixed at a position.

このようにしてクラッド漏洩光が最小になる状態で光素
子lと光ファイバ3とを結合して組み立てると、クラッ
ド3bを伝播するクラッド伝播モード成分光は最小とな
り、伝送システムの設計に際して必要なパワー、即ち、
コア3aを伝播するコア伝播モード成分光の値を最大に
することが可能となるので、光半導体装置の製造に際し
て、使用時に必要なパワー以外の余分なマージンをとる
ことが不要となる。
When the optical element 1 and the optical fiber 3 are coupled and assembled in such a manner that the cladding leakage light is minimized, the cladding propagation mode component light propagating through the cladding 3b is minimized, and the power required when designing the transmission system is , that is,
Since it is possible to maximize the value of the core propagation mode component light propagating through the core 3a, it is not necessary to take an extra margin other than the power required during use when manufacturing the optical semiconductor device.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば極めて
簡単な構成のクラッド漏洩光の測定機構を設けてクラン
ド漏洩光を測定し、その値を最小にすることにより、伝
送システムの設計に際して有効なコア伝播モード成分光
の値を最大にすることが可能となる利点があり、著しい
経済的効果が期待でき工業的には極めて有用なものであ
る。
As is clear from the above description, according to the present invention, a cladding leakage light measuring mechanism with an extremely simple configuration is provided to measure the cladding leakage light, and by minimizing the value, it is effective in designing a transmission system. It has the advantage of being able to maximize the value of the core propagation mode component light, and can be expected to have significant economic effects, making it extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による一実施例を示す側面図、第2図は
従来の光半導体装置の製造方法を示す側面図、 である。 図において、 ■は光素子、 laはステム、 1bはは光チップ、 lcはレンズ、 2はドライブ電源、 3は光ファイバ、 3aはコア、 3bはクラッド、 4は光検知器A、 5は光パワーメータA1 6は光検知器B、 7はアンプ、 8は光パワーメータB。 9はX−Y−Zステージ、 本発明による一実施例を示す側面図 第1図
FIG. 1 is a side view showing an embodiment of the present invention, and FIG. 2 is a side view showing a conventional method for manufacturing an optical semiconductor device. In the figure, ■ is the optical element, la is the stem, 1b is the optical chip, lc is the lens, 2 is the drive power supply, 3 is the optical fiber, 3a is the core, 3b is the cladding, 4 is the photodetector A, 5 is the light Power meter A1 6 is photodetector B, 7 is amplifier, 8 is optical power meter B. 9 is an X-Y-Z stage; FIG. 1 is a side view showing an embodiment of the present invention;

Claims (1)

【特許請求の範囲】[Claims]  光素子(1)と光ファイバ(3)とを結合し組み立て
る際に、前記光ファイバ(3)のクラッド漏洩光を測定
し、前記クラッド漏洩光が最小となるように、前記光素
子(1)と前記光ファイバ(3)との相対位置を調節し
て組み立てることを特徴とする光半導体装置の製造方法
When coupling and assembling the optical element (1) and the optical fiber (3), the cladding leakage light of the optical fiber (3) is measured, and the cladding leakage light of the optical fiber (3) is measured so that the cladding leakage light is minimized. A method of manufacturing an optical semiconductor device, characterized in that the relative positions of the optical fiber (3) and the optical fiber (3) are adjusted and assembled.
JP62286640A 1987-11-12 1987-11-12 Production of photosemiconductor device Pending JPH01128014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62286640A JPH01128014A (en) 1987-11-12 1987-11-12 Production of photosemiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62286640A JPH01128014A (en) 1987-11-12 1987-11-12 Production of photosemiconductor device

Publications (1)

Publication Number Publication Date
JPH01128014A true JPH01128014A (en) 1989-05-19

Family

ID=17707036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62286640A Pending JPH01128014A (en) 1987-11-12 1987-11-12 Production of photosemiconductor device

Country Status (1)

Country Link
JP (1) JPH01128014A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2808093A1 (en) * 1999-09-29 2001-10-26 Corning Inc METHOD FOR ALIGNING LIGHT BEAMS
WO2012118021A1 (en) * 2011-03-01 2012-09-07 住友電気工業株式会社 Optical waveguide, laser light irradiation device, and method for assembling laser light irradiation device
WO2022157820A1 (en) * 2021-01-19 2022-07-28 三菱電機株式会社 Optical waveguide element, light guide plate, and optical axis adjustment method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2808093A1 (en) * 1999-09-29 2001-10-26 Corning Inc METHOD FOR ALIGNING LIGHT BEAMS
WO2012118021A1 (en) * 2011-03-01 2012-09-07 住友電気工業株式会社 Optical waveguide, laser light irradiation device, and method for assembling laser light irradiation device
WO2022157820A1 (en) * 2021-01-19 2022-07-28 三菱電機株式会社 Optical waveguide element, light guide plate, and optical axis adjustment method
JP7170876B1 (en) * 2021-01-19 2022-11-14 三菱電機株式会社 Optical waveguide element and optical axis adjustment method

Similar Documents

Publication Publication Date Title
JPH09101431A (en) Waveguide connection method
JP2002214460A (en) Optical waveguide device and its manufacturing method
JPH10104463A (en) Production of optical waveguide device
JP2004279618A (en) Optical collimator structure
JPS59187305A (en) Core aligning method during fusion connection of optical fiber
JP7080910B2 (en) Test device and heterogeneous integrated structure
JPH01128014A (en) Production of photosemiconductor device
JPH09159865A (en) Connection structure of optical waveguide
JPH01126608A (en) Light input/output device
JPS5927884B2 (en) How to connect optical fiber
JP2005215678A (en) Two-way light transmitting/receiving module and two-way light transmitting/receiving package using the same
JPH0743552A (en) Optical waveguide element for coupling semiconductor laser diode and waveguide type module using the same
JP2001174655A (en) Element for bi-directional communication optical module and its inspecting method
JPH01246512A (en) Bending head for accessing optical fiber circuit
JPH07294380A (en) Light loss measurement method of optical parts
JPH08278429A (en) Optical waveguide parts and production of optical waveguide parts
KR100547756B1 (en) Optical module manufacturing apparatus and method
JPH05288963A (en) Waveguide device
JPH01239508A (en) Processing system for connection between single-mode optical fiber and multi-mode optical fiber
JPH10332984A (en) Optical integrated device
JPH02129611A (en) Structure for connection part of optical fiber
JP2605136B2 (en) Optical wiring board
JPS63193112A (en) Optical coupling structure of optical semiconductor element and optical fiber
JP2755274B2 (en) Waveguide type light receiving module
JPH02181709A (en) Method for coupling plane optical waveguide and optical fiber