JPH0989821A - Thermal analysis device and method - Google Patents

Thermal analysis device and method

Info

Publication number
JPH0989821A
JPH0989821A JP24790495A JP24790495A JPH0989821A JP H0989821 A JPH0989821 A JP H0989821A JP 24790495 A JP24790495 A JP 24790495A JP 24790495 A JP24790495 A JP 24790495A JP H0989821 A JPH0989821 A JP H0989821A
Authority
JP
Japan
Prior art keywords
sample
temperature
heating
sample container
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24790495A
Other languages
Japanese (ja)
Inventor
Koji Nishino
孝二 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP24790495A priority Critical patent/JPH0989821A/en
Publication of JPH0989821A publication Critical patent/JPH0989821A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve heating and cooling effect by optimizing the temperature control of a sample. SOLUTION: A sample container 2 is formed by a magnetic body and at the same time and is heated by electromagnetic induction 4. With this configuration, the sample container can be directly heated rather than the transfer of heat via a number of inclusions such as a reactor core tube and atmosphere from a heater as in a conventional device, thus reducing thermal loss on the way and minimizing power required for heating. Also, since thermal inertial is small, the fidelity of temperature control (following property to an expected temperature program) can be improved. Even in the case of cooling after measurement is completed, only the sample container and the sample may be cooled, thus drastically reducing time required for cooling as compared with a case for cooling a conventional reactor core tube and atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は種々の熱分析装置及
び方法における試料加熱手段及び手法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sample heating means and method in various thermal analysis devices and methods.

【0002】[0002]

【従来の技術】種々の材料の熱的特性を調べたり、各種
の無機・有機化合物の安定性を調べたりする試験法の1
つとして熱分析法がある。熱分析法には、試料を一定速
度で加熱或いは一定温度に保持しながらその重量変化か
ら熱的安定性を調べる熱重量測定(thermogravimetry:T
G )や、試料を熱的に不活性な基準物質と共に一定速度
で加熱或いは冷却しながら両者に生ずる温度差を測定し
て試料の状態変化を調べる示差熱分析(differential t
hermal analysis:DTA )、試料を加熱すると同時に圧縮
や引っ張り等の加重を加えた状態でその寸法変化を測定
する熱機械分析(thermomechanical analysis:TMA )等
がある。
2. Description of the Related Art A test method for examining the thermal characteristics of various materials and the stability of various inorganic and organic compounds.
One is thermal analysis. Thermogravimetry (T) is used to determine the thermal stability from the change in weight of a sample while heating it at a constant rate or maintaining it at a constant temperature.
G) or the differential thermal analysis (differential t analysis) to examine the change in the state of the sample by measuring the temperature difference between them while heating or cooling the sample with a thermally inactive reference substance at a constant rate.
hermal analysis (DTA), and thermomechanical analysis (TMA) that measures the dimensional change of a sample while it is heated and subjected to a load such as compression and tension.

【0003】分析温度の範囲は、通常、室温〜1500℃程
度で、所定温度に保持する場合もあるが、温度変化を要
する場合には一定の温度変化速度、例えば、10℃/minで
走査する。試料としては固体または液体が対象で、試験
片を加熱炉内に把持、或いは数mg〜数十mgの試料を直径
6mm,深さ2mm 程度の容器に収容して測定を行う。加熱炉
としては、一般に試料の雰囲気を維持するための円筒形
のセラミック製囲体を備え、この囲体にニクロム線等の
電熱線を巻き付けたものが汎用されている。試料はこの
加熱炉内に配置され、熱電対等の測温手段により、試料
或いは加熱炉内の温度をモニターしながら試料を所定の
温度に維持または温度走査しながら別途設けられた試料
の状態を検出する測定手段により、熱的特性や物性等が
調査される。
The analysis temperature range is usually from room temperature to about 1500 ° C. and may be maintained at a predetermined temperature. However, when a temperature change is required, scanning is performed at a constant temperature change rate, for example, 10 ° C./min. . The sample is solid or liquid, and the test piece is held in a heating furnace, or the diameter of a few mg to several tens of mg is measured.
Store in a container with a depth of 6 mm and a depth of 2 mm for measurement. As a heating furnace, generally, a cylindrical ceramic enclosure for maintaining an atmosphere of a sample is provided, and a heating wire such as a nichrome wire is wound around the enclosure is generally used. The sample is placed in this heating furnace, and the temperature of the sample or the inside of the heating furnace is monitored by a temperature measuring means such as a thermocouple, and the sample is maintained at a predetermined temperature or the temperature of the sample is separately detected while the temperature of the sample is separately detected. The thermal characteristics and physical properties are investigated by the measuring means.

【0004】[0004]

【発明が解決しようとする課題】いずれの熱分析法にお
いても、高精度で安定した測定を行うためには試料の温
度を高精度で制御することが要求され、また試料内の温
度勾配は小さい程望ましいため、加熱炉を大型にして試
料からヒーターまでの距離を確保し、試料への熱の伝達
ムラを小さくすると共に制御に伴う温度揺動の伝播を防
止するようにしている。よって、こうした加熱炉の大型
化のために装置全体として小型化・省スペース化を実現
できないのが現状である。また、加熱炉内に充満してい
る空気や窒素等の雰囲気全体をも加熱しなければならな
いため、加熱目的物である試料は僅かに数十mgと微量で
あるにも関わらず加熱には数百W 〜1KW以上もの大パワ
ーを要してしまう。さらには、こうした加熱炉自体の大
きな熱容量や雰囲気の大きな熱抵抗が熱的慣性となっ
て、試料の温度制御の応答性を悪化させている。また、
他の弊害として、測定後の炉の冷却にも長時間を要する
ため、すぐに次の測定に移れない等作業効率の悪化を招
いている。
In any of the thermal analysis methods, it is necessary to control the temperature of the sample with high accuracy in order to perform highly accurate and stable measurement, and the temperature gradient in the sample is small. Since it is more desirable, the heating furnace is made larger so that the distance from the sample to the heater is secured, unevenness of heat transfer to the sample is reduced, and the propagation of temperature fluctuation due to control is prevented. Therefore, at present, it is impossible to realize the downsizing and space saving of the entire apparatus due to the increase in the size of the heating furnace. In addition, since the entire atmosphere such as air and nitrogen filled in the heating furnace must be heated, even though the sample to be heated is only a few tens of milligrams, it takes a few times for heating. A large power of 100 W to 1 KW or more is required. Furthermore, the large heat capacity of the heating furnace itself and the large thermal resistance of the atmosphere cause thermal inertia, which deteriorates the responsiveness of the temperature control of the sample. Also,
As another adverse effect, since it takes a long time to cool the furnace after the measurement, the work efficiency is deteriorated such that the measurement cannot be immediately performed.

【0005】[0005]

【課題を解決するための手段】上述のような課題を解決
するため、本発明に係る熱分析装置では、少なくとも一
部を磁性材料で構成した試料保持手段と、この試料保持
手段を電磁誘導加熱する電磁誘導加熱手段と、試料温度
をモニターする測温手段と、試料の状態変化を検出する
測定手段と、から構成される。また、本発明に係る熱分
析方法は、少なくとも一部が磁性体からなる試料又は試
料保持手段を電磁誘導により加熱するようにしたことを
特徴とする。
In order to solve the above-mentioned problems, in the thermal analysis apparatus according to the present invention, sample holding means at least a part of which is made of a magnetic material, and the sample holding means are subjected to electromagnetic induction heating. The electromagnetic induction heating means, the temperature measuring means for monitoring the sample temperature, and the measuring means for detecting the state change of the sample. Further, the thermal analysis method according to the present invention is characterized in that the sample or sample holding means at least a part of which is made of a magnetic material is heated by electromagnetic induction.

【0006】試料保持手段としては、試料容器そのもの
をニッケル等の磁性材料で構成してもよく、またガラ
ス、耐熱プラスチック、セラミック中に磁性材料を混入
して構成しても良い。また、試料容器自体は非磁性体で
構成して試料容器を収容する磁性体製のアダプターを別
途設けても良い。或いは試料自体が磁性体である場合に
は電磁誘導により直接試料自身を発熱させるように構成
してもよい。
As the sample holding means, the sample container itself may be made of a magnetic material such as nickel, or the magnetic material may be mixed in glass, heat resistant plastic or ceramic. Further, the sample container itself may be made of a non-magnetic material and a magnetic adapter for accommodating the sample container may be separately provided. Alternatively, when the sample itself is a magnetic substance, the sample itself may be directly heated by electromagnetic induction.

【0007】電磁誘導加熱(IH)手段としては、公知
公用の高周波電源、インバータ制御回路、IHコイル等
により実現される。
The electromagnetic induction heating (IH) means is realized by a publicly known and used high frequency power source, an inverter control circuit, an IH coil and the like.

【0008】試料の状態変化を検出する測定手段として
は、各種熱分析方法に応じて採用される。例えば、TGの
場合には天秤であるし、DTA の場合には基準物質と試料
との温度差を検出する熱電対等の手段となる。
As a measuring means for detecting a change in the state of the sample, it is adopted according to various thermal analysis methods. For example, in the case of TG, it is a balance, and in the case of DTA, it is a means such as a thermocouple that detects the temperature difference between the reference substance and the sample.

【0009】試料の測温手段としては、熱分析装置にお
いて汎用されている熱電対のように試料に直接接触させ
て測定するものや、その他、輻射式などの非接触測定を
するもの等、公知の温度測定手段が適用される。
As the temperature measuring means of the sample, there are known ones such as a thermocouple which is generally used in a thermal analyzer for directly contacting the sample for measurement, and other non-contact measurement such as radiation type. The temperature measuring means of is applied.

【0010】また、通常は前記測温手段からの測定値が
所期温度プログラムに追随するように加熱手段にフィー
ドバックをかける温度調節手段を備える構成とすること
が望ましい。
Further, it is usually preferable to provide a temperature adjusting means for feeding back to the heating means so that the measured value from the temperature measuring means follows the desired temperature program.

【0011】また、試料或いは試料容器の雰囲気を外界
から遮断できる囲体(隔壁)を設けることにより、所期
の試料雰囲気(空気の他、不活性ガスや還元性ガス等)
に調整することができる。
Further, by providing an enclosure (partition) which can shield the atmosphere of the sample or the sample container from the outside, the desired sample atmosphere (in addition to air, an inert gas, a reducing gas, etc.)
Can be adjusted to.

【0012】[0012]

【発明の実施の形態】以下、本発明の一実施例を図面を
参照しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings.

【0013】図1は本発明を熱重量測定装置に適用した
際の一実施例を示す。熱重量測定装置1は、例えばニッ
ケルや磁性ステンレス等の磁性材料からなる試料容器2
に固体或いは液体の試料Sを入れ、これを吊線7により
天秤等の質量測定機構(図外)に連結されてなる。試料
容器2は例えば石英ガラス製の隔壁3中に配置され試料
雰囲気が外界から遮断される。この隔壁3外であり試料
容器2の周囲にあたる位置には高周波電流コイル4が配
置され、高周波電源やインバータ制御回路等(図外)電
磁誘導加熱に必要な設備に接続されている。
FIG. 1 shows an embodiment in which the present invention is applied to a thermogravimetric measuring device. The thermogravimetric measuring device 1 includes a sample container 2 made of a magnetic material such as nickel or magnetic stainless steel.
A solid or liquid sample S is put in and is connected by a suspension wire 7 to a mass measuring mechanism (not shown) such as a balance. The sample container 2 is placed in a partition 3 made of quartz glass, for example, and the sample atmosphere is shielded from the outside. A high-frequency current coil 4 is arranged outside the partition 3 and around the sample container 2, and is connected to equipment such as a high-frequency power supply and an inverter control circuit (not shown) required for electromagnetic induction heating.

【0014】高周波電流コイル4に例えば数W 〜数十W
程度で22〜40KHz 程度の高周波電流を流すと、このコイ
ル4内に配置されている磁性体材料からなる試料容器2
には渦電流が発生し、そのジュール熱による自己加熱に
よって発熱して試料容器2内の試料Sを加熱する。試料
Sの温度は、試料Sに熱電対等の測温手段を試料近傍に
設置するか、或いは図1のように試料容器2底面の表面
温度(色温度)を計測する輻射式温度計等の試料温度検
出器5により測定され、この測定温度が所期温度と一致
するようにインバータ回路を周波数制御することにより
加熱パワーを調節する。このようにして試料Sは所期温
度に正確に制御され、温度変化時における重量の変化が
吊線7の先に連結されている天秤等の質量測定手段によ
り測定され、TGが実施される。
In the high frequency current coil 4, for example, several W to several tens W
When a high frequency current of about 22 to 40 KHz is applied, the sample container 2 made of a magnetic material is placed inside the coil 4.
Eddy current is generated in the sample, and the sample S in the sample container 2 is heated by the self-heating caused by the Joule heat. For the temperature of the sample S, a temperature measuring means such as a thermocouple is installed near the sample in the sample S, or a sample such as a radiation thermometer for measuring the surface temperature (color temperature) of the bottom surface of the sample container 2 as shown in FIG. The heating power is adjusted by controlling the frequency of the inverter circuit so that the temperature measured by the temperature detector 5 coincides with the desired temperature. In this way, the sample S is accurately controlled to the desired temperature, the change in weight when the temperature changes is measured by a mass measuring means such as a balance connected to the end of the suspension wire 7, and TG is performed.

【0015】[0015]

【実施例】上述したような磁性体からなる試料容器2に
代えて、非磁性体からなる試料容器2とこれを収納する
磁性体製アダプター6から構成してもよい(図2)。試
料容器2は高温加熱時においても試料自体と反応しない
材料から作製されることが必要であるが、このようなア
ダプターを用いることにより、試料容器の材質の選択の
範囲が広がる他、被測定試料によっては分析時に汚染さ
れることもある試料容器2を分析毎に交換することがで
き、一方これを収容するアダプター6に吊線7を固定し
て繰り返し使用することができる。
Example Instead of the sample container 2 made of a magnetic material as described above, a sample container 2 made of a non-magnetic material and an adapter 6 made of a magnetic material for accommodating the sample container 2 may be used (FIG. 2). The sample container 2 needs to be made of a material that does not react with the sample itself even when it is heated at a high temperature. By using such an adapter, the selection range of the material of the sample container is expanded, and the sample to be measured is Depending on the analysis, the sample container 2, which may be contaminated during the analysis, can be replaced for each analysis, while the suspension wire 7 can be fixed to the adapter 6 that accommodates it and used repeatedly.

【0016】本発明を従来の均熱ブロックを備えた示差
走査熱量測定装置に適用する場合には、こうした均熱ブ
ロックを全く廃止して上記実施例と同様に試料容器のみ
の自己発熱加熱方式とすることができる。或いは均熱ブ
ロックの上面・底面も含めた全面を覆う磁性体のカバー
を設け、このカバーに渦電流を発生させて熱的に均一な
炉体とするように構成することもできる。
When the present invention is applied to a differential scanning calorimeter equipped with a conventional soaking block, such a soaking block is completely abolished, and a self-heating system of only the sample container is used as in the above embodiment. can do. Alternatively, it is also possible to provide a magnetic cover that covers the entire surface of the soaking block, including the top and bottom surfaces, and generate an eddy current in this cover to form a thermally uniform furnace body.

【0017】[0017]

【発明の効果】本発明の構成によれば、従来の熱分析装
置の加熱炉のようにヒーター等の発熱体から炉心管、雰
囲気、試料容器、試料と多くの介在物を経て熱が伝達さ
れるのではなく、直接試料(容器)を加熱することがで
きるので、被加熱部の実効熱容量や途中の熱損失も僅か
であり、加熱に要する電力も試料量に見合っただけの最
小限(数W 〜数十W 程度)でよい。また、熱的慣性が小
さいので、温度制御の忠実度(所期温度プログラムへの
追随性)が向上する。加熱の際は試料容器全面にわたっ
て2次元的に渦電流が発生するので、試料内の温度分布
がより均一化され、良好な分析結果を得ることができ
る。測定終了後の冷却(ブロワ等による強制空冷)の際
にも、試料容器と試料のみを冷却すればよく、従来の炉
心管や雰囲気ごと冷却するのに比べて冷却に要する時間
を飛躍的に短縮することができる。
According to the structure of the present invention, heat is transferred from a heating element such as a heater through a furnace core tube, an atmosphere, a sample container, a sample and many inclusions like a heating furnace of a conventional thermal analyzer. Since the sample (container) can be heated directly, the effective heat capacity of the heated part and the heat loss in the middle are also small, and the power required for heating is the minimum (number of W to several tens of W) is sufficient. Moreover, since the thermal inertia is small, the fidelity of temperature control (following the desired temperature program) is improved. During heating, an eddy current is generated two-dimensionally over the entire surface of the sample container, so that the temperature distribution in the sample becomes more uniform and good analysis results can be obtained. Even when cooling after measurement (forced air cooling with a blower, etc.), it is sufficient to cool only the sample container and sample, and the time required for cooling is dramatically reduced compared to the conventional cooling of the core tube and atmosphere. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る熱分析装置の構成例を示した概略
図である。
FIG. 1 is a schematic diagram showing a configuration example of a thermal analysis device according to the present invention.

【図2】本発明に係る熱分析装置の試料容器の構成例を
示した概略図である。
FIG. 2 is a schematic diagram showing a configuration example of a sample container of the thermal analysis device according to the present invention.

【符号の説明】[Explanation of symbols]

1 …熱重量測定装置 2 …試料容器 3 …隔壁 4 …高周波電流コイル 5 …試料温度検出器 6 …アダプター S …試料 DESCRIPTION OF SYMBOLS 1 ... Thermogravimetric measuring device 2 ... Sample container 3 ... Partition wall 4 ... High frequency current coil 5 ... Sample temperature detector 6 ... Adapter S ... Sample

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一部を磁性材料で構成した試
料保持手段と、この試料保持手段を電磁誘導加熱する電
磁誘導加熱手段と、試料温度をモニターする測温手段
と、試料の状態変化を検出する測定手段と、を備えたこ
とを特徴とする熱分析装置。
1. A sample holding means at least a part of which is made of a magnetic material, an electromagnetic induction heating means for heating the sample holding means by electromagnetic induction, a temperature measuring means for monitoring the sample temperature, and a change in the state of the sample is detected. A thermal analysis device comprising:
【請求項2】 少なくとも一部が磁性体からなる試料保
持手段又は試料を、電磁誘導によって加熱することを特
徴とする熱分析方法。
2. A thermal analysis method comprising heating a sample holding means or a sample, at least a part of which is made of a magnetic material, by electromagnetic induction.
JP24790495A 1995-09-26 1995-09-26 Thermal analysis device and method Pending JPH0989821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24790495A JPH0989821A (en) 1995-09-26 1995-09-26 Thermal analysis device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24790495A JPH0989821A (en) 1995-09-26 1995-09-26 Thermal analysis device and method

Publications (1)

Publication Number Publication Date
JPH0989821A true JPH0989821A (en) 1997-04-04

Family

ID=17170295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24790495A Pending JPH0989821A (en) 1995-09-26 1995-09-26 Thermal analysis device and method

Country Status (1)

Country Link
JP (1) JPH0989821A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103983661A (en) * 2014-05-08 2014-08-13 西安交通大学 Molten salt forced-convection heat transfer experimental facility with strong internal heat source and large-size bead pebble-bed channel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103983661A (en) * 2014-05-08 2014-08-13 西安交通大学 Molten salt forced-convection heat transfer experimental facility with strong internal heat source and large-size bead pebble-bed channel

Similar Documents

Publication Publication Date Title
JP4027341B2 (en) Cooled NMR probe head with uniform sample temperature control
US20020179590A1 (en) Microtiter plate with integral heater
US3271996A (en) Apparatus for thermal analysis
JP2008023339A (en) Method and apparatus for measuring characteristics of variation in magnetic induction of magnetic material with respect to temperature
GB2179202A (en) Equipment and method for calibration of a temperature sensing device
JP7236728B2 (en) thermal analyzer
US11460425B2 (en) Thermal analyzer
JPH0989821A (en) Thermal analysis device and method
US3589167A (en) Thermomechanical analysis apparatus
Yao et al. A versatile nuclear demagnetization cryostat for ultralow temperature research
JP2001183275A (en) Material tester
WO1994006000A1 (en) Differential scanning calorimeter
JPS6119935B2 (en)
GB2251680A (en) Temperature controlled enclosure for a viscoelasticity measuring device
Goodkin et al. Calorimetric Assembly for the Measurement of Heats of Fusion of Inorganic Compounds
JP2909922B2 (en) Temperature compensation method for thermomechanical analysis
JP4203003B2 (en) Sample temperature controller for NMR analyzer
Hemmerich et al. High‐resolution tritium calorimetry based on inertial temperature control
JPS6381253A (en) Heat flux type differential scanning calorimeter of sample individual system
JPH11118696A (en) Thermal analyzer
US4248083A (en) Containerless high temperature calorimeter apparatus
Černý et al. Determination of Heat of Adsorption on Clean Solid Surfaces
JP2847179B2 (en) Weight analyzer
JPH0525304B2 (en)
JP2005345333A (en) Thermal analyzer and thermal analysis method