JPH0989462A - Heating furnace - Google Patents

Heating furnace

Info

Publication number
JPH0989462A
JPH0989462A JP25292895A JP25292895A JPH0989462A JP H0989462 A JPH0989462 A JP H0989462A JP 25292895 A JP25292895 A JP 25292895A JP 25292895 A JP25292895 A JP 25292895A JP H0989462 A JPH0989462 A JP H0989462A
Authority
JP
Japan
Prior art keywords
heating
furnace
heating means
temperature
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25292895A
Other languages
Japanese (ja)
Other versions
JP3377660B2 (en
Inventor
Ikuo Takahashi
生郎 孝橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP25292895A priority Critical patent/JP3377660B2/en
Publication of JPH0989462A publication Critical patent/JPH0989462A/en
Application granted granted Critical
Publication of JP3377660B2 publication Critical patent/JP3377660B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Tunnel Furnaces (AREA)
  • Die Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable control of the temperatures of heater blocks as prescribed without allowing the temperatures to be affected by the surroundings where a heating furnace is placed by making a gas flow from the side of low- temperature heating means to that of hightemperature heating means in a side- by-side arrangement of a plurality of heating means. SOLUTION: A gas outlet 10 is provided at the inlet (inlet to furnace for members to be heated) of a thermosetting furnace and by feeding into the furnace through the gas outlet 10 nitrogen gas, dry air, etc., warmed separately by an air heater, etc., a flow of gas is produced from the inlet of the furnace toward its outlet inside the furnace. At the preliminary heating by heater blocks HB1, HB2 a die bonding paste is held in a state of low viscosity preceding the setting and also made even state by vaporization of diluent. By main thermosetting at heater blocks HB4, HB5, HB6 a thermosetting reaction involving no foaming can be achieved. At a heater block HB3 the heater blocks HB2, HB4 do not interfere with each other so that adequate preliminary heating can be secured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は加熱炉に関し、特に
半導体チップを接着するダイボンドペーストの熱硬化炉
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating furnace, and more particularly to a thermosetting furnace for die bond paste for bonding semiconductor chips.

【0002】[0002]

【従来の技術】以下、従来の加熱炉について、半導体チ
ップを接着するダイボンドペーストの熱硬化炉を用いて
説明する。
2. Description of the Related Art A conventional heating furnace will be described below with reference to a die-curing paste thermosetting furnace for bonding semiconductor chips.

【0003】近年、実装上の効率アップや手番短縮、省
人化によるバリューエンジニアリングが必要となってき
ており、例えば半導体装置におけるダイボンド工程,ワ
イヤボンド工程では、ダイボンドペーストの改良により
ダイボンドペーストの短時間硬化が可能となり、これに
よりダイボンドペーストの熱硬化炉を接続し、ダイボン
ド工程とワイヤボンド工程とを連続して行うインライン
が構築されてきており、さらには後工程の樹脂モールド
工程も接続した一貫ラインが構築されてきた。
In recent years, there has been a need for value engineering by improving efficiency in mounting, shortening work steps, and saving labor. For example, in a die bonding process and a wire bonding process in a semiconductor device, the die bonding paste is improved by improving the die bonding paste. It is possible to cure for a long time, and by doing so, an in-line system has been constructed in which a die-curing paste thermosetting furnace is connected, and the die-bonding process and the wire-bonding process are performed continuously. The line has been built.

【0004】該熱硬化炉は、図10に示すように、複数
個のヒーターブロックHB1〜HB6と、複数本の搬送
ワイヤ1と、保護体2とを備えた構成からなる。
As shown in FIG. 10, the heat curing furnace comprises a plurality of heater blocks HB1 to HB6, a plurality of carrier wires 1 and a protector 2.

【0005】前記ヒーターブロックHB1〜HB6は、
それぞれ所定間隔(2mm)で並置されてなり、該各ヒ
ーターブロックHB1〜HB6は所定の温度に設定され
ダイボンドペーストを介して半導体チップが搭載された
リードフレームを直接加熱するものである。
The heater blocks HB1 to HB6 are
The heater blocks HB1 to HB6 are arranged side by side at a predetermined interval (2 mm), and the heater blocks HB1 to HB6 are set to a predetermined temperature and directly heat the lead frame on which the semiconductor chip is mounted via the die bond paste.

【0006】前記搬送ワイヤ1は、前記リードフレーム
を各ヒーターブロックHB1〜HB6に順次搬送するた
めのものであり、該ヒーターブロックHB1〜HB6に
形成された溝内に配置され、図11に示すように、上
昇、右移動、下降、左移動を繰り返すことにより前記リ
ードフレーム3をヒーターブロックHB1からヒーター
ブロックHB6まで順次搬送するものである。
The carrying wire 1 is for carrying the lead frame sequentially to the heater blocks HB1 to HB6, and is arranged in the grooves formed in the heater blocks HB1 to HB6, as shown in FIG. Then, the lead frame 3 is sequentially transported from the heater block HB1 to the heater block HB6 by repeating the ascending, the right moving, the descending and the left moving.

【0007】前記保護体2は、ダイボンドペースト硬化
中のリードフレーム3を保護するとともに、熱効率を高
めるため且つリードフレーム3や搭載されている半導体
チップの酸化防止とダイボンドペーストの硬化時に発生
するガスを排気するためにエアーヒーター等で別途暖め
られた窒素(N2 )ガスやドライエアーを各ヒーターブ
ロックHB1〜HB6上に供給する供給手段2a、及び
各ヒーターブロックの間を通して強制排気するするため
の排気手段2bを備えてなるものである。
The protector 2 protects the lead frame 3 during the curing of the die bond paste, and also enhances the thermal efficiency and prevents the oxidation of the lead frame 3 and the semiconductor chip mounted thereon and the gas generated during the curing of the die bond paste. Nitrogen (N 2 ) gas or dry air that has been separately warmed by an air heater or the like for exhausting is supplied to each heater block HB1 to HB6, and exhaust for forcibly exhausting through each heater block. It is provided with means 2b.

【0008】上述した熱硬化炉に搬送されるリードフレ
ーム3は、図12(a),(b)に示すように、半導体
チップ4がリードフレーム3のヘッダ部の所定位置にダ
イボンドペースト5を介して搭載されてなるものであ
り、該ダイボンドペースト5はヒーターブロックHB1
〜HB6による加熱により熱硬化し、これにより前記半
導体チップ4がリードフレーム3に固着される。図中、
6は半導体チップの上面電極であり、7は外部接続用リ
ードであり、8は前記上面電極6と前記外部接続用リー
ド7とを電気的に接続する金線である。
As shown in FIGS. 12A and 12B, in the lead frame 3 conveyed to the above-mentioned heat curing furnace, the semiconductor chip 4 is placed at a predetermined position of the header portion of the lead frame 3 via the die bond paste 5. The die bond paste 5 is mounted on the heater block HB1.
~ HB6 heat-cures by heating, so that the semiconductor chip 4 is fixed to the lead frame 3. In the figure,
Reference numeral 6 is an upper surface electrode of the semiconductor chip, 7 is an external connection lead, and 8 is a gold wire for electrically connecting the upper surface electrode 6 and the external connection lead 7.

【0009】従来のインラインにおけるダイボンドペー
スト5の硬化温度プロファイルは、図13に示すよう
に、1分間程度140℃に加熱し、さらに1分間程度2
00℃に加熱して行われる。これに伴い、上述した熱硬
化炉は、ヒーターブロックHB1〜HB3が140℃に
設定され、ヒーターブロックHB4〜HB6が200℃
に設定されている。
As shown in FIG. 13, the conventional in-line die bond paste 5 has a curing temperature profile in which it is heated to 140.degree.
It is carried out by heating to 00 ° C. Along with this, in the above-described thermosetting furnace, the heater blocks HB1 to HB3 are set to 140 ° C. and the heater blocks HB4 to HB6 are set to 200 ° C.
Is set to

【0010】[0010]

【発明が解決しようとする課題】ところで、前記半導体
チップ4が例えば発光ダイオードチップである場合、上
記ダイボンドペースト5は銀片等の導電性フィラーがエ
ポキシ樹脂に加えられた導電性ダイボンドペーストから
なり、該導電性ダイボンドペースト5による半導体チッ
プ固着部は強い接着性とともに、チップ裏面電極とコン
タクトをとるため良好な電気伝導性と通電使用時におけ
る発光ダイオードチップ4の発電量をリードフレーム3
へ放熱する良好な熱抵抗が要求される。つまり、良好で
安定したダイボンド状態が必要となる。
By the way, when the semiconductor chip 4 is, for example, a light emitting diode chip, the die bond paste 5 is composed of a conductive die bond paste in which a conductive filler such as silver flakes is added to an epoxy resin, The semiconductor chip fixing portion made of the conductive die bond paste 5 has strong adhesiveness, good electrical conductivity for making contact with the chip back surface electrode, and the amount of power generated by the light emitting diode chip 4 during energization.
Good thermal resistance to radiate heat is required. That is, a good and stable die bond state is required.

【0011】このダイボンド状態を、ある熱抵抗のパラ
メータ[ΔV]で評価することができる。この方法は、
例えば発光ダイオードチップの接合温度に対してリニア
に変化する電気的パラメータ(順方向電圧)を、発光ダ
イオードチップに通電によって熱を加える前後に測定
し、その値の変化分でダイボンド状態を判定する方法で
ある。
This die-bonded state can be evaluated by a certain thermal resistance parameter [ΔV]. This method
For example, a method of measuring an electrical parameter (forward voltage) that linearly changes with respect to the junction temperature of the light emitting diode chip before and after applying heat to the light emitting diode chip before and after determining the die bond state based on the change in the value. Is.

【0012】図14に標準的な測定波形を示す。まず、
電流IM を時間t1 印加し、電圧V1 を測定する。次
に、加熱用の電流としてIM の数十倍から数百倍の電流
H を時間tH 印加し加熱する。次に、再び初期電流と
同じ電流IM を時間t2 印加し、電圧V2 を測定する。
このとき、加熱前後の電圧V1 とV2 との差ΔVにより
半導体チップ固着部の出来具合を判定する。
FIG. 14 shows a standard measurement waveform. First,
The current I M is applied for a time t 1 and the voltage V 1 is measured. Next, as a heating current, a current I H of several tens to several hundreds times I M is applied for a time t H to heat. Then, the same current I M and the initial current time t 2 is applied again to measure the voltage V 2.
At this time, the quality of the semiconductor chip fixing portion is determined by the difference ΔV between the voltages V 1 and V 2 before and after heating.

【0013】電流IH により発光ダイオードチップ4に
短時間に発生した熱は、図12(b)の矢印で示すよう
に、主にダイボンド部分を通じてリードフレーム3に伝
わり放熱されるので、このΔVが小さい程ダイボンドの
状態が良好であることが判断できる。例えば、上記電流
M を1mA、電流IH を800mA、時間t1 ,t2
を8msec、tH を20msecとし、加熱前後のV
1 とV2 とを測定し、その差ΔV[mV]を求める。
The heat generated in the light emitting diode chip 4 by the current I H in a short time is mainly transferred to the lead frame 3 through the die bond portion and radiated as shown by the arrow in FIG. It can be determined that the smaller the size, the better the state of die bonding. For example, the current I M is 1 mA, the current I H is 800 mA, and the times t 1 and t 2 are
Of 8 msec and t H of 20 msec, V before and after heating
1 and V 2 are measured, and the difference ΔV [mV] is obtained.

【0014】この熱抵抗のパラメータΔV(以下、単に
「ΔV」と称す。)はこの場合、70以下であるとダイ
ボンドペースト5による半導体チップ固着部の状態が良
好であることを示している。
In this case, if the parameter ΔV (hereinafter simply referred to as “ΔV”) of the thermal resistance is 70 or less, it indicates that the state of the semiconductor chip fixing portion by the die bond paste 5 is good.

【0015】ところが、図13に示す硬化温度プロファ
イルでは、ΔVが図15に示す分布となる。該ΔVの分
布は70以上が多く、ダイボンドペーストによる半導体
チップ固着部の状態は良くないことが分かる。
However, in the curing temperature profile shown in FIG. 13, ΔV has the distribution shown in FIG. The distribution of ΔV is often 70 or more, and it can be seen that the state of the semiconductor chip fixing portion by the die bond paste is not good.

【0016】これは、ダイボンドペースト5をいきなり
熱硬化反応開始温度まで昇温させたことによるもので、
これによってダイボンドペースト中に一般に含有されて
いる希釈剤が蒸発する際に、ダイボンドペースト中に閉
じ込められ易く、この結果、後述するように気泡発生の
原因となって悪影響を及ぼしている。なお、前記希釈剤
は、樹脂の粘度を調整するためのものであり、一般のダ
イボンドペーストにはほとんど含有されている。
This is because the die bond paste 5 was suddenly heated to the thermosetting reaction start temperature.
As a result, when the diluent generally contained in the die bond paste evaporates, it is likely to be trapped in the die bond paste, and as a result, it causes bubbles and adversely affects as described later. The diluent is used for adjusting the viscosity of the resin, and is generally contained in a general die bond paste.

【0017】また、接着性や電気伝導性についても、こ
の熱抵抗と同じく良くないことが分かっている。
Also, it has been found that the adhesiveness and electrical conductivity are not as good as the thermal resistance.

【0018】図16は、上記ΔVの分布が70以上のダ
イボンドペースト5による半導体チップ固着部におい
て、図12(a)のA−A′断面を切断した観測例を示
したものであり、ダイボンドペースト5の中に気泡9の
発生が確認されている。この気泡9の発生が、熱抵抗と
ともに接着性や電気伝導性に悪影響を及ぼしている。
FIG. 16 shows an observation example in which the AA ′ cross section of FIG. 12A is cut in the semiconductor chip fixing portion by the die bond paste 5 having the distribution of ΔV of 70 or more. It has been confirmed that bubbles 9 are generated in FIG. The generation of the bubbles 9 adversely affects the adhesiveness and the electrical conductivity as well as the thermal resistance.

【0019】上述した問題点を解決するものとして、例
えば同出願人が特願平06−060547号(平成06
年03月30日出願)にて提案してなる半導体装置の製
造方法(以下、「提案例」と称す。)がある。
In order to solve the above-mentioned problems, for example, the applicant of the present invention has filed Japanese Patent Application No. 06-060547 (Heisei 06).
There is a method of manufacturing a semiconductor device (hereinafter referred to as “proposed example”) proposed in Mar. 30, 2013).

【0020】該提案例によるダイボンドペーストの硬化
温度プロファイルは、ダイボンドペースト5の希釈剤が
蒸発し始める温度を下限として、ダイボンドペースト5
の熱硬化反応開始温度より低い温度で予備加熱をした
後、熱硬化反応開始温度以上で加熱すること、即ち例え
ば図17に示すように、70℃の予備加熱を20秒以上
確保し、140℃を経て200℃の加熱により本硬化し
て行うものである。
The curing temperature profile of the die bond paste according to the proposed example has a lower limit of the temperature at which the diluent of the die bond paste 5 starts to evaporate, and the die bond paste 5
After preheating at a temperature lower than the thermosetting reaction starting temperature of No. 1, heating at the thermosetting reaction starting temperature or more, that is, as shown in FIG. After that, the main curing is performed by heating at 200 ° C.

【0021】前記予備加熱の温度設定を、図18に示す
前記ダイボンドペーストの熱重量測定−示差熱分析(T
G−DTA熱分析)データを用いて具体的に説明する。
図中、DTA曲線のプラス側方向は発熱反応を示し、マ
イナス側方向は吸熱反応を示す。
The temperature of the preheating is set by thermogravimetric measurement-differential thermal analysis (T) of the die bond paste shown in FIG.
G-DTA thermal analysis) data will be specifically described.
In the figure, the positive side of the DTA curve indicates an exothermic reaction, and the negative side indicates an endothermic reaction.

【0022】図18によれば、希釈剤の蒸発開始温度、
即ち重量(TG曲線)が減少し始める温度は60℃で
あり、ダイボンドペーストの熱硬化反応開始温度、即ち
発熱反応が始まる温度は100℃であることを示して
いる。
According to FIG. 18, the evaporation start temperature of the diluent,
That is, the temperature at which the weight (TG curve) begins to decrease is 60 ° C., and the thermosetting reaction start temperature of the die bond paste, that is, the temperature at which the exothermic reaction starts is 100 ° C.

【0023】この内容から、前記予備加熱の温度を60
℃〜80℃の範囲とし、保持時間を20秒以上行うこと
が望ましい。これは、60℃未満であると希釈剤が蒸発
せず、80℃を越えると保持時間をかけた際に熱硬化反
応開始温度に近いほど硬化反応が起こりうるからであ
る。
From this content, the preheating temperature is set to 60
It is desirable that the temperature is in the range of 80 ° C to 80 ° C and the holding time is 20 seconds or more. This is because if the temperature is lower than 60 ° C, the diluent does not evaporate, and if the temperature exceeds 80 ° C, the curing reaction may occur closer to the thermosetting reaction initiation temperature when the holding time is taken.

【0024】これにより、ΔVの分布は、図19に示す
ように70以下となり、ダイボンドペースト5による半
導体チップ固着部の状態が良好であることを示してい
る。
As a result, the distribution of ΔV becomes 70 or less as shown in FIG. 19, which shows that the state of the semiconductor chip fixing portion by the die bond paste 5 is good.

【0025】また、該半導体チップ固着部において、図
12(a)のA−A′断面を切断した観測例を示したも
のが図20であり、ダイボンドペースト5中に気泡は無
く、熱抵抗が良好となっているものである。また、接着
性や電気伝導性についても熱抵抗が改善されたと同じく
良好となる。
Further, FIG. 20 shows an observation example in which the AA ′ cross section of FIG. 12 (a) is cut in the semiconductor chip fixing portion, and there are no bubbles in the die bond paste 5 and the thermal resistance is It is good. Also, the adhesiveness and electrical conductivity are as good as the improved thermal resistance.

【0026】しかしながら、図17に示す硬化温度プロ
ファイルを得るために、熱硬化炉の搬送サイクルタイム
を20秒、ヒーターブロックHB1〜HB6の温度をH
B1,HB2を70℃、HB3を140℃、HB4,H
B5,HB6を200℃に設定すると、実際の硬化温度
プロファイルは、図21に示すようにHB2とHB3と
がそれぞれ高温側へシフトする傾向がある。例えば、H
B2では80℃を越えてしまうことがある。
However, in order to obtain the curing temperature profile shown in FIG. 17, the transfer cycle time of the heat curing furnace is 20 seconds and the temperature of the heater blocks HB1 to HB6 is H.
B1, HB2 is 70 ℃, HB3 is 140 ℃, HB4, H
When B5 and HB6 are set to 200 ° C., the actual curing temperature profile tends to shift HB2 and HB3 to the high temperature side as shown in FIG. For example, H
B2 may exceed 80 ° C.

【0027】これは、ヒーターブロックHB2及びHB
3が近接するヒーターブロックHB3及びHB4により
温度上昇するものである。特に、ヒーターブロックHB
1〜HB6の上方に上記供給手段2aのように物体が配
置されていると、ヒーターブロックHB1〜HB6の直
上は冷却されにくい雰囲気となり、また前記供給手段2
a等の物体による熱反射も加わり、近接するヒーターブ
ロックの影響を受けることになるからである。
This is the heater block HB2 and HB
3 is heated by the adjacent heater blocks HB3 and HB4. Especially, the heater block HB
If an object is arranged above the supply means 2a above 1 to HB6, the atmosphere immediately above the heater blocks HB1 to HB6 is hard to be cooled, and the supply means 2 is also provided.
This is because heat reflection by an object such as “a” is also added, and it is affected by the adjacent heater block.

【0028】また、熱硬化炉を設置している環境の状
態、特にエアコン等による空気の流れによる影響も大き
い。即ち、ヒーターブロックHB6側からヒーターブロ
ックHB1側に空気が流れると、ヒーターブロックHB
2及びHB3がヒーターブロックHB3及びHB4によ
り温度上昇することになる。
Further, the environmental conditions in which the heat curing furnace is installed, particularly the influence of the air flow from an air conditioner or the like, has a great influence. That is, when air flows from the heater block HB6 side to the heater block HB1 side, the heater block HB6
2 and HB3 are heated by the heater blocks HB3 and HB4.

【0029】この結果、60〜80℃の予備加熱時間を
確保できずに硬化反応が始まるため、ΔVの分布は図2
2に示すようになり、70を越えるものが発生してしま
い、得られるはずの良好で安定したダイボンド状態でな
くなることとなった。
As a result, the curing reaction starts without securing the preheating time of 60 to 80 ° C., and therefore the distribution of ΔV is shown in FIG.
As shown in FIG. 2, more than 70 were generated, and the good and stable die bond state that should be obtained was not obtained.

【0030】本発明は、上記課題に鑑み、加熱炉(熱硬
化炉)を設置している環境の状態にも左右されることな
く、ヒーターブロックの温度を設定通りに設定すること
が可能な加熱炉の提供を目的とするものである。
In view of the above problems, the present invention is a heating system capable of setting the temperature of the heater block as set, without being affected by the state of the environment in which the heating furnace (thermosetting furnace) is installed. The purpose is to provide a furnace.

【0031】[0031]

【課題を解決するための手段】本発明の請求項1記載の
加熱炉は、被加熱部材を異なる温度で加熱する複数の加
熱手段と、前記被加熱部材を前記各加熱手段に搬送する
搬送手段とを備え、前記複数の加熱手段が互いに近接し
て並置されてなる加熱炉において、前記複数の加熱手段
のうちの低温の加熱手段側から高温の加熱手段側に気体
を流動させる流動手段を設けてなることを特徴とするも
のである。
A heating furnace according to claim 1 of the present invention comprises a plurality of heating means for heating a member to be heated at different temperatures, and a conveying means for conveying the member to be heated to each of the heating means. A heating furnace in which the plurality of heating means are juxtaposed in close proximity to each other, and a flow means for flowing a gas from the low temperature heating means side of the plurality of heating means to the high temperature heating means side is provided. It is characterized by

【0032】また、本発明の請求項2記載の加熱炉は、
前記流動手段が前記被加熱部材の炉入口及び炉出口の少
なくとも一方に設けられてなる第1の気体吹出口からな
ることを特徴とするものである。
The heating furnace according to claim 2 of the present invention is
It is characterized in that the flow means comprises a first gas outlet provided at at least one of a furnace inlet and a furnace outlet of the member to be heated.

【0033】さらに、本発明の請求項3記載の加熱炉
は、前記流動手段が前記加熱手段の上方に設けられ前記
複数の加熱手段のうちの低温の加熱手段側から高温の加
熱手段側に傾斜した第2の気体吹出口からなることを特
徴とするものである。
Further, in the heating furnace according to claim 3 of the present invention, the fluidizing means is provided above the heating means, and is inclined from the low temperature heating means side of the plurality of heating means to the high temperature heating means side. It is characterized by comprising the above-mentioned second gas outlet.

【0034】加えて、本発明の請求項4記載の加熱炉
は、半導体チップが希釈剤を含有する接着剤を介して搭
載されたリードフレームを異なる温度で加熱する複数の
加熱手段と、前記リードフレームを低温の加熱手段から
高温の加熱手段に順次搬送する搬送手段とを備え、前記
複数の加熱手段が低温から高温の順に互いに近接して並
置されてなる加熱炉において、前記接着剤の希釈剤が蒸
発し始める温度を下限とし且つ前記接着剤の熱硬化反応
開始温度より低い温度で予備加熱する第1の加熱手段
と、前記熱硬化開始温度以上で加熱する第2の加熱手段
と、前記第1の加熱手段の温度と第2の加熱手段の温度
との略中間温度で加熱する第3の加熱手段と、前記第1
の加熱手段側から第3の加熱手段側に気体を流動させる
流動手段とを備えてなることを特徴とするものである。
In addition, in the heating furnace according to claim 4 of the present invention, a plurality of heating means for heating the lead frame mounted with the semiconductor chip via the adhesive containing the diluent at different temperatures, and the lead. A diluent for the adhesive in a heating furnace comprising: a transporting unit that sequentially transports a frame from a low-temperature heating unit to a high-temperature heating unit, wherein the plurality of heating units are juxtaposed side by side in the order of low-temperature to high-temperature. Has a lower limit of the temperature at which the vaporization starts and is preheated at a temperature lower than the thermosetting reaction start temperature of the adhesive, second heating means for heating at the thermosetting start temperature or higher, and A third heating means for heating at a temperature substantially intermediate between the temperature of the first heating means and the temperature of the second heating means;
And a flow means for flowing the gas from the heating means side to the third heating means side.

【0035】上記構成によれば、本発明の請求項1乃至
3記載の加熱炉は、複数の加熱手段のうちの低温の加熱
手段側から高温の加熱手段側に気体を流動させる流動手
段、即ち被加熱部材の炉入口及び炉出口の少なくとも一
方に設けられてなる第1の気体吹出口又は前記加熱手段
の上方に設けられ前記複数の加熱手段のうちの低温の加
熱手段側から高温の加熱手段側に傾斜した第2の気体吹
出口を設けてなる構成なので、前記第1又は第2の気体
吹出口により、互いに近接する加熱手段のうちの低温の
加熱手段を、加熱炉を設置している環境の状態にも左右
されることなく前記高温の加熱手段の影響による温度上
昇を受けにくくすることができる。
According to the above construction, the heating furnace according to the first to third aspects of the present invention is a flow means for flowing the gas from the low temperature heating means side of the plurality of heating means to the high temperature heating means side, that is, A first gas outlet provided at at least one of a furnace inlet and a furnace outlet of a member to be heated or a heating means provided above the heating means and having a high temperature from a low temperature heating means side of the plurality of heating means. Since the second gas outlets inclined to the side are provided, the low-temperature heating means of the heating means that are close to each other is installed in the heating furnace by the first or second gas outlets. It is possible to prevent the temperature from increasing due to the influence of the high-temperature heating means without depending on the environmental condition.

【0036】また、本発明の請求項4記載の加熱炉は、
接着剤の希釈剤が蒸発し始める温度を下限とし且つ前記
接着剤の熱硬化反応開始温度より低い温度で予備加熱す
る第1の加熱手段と、前記熱硬化開始温度以上で加熱す
る第2の加熱手段と、前記第1の加熱手段の温度と第2
の加熱手段の温度との略中間温度で加熱する第3の加熱
手段と、前記第1の加熱手段側から第3の加熱手段側に
気体を流動させる流動手段とを備えてなる構成なので、
前記流動手段により互いに近接する第1及び第3の加熱
手段のうちの低温の第1の加熱手段を、加熱炉を設置し
ている環境の状態にも左右されることなく近接する高温
の第3の加熱手段の影響による温度上昇を受けにくくな
り、第1の加熱手段を希釈剤が蒸発し始める温度を下限
とし且つ前記接着剤の熱硬化反応開始温度より低い温度
に安定して設定することができる。これによって、前記
第1の加熱手段による予備加熱により前記接着剤は硬化
前の低粘度状態が確保されるとともに前記希釈剤が蒸発
して均一な状態にでき、第2の加熱手段による本硬化に
より気泡発生の無い硬化反応を得ることが可能な加熱炉
を提供することができる。また、前記第3の加熱手段に
より第1の加熱手段と第2の加熱手段とが互いに干渉さ
れず、予備加熱を十分確保することができる。
The heating furnace according to claim 4 of the present invention is
First heating means for preheating at a temperature lower than the temperature at which the adhesive diluent starts to evaporate and lower than the thermosetting reaction initiation temperature of the adhesive, and second heating for heating at the thermosetting initiation temperature or higher. Means, the temperature of the first heating means and the second
The third heating means for heating at a temperature substantially intermediate to the temperature of the heating means, and the flow means for flowing the gas from the first heating means side to the third heating means side are provided.
Of the first and third heating means that are close to each other by the flow means, the first low-temperature heating means that is close to the high-temperature third heating means that is close to each other without being influenced by the environmental conditions in which the heating furnace is installed. The temperature of the first heating means is less likely to increase due to the influence of the heating means, and the first heating means can be stably set to a temperature lower than the temperature at which the diluent starts to evaporate and lower than the thermosetting reaction start temperature of the adhesive. it can. As a result, the adhesive is kept in a low-viscosity state before curing by the preheating by the first heating means, and the diluent is evaporated to be in a uniform state, and the main curing is performed by the second heating means. It is possible to provide a heating furnace capable of obtaining a curing reaction without generation of bubbles. Further, the third heating means prevents the first heating means and the second heating means from interfering with each other, and sufficient preheating can be ensured.

【0037】[0037]

【発明の実施の形態】以下、本発明の第1実施の形態よ
りなる加熱炉、即ち熱硬化炉について説明する。該熱硬
化炉について、図10に示す従来の熱硬化炉と同一の構
成のものについては同一符号を称し、相違する点のみ説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION A heating furnace according to the first embodiment of the present invention, that is, a thermosetting furnace will be described below. Regarding the heat curing furnace, the same components as those of the conventional heat curing furnace shown in FIG. 10 are designated by the same reference numerals, and only different points will be described.

【0038】図1は第1実施の形態よりなる熱硬化炉を
示す断面図である。
FIG. 1 is a sectional view showing a thermosetting furnace according to the first embodiment.

【0039】該熱硬化炉は、図10に示す従来の熱硬化
炉において、炉の入口(被加熱部材の炉入口)に気体吹
出口10を設けてなる構成である。これにより、前記気
体吹出口10を通して、エアーヒーター等で別途暖めら
れた窒素(N2 )ガスやドライエアーを炉内に供給し、
炉内を炉入口から炉出口方向に気体の流れを持たせるも
のである。
The thermosetting furnace is the same as the conventional thermosetting furnace shown in FIG. 10, except that a gas outlet 10 is provided at the entrance of the furnace (the entrance of the heated member). As a result, nitrogen (N 2 ) gas or dry air separately warmed by an air heater or the like is supplied into the furnace through the gas outlet 10.
A gas flow is provided in the furnace from the furnace inlet to the furnace outlet.

【0040】図2は他の実施の形態よりなる熱硬化炉を
示す断面図である。
FIG. 2 is a sectional view showing a heat curing furnace according to another embodiment.

【0041】該熱硬化炉は、図10に示す従来の熱硬化
炉において、保護体2の供給手段2aに設けられヒータ
ーブロックHB1〜HB6に対して垂直方向に設けられ
た気体吹出口に代わって、ヒーターブロックHB6側に
一定角度で傾斜してなる気体吹出口11を設けてなる構
成である。これにより、上記同様、前記気体吹出口11
を通して、エアーヒーター等で別途暖められた窒素(N
2 )ガスやドライエアーを炉内に供給し、炉内を炉入口
から炉出口方向に気体の流れを持たせるものである。
This heat curing furnace is different from the conventional heat curing furnace shown in FIG. 10 in place of the gas outlets provided in the supply means 2a of the protective body 2 and provided in the direction perpendicular to the heater blocks HB1 to HB6. The heater block HB6 is provided with a gas outlet 11 that is inclined at a constant angle. Thereby, similar to the above, the gas outlet 11
Nitrogen (N
2 ) Gas and dry air are supplied into the furnace so that the inside of the furnace has a gas flow from the furnace inlet to the furnace outlet.

【0042】図1及び図2において、図17に示すダン
ボンドペーストの硬化温度プロファイルを得ることを目
的として、搬送ワイヤ1の搬送のサイクルタイムを20
秒とし、ヒーターブロックHB1〜HB6の温度をHB
1,HB2を70℃、HB3を140℃、HB4,HB
5,HB6を200℃に設定することにより、近接する
高温のヒーターブロックの影響及び熱硬化炉を設置して
いる環境の状態に左右されることなく、図3に示すよう
に目的通りの硬化温度プロファイルを得ることができ
る。
In FIGS. 1 and 2, the cycle time of carrying the carrying wire 1 is set to 20 for the purpose of obtaining the curing temperature profile of the Dunbond paste shown in FIG.
Seconds, and set the temperature of the heater blocks HB1 to HB6 to HB
1, HB2 70 ℃, HB3 140 ℃, HB4, HB
By setting HB6 and HB6 to 200 ° C., the desired curing temperature as shown in FIG. 3 can be obtained without being affected by the influence of the adjacent high temperature heater block and the state of the environment where the heat curing furnace is installed. The profile can be obtained.

【0043】ここで、前記気体吹出口10の気体の供給
又は複数の気体吹出口11からの気体の供給の総和は、
1分間に5〜20リットルを供給する。即ち、5リット
ル未満であると熱硬化炉を設置している環境状態により
ヒーターブロックHB2及びHB3がそれぞれHB3及
びHB4により暖められ温度上昇するからであり、また
20リットルを越えるとリードフレーム3の搬送の際
(特に搬送ワイヤ1の右移動時)にリードフレーム3が
気体吹出口10,11からの気体により冷却され、所定
の温度を保てなくなる、即ち、特に高温において大きな
温度変化が生じ、硬化反応が遅れる等の問題が発生する
からである。
Here, the sum of the gas supply from the gas outlet 10 or the gas supply from the plurality of gas outlets 11 is
Supply 5 to 20 liters per minute. That is, if it is less than 5 liters, the heater blocks HB2 and HB3 are warmed by HB3 and HB4, respectively, and the temperature rises due to the environmental conditions in which the thermosetting furnace is installed. At that time (particularly when the carrier wire 1 is moved to the right), the lead frame 3 is cooled by the gas from the gas outlets 10 and 11, and cannot maintain a predetermined temperature. This is because problems such as delayed reaction occur.

【0044】これによって、前記ヒーターブロックHB
1,HB2による予備加熱によりダイボンドペースト5
は硬化前の低粘度状態が確保されるとともに希釈剤が蒸
発して均一な状態にでき、前記ヒーターブロックHB
4,HB5,HB6による本硬化により気泡発生の無い
硬化反応を得ることが可能な加熱炉を提供することがで
きる。さらに、前記ヒーターブロックHB3によりヒー
ターブロックHB2とHB4とが互いに干渉されず、予
備加熱を十分確保することができる。
As a result, the heater block HB
1, die bond paste 5 by preheating with HB2
The low viscosity state before curing is ensured and the diluent is evaporated to make a uniform state.
It is possible to provide a heating furnace capable of obtaining a curing reaction without generation of bubbles by the main curing with 4, HB5 and HB6. Further, the heater block HB3 does not interfere with the heater blocks HB2 and HB4, so that preheating can be sufficiently ensured.

【0045】したがって、該熱硬化炉によれば、熱抵
抗,接着性,電気伝導性が良好な半導体チップ固着部を
得ることが可能となる。
Therefore, according to the thermosetting oven, it is possible to obtain a semiconductor chip fixing portion having good thermal resistance, adhesiveness and electrical conductivity.

【0046】なお、上記気体の供給量は、リードフレー
ム3の搬送路の高さ、即ちヒーターブロックと供給手段
2aとの間隔を15mm、搬送路の幅(奥行き方向)を
360mmに設定した場合の供給量であり、前記搬送路
の高さ及び幅の変更により変更されることは言うまでも
ない。
The amount of gas supplied is set in the case where the height of the transport path of the lead frame 3, that is, the distance between the heater block and the supply means 2a is set to 15 mm and the width of the transport path (in the depth direction) is set to 360 mm. It is needless to say that it is the supply amount and is changed by changing the height and width of the transport path.

【0047】このように本実施の形態は、ステップアッ
プの温度プロファイルに適するものである。
As described above, the present embodiment is suitable for the step-up temperature profile.

【0048】図4は本発明の第2実施の形態よりなる熱
硬化炉を示す断面図である。
FIG. 4 is a sectional view showing a thermosetting furnace according to the second embodiment of the present invention.

【0049】該熱硬化炉は、図10に示す従来の熱硬化
炉において、炉の出口(被加熱部材の炉出口)に気体吹
出口10aを設けてなる構成である。これにより、前記
気体吹出口10aを通して、エアーヒーター等で別途暖
められた窒素(N2 )ガスやドライエアーを炉内に供給
し、炉内を炉出口から炉入口方向に気体の流れを持たせ
るものである。
The thermosetting furnace is the same as the conventional thermosetting furnace shown in FIG. 10, except that a gas outlet 10a is provided at the exit of the furnace (the exit of the heated member). As a result, nitrogen (N 2 ) gas or dry air that has been separately heated by an air heater or the like is supplied into the furnace through the gas outlet 10a, and a gas flow is provided in the furnace from the furnace outlet toward the furnace inlet. It is a thing.

【0050】図5は他の実施の形態よりなる熱硬化炉を
示す断面図である。
FIG. 5 is a sectional view showing a thermosetting furnace according to another embodiment.

【0051】該熱硬化炉は、図10に示す従来の熱硬化
炉において、保護体2の供給手段2aに設けられヒータ
ーブロックHB1〜HB6に対して垂直方向に設けられ
た気体吹出口に代わって、ヒーターブロックHB1側に
一定角度で傾斜してなる気体吹出口11aを設けてなる
構成である。これにより、上記同様、前記気体吹出口1
1aを通して、エアーヒーター等で別途暖められた窒素
(N2 )ガスやドライエアーを炉内に供給し、炉内を炉
出口から炉入口方向に気体の流れを持たせるものであ
る。
This heat curing furnace is different from the conventional heat curing furnace shown in FIG. 10 in place of the gas outlets provided in the supply means 2a of the protective body 2 and provided in the direction perpendicular to the heater blocks HB1 to HB6. The heater block HB1 side is provided with a gas outlet 11a inclined at a constant angle. Thereby, similar to the above, the gas outlet 1
Through 1a, nitrogen (N 2 ) gas or dry air which has been separately heated by an air heater or the like is supplied into the furnace, and a gas flow is provided in the furnace from the furnace outlet to the furnace inlet.

【0052】なお、気体の供給量は上記第1実施の形態
と同様に設定することとする。
The amount of gas supplied is set in the same manner as in the first embodiment.

【0053】本実施の形態は、ステップダウンの温度プ
ロファイルに適し、図6に示すような硬化温度プロファ
イルを、近接する高温のヒーターブロックの影響及び熱
硬化炉を設置している環境の状態に左右されることな
く、得ることができる。
The present embodiment is suitable for a step-down temperature profile, and the curing temperature profile as shown in FIG. 6 is changed depending on the influence of the adjacent high temperature heater block and the environment condition in which the heat curing furnace is installed. You can get it without being done.

【0054】図7は本発明の第3実施の形態よりなる熱
硬化炉を示す断面図である。
FIG. 7 is a sectional view showing a thermosetting furnace according to the third embodiment of the present invention.

【0055】該熱硬化炉は、図10に示す従来の熱硬化
炉において、炉の入口及び出口に気体吹出口10,10
aを設けてなる構成である。これにより、前記気体吹出
口10,10aを通して、エアーヒーター等で別途暖め
られた窒素(N2 )ガスやドライエアーを炉内に供給
し、炉内を炉入口及び炉出口から炉中心方向に気体の流
れを持たせるものである。
The heat curing furnace is the same as the conventional heat curing furnace shown in FIG. 10, and gas outlets 10 and 10 are provided at the inlet and outlet of the furnace.
This is a configuration provided with a. As a result, nitrogen (N 2 ) gas or dry air that has been separately warmed by an air heater or the like is supplied into the furnace through the gas outlets 10 and 10a, and gas is supplied from the furnace inlet and the furnace outlet toward the center of the furnace. It has a flow of.

【0056】図8は他の実施の形態よりなる熱硬化炉を
示す断面図である。
FIG. 8 is a sectional view showing a thermosetting furnace according to another embodiment.

【0057】該熱硬化炉は、図10に示す従来の熱硬化
炉において、保護体2の供給手段2aに設けられヒータ
ーブロックHB1〜HB6に対して垂直方向に設けられ
た気体吹出口に代わって、ヒーターブロックHB1〜H
B3の上方にはヒーターブロックHB6側に一定角度で
傾斜してなる気体吹出口11を設け、且つヒーターブロ
ックHB4〜HB6の上方にはヒーターブロックHB1
側に一定角度で傾斜してなる気体吹出口11aを設けて
なる構成である。これにより、上記同様、前記気体吹出
口11,11aを通して、エアーヒーター等で別途暖め
られた窒素(N2 )ガスやドライエアーを炉内に供給
し、炉内を炉入口及び出口から炉中心方向に気体の流れ
を持たせるものである。
This heat curing furnace is different from the conventional heat curing furnace shown in FIG. 10 in place of the gas outlets provided in the supply means 2a of the protector 2 and provided in the direction perpendicular to the heater blocks HB1 to HB6. , Heater block HB1 ~ H
A gas outlet 11 that is inclined at a constant angle on the heater block HB6 side is provided above B3, and a heater block HB1 is provided above the heater blocks HB4 to HB6.
This is a configuration in which a gas outlet 11a that is inclined at a constant angle is provided on the side. As a result, similarly to the above, nitrogen (N 2 ) gas or dry air separately heated by an air heater or the like is supplied into the furnace through the gas outlets 11 and 11a, and the inside of the furnace is directed from the furnace inlet and outlet toward the center of the furnace. It has a gas flow.

【0058】なお、気体の供給量は上記第1実施の形態
と同様に設定することとする。
The amount of gas supplied is set in the same manner as in the first embodiment.

【0059】本実施の形態は、ステップアップとステッ
プダウンとを兼ねて必要な温度プロファイルに適し、図
9に示すような硬化温度プロファイルを、近接するヒー
ターブロックの影響及び熱硬化炉を設置している環境の
状態に左右されることなく、得ることができる。
The present embodiment is suitable for the required temperature profile for both step-up and step-down, and the curing temperature profile as shown in FIG. 9 is set by the influence of the adjacent heater block and the thermal curing furnace. It can be obtained without being influenced by the state of the environment in which it is present.

【0060】また、図7の構成であると、気体吹出口1
0,10aの流量のコントロール(オン,オフ)によ
り、図1に示す熱硬化炉又は図4に示す熱硬化炉にも適
用することができる。
Further, with the configuration of FIG. 7, the gas outlet 1
By controlling (on / off) the flow rate of 0, 10a, it can be applied to the thermosetting furnace shown in FIG. 1 or the thermosetting furnace shown in FIG.

【0061】上述した図2,図5及び図8の熱硬化炉
は、従来の供給手段を共用して流動手段としているの
で、図1,図4及び図7の熱硬化炉のように別途流動手
段を設ける必要がないといった効果もある。
Since the above-mentioned thermosetting furnace of FIGS. 2, 5 and 8 uses the conventional supplying means in common as a fluidizing means, it separately flows like the thermosetting furnaces of FIGS. 1, 4 and 7. There is also an effect that it is not necessary to provide means.

【0062】また、上述した第1乃至第3実施の形態に
おいては、流動手段を第1又は第2の気体吹出口として
説明したが、前記流動手段として加熱手段に接触する気
体を流動させるための手段、例えば気体吸収口,ファン
等を用いても良い。
Further, in the above-mentioned first to third embodiments, the flow means has been described as the first or second gas outlet, but as the flow means, the gas for contacting the heating means is made to flow. Means such as a gas absorption port or a fan may be used.

【0063】[0063]

【発明の効果】以上説明したように、本発明の請求項1
乃至3記載の加熱炉によれば、複数の加熱手段のうちの
低温の加熱手段側から高温の加熱手段側に気体を流動さ
せる流動手段、即ち被加熱部材の炉入口及び炉出口の少
なくとも一方に設けられてなる第1の気体吹出口又は前
記加熱手段の上方に設けられ前記複数の加熱手段のうち
の低温の加熱手段側から高温の加熱手段側に傾斜した第
2の気体吹出口を設けてなる構成なので、前記第1又は
第2の気体吹出口により、互いに近接する加熱手段のう
ちの低温の加熱手段を、加熱炉を設置している環境の状
態にも左右されることなく、近接する高温の加熱手段の
影響による温度上昇を受けにくくすることができる。し
たがって、各加熱手段を設定通りの温度にすることが可
能となる。
As described above, according to the first aspect of the present invention.
According to the heating furnace of any one of claims 1 to 3, the flow means for flowing the gas from the low temperature heating means side of the plurality of heating means to the high temperature heating means side, that is, at least one of the furnace inlet and the furnace outlet of the heated member. A first gas outlet provided or a second gas outlet provided above the heating means and inclined from the low temperature heating means side to the high temperature heating means side of the plurality of heating means is provided. With this configuration, the low-temperature heating means of the heating means that are close to each other are brought close to each other by the first or second gas outlet without being influenced by the state of the environment in which the heating furnace is installed. It is possible to prevent the temperature from increasing due to the influence of the high-temperature heating means. Therefore, it becomes possible to bring each heating means to a temperature as set.

【0064】また、本発明の請求項4記載の加熱炉は、
接着剤の希釈剤が蒸発し始める温度を下限とし且つ前記
接着剤の熱硬化反応開始温度より低い温度で予備加熱す
る第1の加熱手段と、前記熱硬化開始温度以上で加熱す
る第2の加熱手段と、前記第1の加熱手段の温度と第2
の加熱手段の温度との略中間温度で加熱する第3の加熱
手段と、前記第1の加熱手段側から第3の加熱手段側に
気体を流動させる流動手段とを備えてなる構成なので、
前記流動手段により互いに近接する第1及び第3の加熱
手段のうちの低温の第1の加熱手段を、加熱炉を設置し
ている環境の状態にも左右されることなく近接する高温
の第3の加熱手段の影響による温度上昇を受けにくくな
り、第1の加熱手段を希釈剤が蒸発し始める温度を下限
とし且つ前記接着剤の熱硬化反応開始温度より低い温度
に安定して設定することができる。これにより、前記第
1の加熱手段による予備加熱により前記接着剤は硬化前
の低粘度状態が確保されるとともに前記希釈剤が蒸発し
て均一な状態にでき、第2の加熱手段による本硬化によ
り気泡発生の無い硬化反応を得ることが可能な加熱炉を
提供することができる。また、前記第3の加熱手段によ
り第1の加熱手段と第2の加熱手段とが互いに干渉され
ず、予備加熱を十分確保することができる。したがっ
て、熱抵抗,接着性,電気伝導性が良好な半導体チップ
固着部を得ることが可能となる。
The heating furnace according to claim 4 of the present invention is
First heating means for preheating at a temperature lower than the temperature at which the adhesive diluent starts to evaporate and lower than the thermosetting reaction initiation temperature of the adhesive, and second heating for heating at the thermosetting initiation temperature or higher. Means, the temperature of the first heating means and the second
The third heating means for heating at a temperature substantially intermediate to the temperature of the heating means, and the flow means for flowing the gas from the first heating means side to the third heating means side are provided.
Of the first and third heating means that are close to each other by the flow means, the first low-temperature heating means that is close to the high-temperature third heating means that is close to each other without being influenced by the environmental conditions in which the heating furnace is installed. The temperature of the first heating means is less likely to increase due to the influence of the heating means, and the first heating means can be stably set to a temperature lower than the temperature at which the diluent starts to evaporate and lower than the thermosetting reaction start temperature of the adhesive. it can. As a result, the adhesive is kept in a low viscosity state before curing by the preheating by the first heating means and the diluent is evaporated to be in a uniform state, and the main curing is performed by the second heating means. It is possible to provide a heating furnace capable of obtaining a curing reaction without generation of bubbles. Further, the third heating means prevents the first heating means and the second heating means from interfering with each other, and sufficient preheating can be ensured. Therefore, it is possible to obtain a semiconductor chip fixing portion having good thermal resistance, adhesiveness, and electrical conductivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施の形態よりなる加熱炉を示す
断面図である。
FIG. 1 is a sectional view showing a heating furnace according to a first embodiment of the present invention.

【図2】他の実施の形態よりなる加熱炉を示す断面図で
ある。
FIG. 2 is a cross-sectional view showing a heating furnace according to another embodiment.

【図3】図1又は図2に示す加熱炉の温度プロファイル
の一例を示す図である。
FIG. 3 is a diagram showing an example of a temperature profile of the heating furnace shown in FIG. 1 or FIG.

【図4】本発明の第2実施の形態よりなる加熱炉を示す
断面図である。
FIG. 4 is a sectional view showing a heating furnace according to a second embodiment of the present invention.

【図5】他の実施の形態よりなる加熱炉を示す断面図で
ある。
FIG. 5 is a sectional view showing a heating furnace according to another embodiment.

【図6】図4又は図5に示す加熱炉の温度プロファイル
の一例を示す図である。
6 is a diagram showing an example of a temperature profile of the heating furnace shown in FIG. 4 or FIG.

【図7】本発明の第3実施の形態よりなる加熱炉を示す
断面図である。
FIG. 7 is a sectional view showing a heating furnace according to a third embodiment of the present invention.

【図8】他の実施の形態よりなる加熱炉を示す断面図で
ある。
FIG. 8 is a cross-sectional view showing a heating furnace according to another embodiment.

【図9】図7又は図8に示す加熱炉の温度プロファイル
の一例を示す図である。
9 is a diagram showing an example of a temperature profile of the heating furnace shown in FIG. 7 or FIG.

【図10】従来の加熱炉を示す断面図である。FIG. 10 is a cross-sectional view showing a conventional heating furnace.

【図11】従来の加熱炉の動作を説明するための図であ
り、(a)は平面図であり、(b)は側面図である。
FIG. 11 is a diagram for explaining the operation of the conventional heating furnace, in which (a) is a plan view and (b) is a side view.

【図12】半導体チップが接着剤を介してリードフレー
ム上にダイボンドされた状態を示す図であり、(a)は
平面図であり、(b)は(a)のA−A′断面図であ
る。
12A and 12B are diagrams showing a state in which a semiconductor chip is die-bonded onto a lead frame via an adhesive, FIG. 12A is a plan view, and FIG. 12B is a sectional view taken along line AA ′ of FIG. is there.

【図13】従来の接着剤の硬化温度プロファイルの一例
を示す図である。
FIG. 13 is a diagram showing an example of a curing temperature profile of a conventional adhesive.

【図14】(a),(b)は熱抵抗パラメータの標準的
な測定波形を示す図である。
14A and 14B are diagrams showing standard measurement waveforms of thermal resistance parameters.

【図15】図13の硬化温度プロファイルによる熱抵抗
パラメータの分布を示す図である。
15 is a diagram showing a distribution of thermal resistance parameters according to the curing temperature profile of FIG.

【図16】図13の硬化温度プロファイルによる半導体
チップ固着部の状態を示す断面図である。
16 is a cross-sectional view showing a state of a semiconductor chip fixing portion according to the curing temperature profile of FIG.

【図17】提案例の接着剤の硬化温度プロファイルの一
例を示す図である。
FIG. 17 is a diagram showing an example of a curing temperature profile of the adhesive of the proposed example.

【図18】エポキシ系樹脂の導電性接着剤の熱重量測定
−示差熱分析(TG−DTA)データを示す図である。
FIG. 18 is a view showing thermogravimetric measurement-differential thermal analysis (TG-DTA) data of a conductive adhesive of epoxy resin.

【図19】図17の硬化温度プロファイルによる熱抵抗
パラメータの分布を示す図である。
19 is a diagram showing distribution of thermal resistance parameters according to the curing temperature profile of FIG.

【図20】図17の硬化温度プロファイルによる半導体
チップ固着部の状態を示す断面図である。
20 is a cross-sectional view showing a state of a semiconductor chip fixing portion according to the curing temperature profile of FIG.

【図21】図17に示す硬化温度プロファイルを図10
に示す加熱炉で設定した際の硬化温度プロファイルを示
す図である。
FIG. 21 shows the curing temperature profile shown in FIG.
It is a figure which shows the hardening temperature profile when it sets in the heating furnace shown in FIG.

【図22】図21の硬化温度プロファイルによる熱抵抗
パラメータの分布を示す図である。
22 is a diagram showing distribution of thermal resistance parameters according to the curing temperature profile of FIG. 21.

【符号の説明】[Explanation of symbols]

1 搬送ワイヤ(搬送手段) 2 保護体 2a 供給手段 3a 排出手段 3 リードフレーム(被加熱部材) 4 半導体チップ 5 ダイボンドペースト(接着剤) 10,10a 第1の気体吹出口(流動手段) 11,11a 第2の気体吹出口(流動手段) HB1,HB2 ヒーターブロック(第1の加熱手段) HB3 ヒーターブロック(第3の加熱手段) HB4,HB5,HB6 ヒーターブロック(第2の加
熱手段)
DESCRIPTION OF SYMBOLS 1 Conveying wire (conveying means) 2 Protecting body 2a Supplying means 3a Ejecting means 3 Lead frame (heated member) 4 Semiconductor chip 5 Die bond paste (adhesive) 10,10a First gas outlet (flowing means) 11,11a Second gas outlet (flow means) HB1, HB2 heater block (first heating means) HB3 heater block (third heating means) HB4, HB5, HB6 heater block (second heating means)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被加熱部材を異なる温度で加熱する複数
の加熱手段と、前記被加熱部材を前記各加熱手段に搬送
する搬送手段とを備え、前記複数の加熱手段が互いに近
接して並置されてなる加熱炉において、 前記複数の加熱手段のうちの低温の加熱手段側から高温
の加熱手段側に気体を流動させる流動手段を設けてなる
ことを特徴とする加熱炉。
1. A plurality of heating means for heating a member to be heated at different temperatures, and a conveying means for conveying the member to be heated to each of the heating means, wherein the plurality of heating means are juxtaposed in close proximity to each other. A heating furnace comprising: a heating means for flowing a gas from a low temperature heating means side of the plurality of heating means to a high temperature heating means side.
【請求項2】 前記流動手段は、前記被加熱部材の炉入
口及び炉出口の少なくとも一方に設けられてなる第1の
気体吹出口からなることを特徴とする請求項1記載の加
熱炉。
2. The heating furnace according to claim 1, wherein the flowing means comprises a first gas outlet provided at at least one of a furnace inlet and a furnace outlet of the member to be heated.
【請求項3】 前記流動手段は、前記加熱手段の上方に
設けられ前記複数の加熱手段のうちの低温の加熱手段側
から高温の加熱手段側に傾斜した第2の気体吹出口から
なることを特徴とする請求項1記載の加熱炉。
3. The second flow means comprises a second gas outlet provided above the heating means and inclined from the low temperature heating means side of the plurality of heating means to the high temperature heating means side. The heating furnace according to claim 1, wherein the heating furnace is a heating furnace.
【請求項4】 半導体チップが希釈剤を含有する接着剤
を介して搭載されたリードフレームを異なる温度で加熱
する複数の加熱手段と、前記リードフレームを低温の加
熱手段から高温の加熱手段に順次搬送する搬送手段とを
備え、前記複数の加熱手段が低温から高温の順に互いに
近接して並置されてなる加熱炉において、 前記接着剤の希釈剤が蒸発し始める温度を下限とし且つ
前記接着剤の熱硬化反応開始温度より低い温度で予備加
熱する第1の加熱手段と、 前記熱硬化開始温度以上で加熱する第2の加熱手段と、 前記第1の加熱手段の温度と第2の加熱手段の温度との
略中間温度で加熱する第3の加熱手段と、 前記第1の加熱手段側から第3の加熱手段側に気体を流
動させる流動手段とを備えてなることを特徴とする加熱
炉。
4. A plurality of heating means for heating a lead frame on which a semiconductor chip is mounted via an adhesive containing a diluent at different temperatures, and the lead frame is sequentially heated from a low temperature heating means to a high temperature heating means. In a heating furnace comprising a transporting means for transporting, wherein the plurality of heating means are juxtaposed in close proximity to each other in the order of low temperature to high temperature, the temperature at which the diluent of the adhesive begins to evaporate is set as a lower limit, and A first heating means for preheating at a temperature lower than the thermosetting reaction starting temperature; a second heating means for heating at a temperature not lower than the thermosetting starting temperature; and a temperature of the first heating means and a second heating means. A heating furnace comprising: a third heating means for heating at a temperature substantially intermediate to the temperature; and a flow means for flowing a gas from the first heating means side to the third heating means side.
JP25292895A 1995-09-29 1995-09-29 Heating furnace and method for curing die bond paste Expired - Fee Related JP3377660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25292895A JP3377660B2 (en) 1995-09-29 1995-09-29 Heating furnace and method for curing die bond paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25292895A JP3377660B2 (en) 1995-09-29 1995-09-29 Heating furnace and method for curing die bond paste

Publications (2)

Publication Number Publication Date
JPH0989462A true JPH0989462A (en) 1997-04-04
JP3377660B2 JP3377660B2 (en) 2003-02-17

Family

ID=17244126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25292895A Expired - Fee Related JP3377660B2 (en) 1995-09-29 1995-09-29 Heating furnace and method for curing die bond paste

Country Status (1)

Country Link
JP (1) JP3377660B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000007234A1 (en) * 1998-07-28 2000-02-10 Hitachi Chemical Company, Ltd. Semiconductor device and method for manufacturing the same
CN102623361A (en) * 2010-11-24 2012-08-01 台湾积体电路制造股份有限公司 Thermal gradient reflow for forming columnar grain structures for solder bumps

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000007234A1 (en) * 1998-07-28 2000-02-10 Hitachi Chemical Company, Ltd. Semiconductor device and method for manufacturing the same
US6611064B1 (en) 1998-07-28 2003-08-26 Hitachi Chemical Company, Ltd. Semiconductor device and method for manufacturing the same
CN102623361A (en) * 2010-11-24 2012-08-01 台湾积体电路制造股份有限公司 Thermal gradient reflow for forming columnar grain structures for solder bumps

Also Published As

Publication number Publication date
JP3377660B2 (en) 2003-02-17

Similar Documents

Publication Publication Date Title
US7810703B2 (en) Wire bonding method
CN101878566B (en) Laser light source module
JP2793528B2 (en) Soldering method and soldering device
US6491202B1 (en) Wire bonding apparatus and method
US10799977B2 (en) Heater chip, joining apparatus and joining method
TWI625801B (en) Chip arrangement and method for forming a contact connection
JP2012501082A (en) Method of soldering contact wires to solar cells
JP3377660B2 (en) Heating furnace and method for curing die bond paste
US20140054277A1 (en) Wire bonding apparatus and wire bonding method
JP3348639B2 (en) Temperature control method of solder bump in reflow furnace
US6829263B1 (en) Semiconductor laser
US5087590A (en) Method of manufacturing semiconductor devices
US7323359B2 (en) Mounting method for a semiconductor component
US4804810A (en) Apparatus and method for tape bonding
KR100724587B1 (en) Device for both solder die bonding and epoxy die bonding and method for die bonding using the device
US20070071583A1 (en) Substrate indexing system
US10245668B2 (en) Fluxing systems, bonding machines including fluxing systems, and methods of operating the same
JPH11121921A (en) Method and device for soldering electronic components
JP3194378B2 (en) Wire bonding equipment
JP3200280B2 (en) Method for manufacturing semiconductor device
EP0250296A2 (en) Apparatus and method for tape bonding
JPH0970659A (en) Tool for thermo compression bonding
KR20190025801A (en) Heater assembly
JPH019158Y2 (en)
JPH11163025A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20071206

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20111206

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121206

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20121206

LAPS Cancellation because of no payment of annual fees