JPH0988900A - Oil diffusion pump device - Google Patents
Oil diffusion pump deviceInfo
- Publication number
- JPH0988900A JPH0988900A JP27710495A JP27710495A JPH0988900A JP H0988900 A JPH0988900 A JP H0988900A JP 27710495 A JP27710495 A JP 27710495A JP 27710495 A JP27710495 A JP 27710495A JP H0988900 A JPH0988900 A JP H0988900A
- Authority
- JP
- Japan
- Prior art keywords
- oil
- temperature
- heater
- housing
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Control Of Temperature (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、真空装置に用いら
れる油拡散ポンプ装置に関する。TECHNICAL FIELD The present invention relates to an oil diffusion pump device used in a vacuum device.
【0002】[0002]
【従来の技術】油拡散ポンプ装置は、高真空を達成する
ための真空ポンプ装置によく用いられる。図4は、従来
の油拡散ポンプ装置の構成図である。ポンプ室を形成す
るハウジング10内部に2段のジェット(蒸気噴出部)
11が設けられ、その底部の油溜まり13にはヒータ1
2が油に浸った状態で設置される。ロータリポンプ等の
補助ポンプ(図示せず)に接続される排気口14はハウ
ジング10の側面下方に設けられ、排気口14の上方に
は空冷フィン15がハウジング10を取り囲むように配
設される。ハウジング10上部の吸気口16は、真空状
態にしたい容器(すなわち真空容器)に接続される。ヒ
ータ12には、制御部20により制御される電力供給部
21から電力が供給される。Oil diffusion pump devices are often used in vacuum pump devices to achieve high vacuum. FIG. 4 is a configuration diagram of a conventional oil diffusion pump device. Two-stage jet (steam jetting part) inside the housing 10 forming the pump chamber
11 is provided, and the heater 1 is provided in the oil sump 13 at the bottom thereof.
2 is installed in oil. An exhaust port 14 connected to an auxiliary pump (not shown) such as a rotary pump is provided below the side surface of the housing 10, and an air cooling fin 15 is provided above the exhaust port 14 so as to surround the housing 10. The intake port 16 on the upper part of the housing 10 is connected to a container (that is, a vacuum container) to be vacuumed. Electric power is supplied to the heater 12 from a power supply unit 21 controlled by the control unit 20.
【0003】上記構成の装置の定常動作時すなわち真空
引き動作時には、ヒータ12の加熱により油溜まり13
中の油は沸騰し油蒸気となる。油蒸気はジェット11か
ら下向きに超音速で噴出し(破線矢印)、この噴流によ
り吸気口16から飛び込む気体分子は下方に搬送される
(実線太矢印)。油蒸気自体は、空冷フィン15によっ
て冷却されるハウジング10側面内壁で液体となり、そ
の内壁を伝って落下し油溜まり13に還流する。油蒸気
の噴流によって下方に運ばれた気体分子は、補助ポンプ
の吸引作用により排気口14を通して大気側に排出され
る。このようにして吸気口16からハウジング10内に
飛び込んだ気体分子は次々と大気側へ運び出されるた
め、吸気口16に接続された真空容器は最終的に高真空
状態に至る。なお、ヒータ12は電力供給部21から供
給される電力により加熱され、その電力供給は制御部2
0によりオン/オフ制御される。During a steady operation of the apparatus having the above-mentioned structure, that is, during a vacuuming operation, the oil sump 13 is heated by the heater 12.
The oil inside boils and becomes oil vapor. The oil vapor is jetted downward from the jet 11 at supersonic speed (broken line arrow), and the gas molecules jumping from the intake port 16 by this jet flow are conveyed downward (solid line thick arrow). The oil vapor itself becomes a liquid on the inner wall of the side surface of the housing 10 that is cooled by the air-cooling fins 15, falls along the inner wall, and falls back to the oil sump 13. The gas molecules carried downward by the jet of oil vapor are discharged to the atmosphere side through the exhaust port 14 by the suction action of the auxiliary pump. In this way, the gas molecules that have jumped from the intake port 16 into the housing 10 are successively carried out to the atmosphere side, so that the vacuum container connected to the intake port 16 finally reaches a high vacuum state. The heater 12 is heated by the power supplied from the power supply unit 21, and the power supply is controlled by the control unit 2.
On / off is controlled by 0.
【0004】[0004]
【発明が解決しようとする課題】次いで、真空引き動作
を停止する場合の処理動作及び現象について、図5を参
照しつつ説明する。図5は、真空引き動作停止時の油拡
散ポンプ装置の要部の温度変化を示す図である。図中、
油温は油溜まり13中の油の温度、ハウジング温度はハ
ウジング10壁面の温度であり、いずれも想定値である
(モニタ値ではない)。Next, the processing operation and the phenomenon when the vacuuming operation is stopped will be described with reference to FIG. FIG. 5 is a diagram showing a temperature change of a main part of the oil diffusion pump device when the evacuation operation is stopped. In the figure,
The oil temperature is the temperature of the oil in the oil sump 13, and the housing temperature is the temperature of the wall surface of the housing 10, both of which are assumed values (not monitor values).
【0005】真空引き動作時には、油溜まり13中の油
にヒータ12から充分な熱量が供給され続けるため、油
は激しく沸騰し、勢い良く油蒸気が立ち昇る状態にあ
る。すなわち、油温は油の沸点TOBとなる。このとき、
ハウジング10は高温の油からの熱伝導によって供給さ
れる熱量と空冷フィン15等により奪われる熱量とが平
衡し、油温よりも低い或る温度にほぼ維持された状態に
ある。During the evacuation operation, the heater 12 continues to supply a sufficient amount of heat to the oil in the oil sump 13, so that the oil boils vigorously and the oil vapor rises vigorously. That is, the oil temperature becomes the boiling point TOB of the oil. At this time,
The housing 10 is in a state where the amount of heat supplied by heat conduction from high-temperature oil and the amount of heat taken away by the air-cooled fins 15 are in equilibrium, and are substantially maintained at a certain temperature lower than the oil temperature.
【0006】制御部20が真空引き動作の停止命令を受
け取ると(時刻t11)、電力供給部21からヒータ12
へ供給される電力は遮断され、加熱が停止する。初め油
温はハウジング温度よりも高いが、油の熱容量は小さい
ため、油は急速にハウジング10に熱を奪われる。この
ため、油温は沸点TOBから急速に低下するのに対し、ハ
ウジング温度の低下は緩やかであり、時刻t12において
両者は一致する。時刻t12以降は、ハウジング10から
油への熱伝導により、油の冷却速度は遅くなる。このた
め、油温が下がり始めてから油の蒸発する限界温度TOE
に達する迄に要する時間Δt1は、油温が時刻t12以前
の冷却速度で下がり続けた場合と比較するとかなり長く
なる。When the control unit 20 receives the vacuuming operation stop command (time t11), the power supply unit 21 causes the heater 12 to stop.
The power supplied to is shut off and heating stops. Although the oil temperature is initially higher than the housing temperature, the heat capacity of the oil is small, so that the oil is rapidly deprived of heat by the housing 10. Therefore, while the oil temperature rapidly decreases from the boiling point TOB, the housing temperature gradually decreases, and the two coincide with each other at time t12. After time t12, the cooling rate of the oil becomes slow due to heat conduction from the housing 10 to the oil. Therefore, the limit temperature TOE at which the oil evaporates after the oil temperature begins to drop
The time Δt1 required to reach (1) becomes considerably longer than that when the oil temperature continues to decrease at the cooling rate before time t12.
【0007】油温が沸点TOBより下がり沸騰状態でなく
なると、油溜まり13中の油の内部からの油蒸気の発生
は停止し、油表面から油蒸気が立ち昇るだけになる。こ
の結果、ジェット11から流出する噴流の速度は急速に
低下し、気体分子を下方に運び去るだけの運動量を持た
なくなる。このため、たとえ吸気口16から気体分子が
飛び込んだとしても、その気体分子は排気口14方向へ
運ばれない。このとき補助ポンプは動作しているが、そ
の吸引力はハウジング10内を高真空に保つには充分で
ないため、排気口14からハウジング10内へ浸入して
きた気体分子が徐々に広がり、ハウジング10内部及び
真空容器内部の真空度は低下する。この結果、ジェット
11から漏れ出た油蒸気は徐々に広がり、吸気口16を
通って真空容器側へも逆流し、真空容器内部を汚染する
ことになる。この油蒸気による汚染は、油温が油の蒸発
する限界温度TOE以下に下がる迄続くため、Δt1が長
いほど汚染が酷くなる。When the oil temperature falls below the boiling point TOB and ceases to be in a boiling state, the generation of oil vapor from the inside of the oil in the oil sump 13 is stopped, and the oil vapor only rises from the oil surface. As a result, the velocity of the jet flowing out of the jet 11 rapidly decreases, and the momentum for carrying the gas molecules downward is lost. Therefore, even if gas molecules fly in from the intake port 16, the gas molecules are not carried toward the exhaust port 14. At this time, the auxiliary pump is operating, but its suction force is not sufficient to maintain a high vacuum in the housing 10. Therefore, gas molecules that have entered the housing 10 from the exhaust port 14 gradually spread, and the inside of the housing 10 is gradually expanded. Also, the degree of vacuum inside the vacuum container decreases. As a result, the oil vapor leaked from the jet 11 gradually spreads and flows back to the vacuum container side through the intake port 16 and contaminates the inside of the vacuum container. Contamination due to the oil vapor continues until the oil temperature falls below the limit temperature TOE at which the oil evaporates, so the longer Δt1 is, the more severe the pollution becomes.
【0008】このような油蒸気の逆流を防止するため
に、従来装置では真空容器と吸気口16との間にバッフ
ルやトラップ等の構造体が設けられていたが、構造が複
雑でありコストが高いものとなっていた。また、これら
の構造体に油が付着した結果、気体分子の取り込みに支
障をきたし、真空引き動作自体がうまく行なわれなくな
る等故障の原因となり易いという問題もあった。In order to prevent such a reverse flow of oil vapor, a structure such as a baffle or a trap was provided between the vacuum container and the intake port 16 in the conventional apparatus, but the structure is complicated and the cost is low. It was expensive. Further, as a result of the oil adhering to these structures, there is a problem that it interferes with the uptake of gas molecules and is liable to cause a failure such that the evacuation operation itself is not performed well.
【0009】本発明はこのような課題を解決するために
成されたものであり、その目的は、低コストで真空引き
動作の停止時における真空容器内の油汚染を軽減する油
拡散ポンプ装置を提供することにある。The present invention has been made to solve the above problems, and an object thereof is to provide an oil diffusion pump device which reduces the oil contamination in the vacuum container when the vacuuming operation is stopped at a low cost. To provide.
【0010】[0010]
【課題を解決するための手段】上記課題を解決するため
に成された本発明は、ヒータを加熱することにより油を
加熱蒸発させ、該油蒸気を高速噴射することによりポン
プ室内に流入した気体分子を運び出す油拡散ポンプ装置
において、 a)ポンプ室の温度を検知する温度センサと、 b)前記ヒータに電力を供給する電力供給手段と、 c)ポンプ動作を停止するに際し、前記ポンプ室の温度は
低下するが油の温度は油蒸気の高速噴射が可能である状
態に保たれる程度に前記電力を削減してヒータ加熱を継
続し、そのあと前記温度センサにより検知される温度が
所定温度に下がったときに該電力を遮断するよう前記電
力供給手段を制御する制御手段と、を備えることを特徴
としている。SUMMARY OF THE INVENTION The present invention, which has been made to solve the above-mentioned problems, discloses a method in which a heater is heated to heat and evaporate oil, and a high-speed injection of the oil vapor causes a gas to flow into a pump chamber. In an oil diffusion pump device that carries out molecules, a) a temperature sensor that detects the temperature of the pump chamber, b) power supply means that supplies power to the heater, and c) the temperature of the pump chamber when the pump operation is stopped. However, the temperature of the oil is reduced to such a degree that the high-speed injection of oil vapor can be maintained and the heater heating is continued, and then the temperature detected by the temperature sensor reaches a predetermined temperature. Control means for controlling the power supply means so as to cut off the power when the power goes down.
【0011】[0011]
【発明の実施の形態】本発明に係る油拡散ポンプ装置で
は、真空引き動作の停止命令が与えられたあと、すぐに
はヒータ加熱を停止せず、定常動作時のヒータ加熱電力
よりも小さいが油の温度をほぼ維持できる程度の電力を
ヒータに供給し続けることにより真空排気状態を維持す
る。すなわち、真空引き動作時にはヒータ加熱により油
は激しく沸騰する状態にあるが、真空引き動作の停止命
令が与えられたあとは、油の沸騰状態が維持できる範囲
で極力小さい電力がヒータに供給される。このとき、ポ
ンプ室壁面(ハウジング)の温度は徐々に下がる。そし
て、温度センサにより検知されるハウジングの温度が所
定温度迄下がったならば、ヒータ加熱の電力供給を完全
に停止する。従って、油温及びハウジングの温度は共に
低下し始める。BEST MODE FOR CARRYING OUT THE INVENTION In the oil diffusion pump device according to the present invention, the heater heating is not stopped immediately after the instruction to stop the vacuuming operation is given, and it is smaller than the heater heating power in the steady operation. The vacuum exhaust state is maintained by continuing to supply the heater with electric power that can substantially maintain the oil temperature. That is, the oil is in a state of boiling strongly by heating the heater during the evacuation operation, but after the vacuum evacuation operation stop command is given, as little electric power as possible is supplied to the heater within a range in which the oil boiling state can be maintained. . At this time, the temperature of the wall surface (housing) of the pump chamber gradually decreases. When the temperature of the housing detected by the temperature sensor has dropped to a predetermined temperature, the heater heating power supply is completely stopped. Therefore, both the oil temperature and the housing temperature start to drop.
【0012】既述のように、油の冷却速度はハウジング
のそれより速いため、或る時点で両者の温度は一致し、
それ以降、油温の低下速度はハウジングや雰囲気の影響
により緩やかになる。しかし、予めハウジングは所定温
度迄冷却されているため、油温とハウジングの温度とが
一致するときの温度と、油の蒸発する最低限界温度との
差は、従来装置におけるその差よりも小さくなる。その
結果、真空排気状態が維持されなくなったあと油蒸気の
発生が停止する迄に要する時間は、従来装置よりもかな
り短縮される。As mentioned above, the cooling rate of oil is faster than that of the housing, so that at some point, the temperatures of both are the same,
After that, the decrease rate of the oil temperature becomes gentle due to the influence of the housing and atmosphere. However, since the housing has been cooled to a predetermined temperature in advance, the difference between the temperature when the oil temperature and the housing temperature match and the minimum limit temperature at which the oil evaporates is smaller than that in the conventional device. . As a result, the time required until the generation of oil vapor is stopped after the vacuum exhaust state is no longer maintained is considerably shortened as compared with the conventional device.
【0013】[0013]
【発明の効果】このため、本発明に係る油拡散ポンプ装
置によれば、温度センサ及び電力供給制御という簡便な
方法で、真空容器側の油汚染を軽減することができる。Therefore, according to the oil diffusion pump device of the present invention, oil contamination on the vacuum container side can be reduced by a simple method of temperature sensor and power supply control.
【0014】[0014]
【実施例】以下、本発明に係る油拡散ポンプ装置の一実
施例を図に基づき説明する。図1は本発明による油拡散
ポンプ装置の実施例の構成図、図2はヒータ加熱の制御
方法を示すフローチャート、図3はヒータに供給される
電力及び温度変化を示す図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the oil diffusion pump device according to the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of an embodiment of an oil diffusion pump device according to the present invention, FIG. 2 is a flow chart showing a heater heating control method, and FIG. 3 is a diagram showing power supplied to the heater and temperature changes.
【0015】図1において、図4の従来装置と比較して
相違するのは、ハウジング10の温度を検知するための
温度センサ17が設けられ、この検知温度に応じて制御
部18が電力供給部19を制御するように構成されてい
る点である。In FIG. 1, a difference from the conventional device of FIG. 4 is that a temperature sensor 17 for detecting the temperature of the housing 10 is provided, and the controller 18 controls the power supply unit according to the detected temperature. It is configured so as to control 19.
【0016】真空引きの定常動作状態では、制御部18
の制御により電力供給部19からヒータ12へ充分な電
力W1が供給され、油溜まり13中の油は加熱され、激
しく沸騰する状態にある(ステップS1)。時刻t21に
おいて制御部18が真空引き動作の停止命令を受けると
(ステップS2)、ヒータ12へ供給する電力をW2に
削減するよう電力供給部19は制御される(ステップS
3)。この電力W2は、油の沸騰状態が保たれる(すな
わち油温は沸点TOBに保たれる)範囲で、極力小さい電
力に設定される。すなわち、沸騰は穏やかな状態になる
が油温は沸点TOBに維持されるため、ジェット11から
の噴流の速度は超音速に保たれ、それ故真空排気状態は
維持される。一方、ハウジング10は、油からの熱伝達
により供給される熱量よりも外側から奪われる熱量の方
が大きくなるため、徐々にその温度が低下する。従っ
て、真空容器側の真空状態は維持されつつ、ハウジング
温度は徐々に下がる(図3のt21〜t22の状態)。In the steady operation state of evacuation, the control unit 18
By the control described above, sufficient electric power W1 is supplied from the power supply unit 19 to the heater 12, the oil in the oil sump 13 is heated, and the oil is in a state of intense boiling (step S1). When the control unit 18 receives a vacuuming operation stop command at time t21 (step S2), the power supply unit 19 is controlled to reduce the power supplied to the heater 12 to W2 (step S2).
3). The electric power W2 is set as small as possible within a range where the boiling state of the oil is maintained (that is, the oil temperature is maintained at the boiling point TOB). That is, since the boiling becomes mild, but the oil temperature is maintained at the boiling point TOB, the jet velocity from the jet 11 is maintained at supersonic speed, and thus the vacuum exhaust state is maintained. On the other hand, in the housing 10, since the amount of heat taken from the outside is larger than the amount of heat supplied by the heat transfer from the oil, the temperature thereof gradually decreases. Therefore, the housing temperature is gradually lowered while maintaining the vacuum state on the vacuum container side (state from t21 to t22 in FIG. 3).
【0017】温度センサ17の検知温度によりハウジン
グ温度が予め定めた温度T21に迄下がったならば(ステ
ップS4)、その時刻t22において、制御部18は電力
供給部19を制御しヒータ12への電力供給を停止する
(ステップS5)。この結果、時刻t22以降、ハウジン
グ10の冷却速度は速まり油温も急速に下がり始める。
これにより、真空排気状態は維持されなくなる。When the housing temperature is lowered to the predetermined temperature T21 by the temperature detected by the temperature sensor 17 (step S4), the control unit 18 controls the power supply unit 19 to supply power to the heater 12 at the time t22. The supply is stopped (step S5). As a result, after time t22, the cooling rate of the housing 10 increases and the oil temperature also begins to drop rapidly.
As a result, the vacuum exhaust state is no longer maintained.
【0018】既に述べたように、ハウジング10の冷却
速度は油の冷却速度よりも遅いため、或る時点(時刻t
23)において油温とハウジング温度とは一致し、それ以
降、油の冷却速度は鈍化する。しかし、油温とハウジン
グ温度とが一致するときの温度T22は、従来装置におい
て油温とハウジング温度とが一致する温度T12よりも低
くなる。すなわち、油の蒸発する限界温度TOEにより近
くなる。このため、油温が下がり始めてから温度TOEに
到達する迄に要する時間Δt2は、従来装置における時
間Δt1よりもかなり短縮化される。この結果、油蒸気
が吸気口16を通して真空容器側へ逆流する可能性を低
くすることができる。As described above, the cooling rate of the housing 10 is slower than the cooling rate of oil, so that at a certain time (time t
In 23), the oil temperature matches the housing temperature, and the oil cooling rate slows thereafter. However, the temperature T22 when the oil temperature and the housing temperature match becomes lower than the temperature T12 when the oil temperature and the housing temperature match in the conventional device. That is, it becomes closer to the limit temperature TOE at which the oil evaporates. Therefore, the time Δt2 required from reaching the temperature TOE after the oil temperature starts to decrease is considerably shorter than the time Δt1 in the conventional device. As a result, it is possible to reduce the possibility that the oil vapor will flow back to the vacuum container side through the intake port 16.
【図1】 本発明による油拡散ポンプ装置の一実施例の
構成図。FIG. 1 is a configuration diagram of an embodiment of an oil diffusion pump device according to the present invention.
【図2】 図1の油拡散ポンプ装置におけるヒータ加熱
の制御フローチャート。FIG. 2 is a control flowchart of heater heating in the oil diffusion pump device of FIG.
【図3】 図2の制御方法による電力変化及び温度変化
を示す図。FIG. 3 is a diagram showing a change in electric power and a change in temperature according to the control method of FIG.
【図4】 従来の油拡散ポンプ装置の構成図。FIG. 4 is a configuration diagram of a conventional oil diffusion pump device.
【図5】 従来の油拡散ポンプ装置におけるヒータ加熱
方法による温度変化を示す図。FIG. 5 is a diagram showing a temperature change due to a heater heating method in a conventional oil diffusion pump device.
10…ハウジング 11…ジェット 12…ヒータ 13…油溜まり 14…排気口 15…空冷フィン 16…吸気口 17…温度センサ 18…制御部 19…電力供給部 10 ... Housing 11 ... Jet 12 ... Heater 13 ... Oil sump 14 ... Exhaust port 15 ... Air cooling fin 16 ... Intake port 17 ... Temperature sensor 18 ... Control part 19 ... Electric power supply part
Claims (1)
発させ、該油蒸気を高速噴射することによりポンプ室内
に流入した気体分子を運び出す油拡散ポンプ装置におい
て、 a)ポンプ室の温度を検知する温度センサと、 b)前記ヒータに電力を供給する電力供給手段と、 c)ポンプ動作を停止するに際し、前記ポンプ室の温度は
低下するが油の温度は油蒸気の高速噴射が可能である状
態に保たれる程度に前記電力を削減してヒータ加熱を継
続し、そのあと前記温度センサにより検知される温度が
所定温度に下がったときに該電力を遮断するよう前記電
力供給手段を制御する制御手段と、を備えることを特徴
とする油拡散ポンプ装置。1. An oil diffusion pump device which heats and evaporates oil by heating a heater, and carries out gas molecules flowing into the pump chamber by high-speed injection of the oil vapor, a) detecting the temperature of the pump chamber A temperature sensor; b) a power supply means for supplying electric power to the heater; and c) a state in which the temperature of the pump chamber is lowered but the oil temperature is capable of high-speed injection of oil vapor when the pump operation is stopped. Control for controlling the power supply means so as to cut off the electric power when the temperature detected by the temperature sensor drops to a predetermined temperature after continuing the heater heating by reducing the electric power to the level An oil diffusion pump device comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27710495A JPH0988900A (en) | 1995-09-28 | 1995-09-28 | Oil diffusion pump device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27710495A JPH0988900A (en) | 1995-09-28 | 1995-09-28 | Oil diffusion pump device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0988900A true JPH0988900A (en) | 1997-03-31 |
Family
ID=17578840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27710495A Pending JPH0988900A (en) | 1995-09-28 | 1995-09-28 | Oil diffusion pump device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0988900A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011025176A (en) * | 2009-07-27 | 2011-02-10 | Hitachi Koki Co Ltd | Centrifugal separator |
CN102829004A (en) * | 2012-09-05 | 2012-12-19 | 常州大成绿色镀膜科技有限公司 | Anti-explosion oil diffusion pump vacuum system and anti-explosion control method thereof |
CN103742456A (en) * | 2013-12-20 | 2014-04-23 | 江苏大学 | Rotation type vacuum diffusion pump |
-
1995
- 1995-09-28 JP JP27710495A patent/JPH0988900A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011025176A (en) * | 2009-07-27 | 2011-02-10 | Hitachi Koki Co Ltd | Centrifugal separator |
US8409068B2 (en) | 2009-07-27 | 2013-04-02 | Hitachi Koki Co., Ltd. | Centrifuge with vacuum pump and control method thereof |
CN102829004A (en) * | 2012-09-05 | 2012-12-19 | 常州大成绿色镀膜科技有限公司 | Anti-explosion oil diffusion pump vacuum system and anti-explosion control method thereof |
CN103742456A (en) * | 2013-12-20 | 2014-04-23 | 江苏大学 | Rotation type vacuum diffusion pump |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4256031B2 (en) | Processing apparatus and temperature control method thereof | |
KR101054683B1 (en) | Cold Trap and Recycling Method | |
US20030205364A1 (en) | Method and apparatus for dissipating heat from an electronic device | |
KR100522650B1 (en) | Absorption Type Refrigerator and Controlling Method Therefor | |
JP2000345835A (en) | Internal combustion engine | |
JPH0988900A (en) | Oil diffusion pump device | |
JP2003203905A (en) | Etching apparatus and method for controlling temperature thereof | |
JP4842787B2 (en) | Steam generating apparatus, processing system, steam generating method and recording medium | |
JP3978765B2 (en) | Oil diffusion pump operation method, oil diffusion pump control device, vacuum exhaust device and control method thereof | |
JPH09318188A (en) | Method of controlling absorption cold/hot water generator | |
KR100188989B1 (en) | Method for controlling an absorption system | |
JP2006308199A (en) | Cooker | |
JP2000249441A (en) | Vacuum cooling apparatus where cooling up to predetermined time is securely achieved | |
US6101737A (en) | Apparatus and method for drying a semiconductor member | |
JPH04306422A (en) | Heater device | |
JP6647095B2 (en) | Vacuum cooling device | |
JPH06198101A (en) | Evaporating concentrator | |
JPH09196529A (en) | Vacuum cooling method | |
JP2007198392A (en) | Oil diffusing pump operating method and evacuating device, and evacuating device control method | |
JPS60243318A (en) | Boiling cooling device for internal-combustion engine | |
JP2000356443A (en) | Evaporative cooling device | |
JP2717614B2 (en) | Double effect absorption chiller / heater and control method of double effect absorption chiller / heater | |
JP2001059667A (en) | Vacuum cooler performing stepwise cooling | |
JPS6183440A (en) | Evaporative cooling device for internal-combustion engine | |
JPH06123238A (en) | Control method of operating circulation type power system |