JPH098413A - Manufacture of surface emission element - Google Patents

Manufacture of surface emission element

Info

Publication number
JPH098413A
JPH098413A JP17165995A JP17165995A JPH098413A JP H098413 A JPH098413 A JP H098413A JP 17165995 A JP17165995 A JP 17165995A JP 17165995 A JP17165995 A JP 17165995A JP H098413 A JPH098413 A JP H098413A
Authority
JP
Japan
Prior art keywords
layer
temperature
gain
peak
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17165995A
Other languages
Japanese (ja)
Other versions
JP2713244B2 (en
Inventor
Mikihiro Kajita
幹浩 梶田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP17165995A priority Critical patent/JP2713244B2/en
Publication of JPH098413A publication Critical patent/JPH098413A/en
Application granted granted Critical
Publication of JP2713244B2 publication Critical patent/JP2713244B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide the manufacturing method of a surface emission element with which its offset amount can be set at the optimum amount when a gain offset method is adopted for improvement of thermal characteristics of the surface emission element. CONSTITUTION: Crystal is grown on the active layer 5 provided between two resonators, which are composed of multilayer film reflecting mirrors 3 and 7, at the board temperature lower than the ordinary growth board temperature, the information of resonance peak and gain peak is obtained after the growth of crystal, and an element is heat-treated at the prescribed temperature in such a manner that the offset amount between the gain peak and the resonant peak becomes the desired temperature characteristics based on the above- mentioned information. As an active layer is grown at a low temperature, the deviation in the amount of gain offset, due to inevitable film thickness distribution and the fluttering etc., of flux, from the designed value can be prevented, and as a gain offset amount is set by the subsequently conducted heat treatment, an optimum offset amount can be set at all times.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光情報処理や光コンピュ
ーティング等の分野において光インターコネクションを
実現するために用いられる面発光素子に関し、特に温度
調節器を用いることなく要求される温度特性を具備し、
周囲の環境温度に左右されることのない耐環境性を有す
る面発光素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface emitting device used for realizing optical interconnection in the fields of optical information processing, optical computing, etc., and particularly, it has a required temperature characteristic without using a temperature controller. Be equipped with
The present invention relates to a method for manufacturing a surface emitting device having environmental resistance that is not affected by the ambient environmental temperature.

【0002】[0002]

【従来の技術】一般に光のもつ並列性及び空間伝播性を
情報処理に応用するためには、面方向に素子を二次元的
に集積することが望ましい。この面発光素子について
は、1988年発行の「ジャーナル・オブ・カンタム・
エレクトロニクス」(Journal ofQuantum Electronic
s),伊賀他,第24巻,1845〜1855頁に記載
がある。このような面発光素子を高密度集積した場合に
は、複数の面発光素子が同時に駆動される際の発熱が問
題となる。特に、面発光素子は多層反射膜を有している
ため、端面発光素子に比べて素子抵抗が高くなり易く、
発熱が顕著なものとなり易い。この発熱を低減するため
に、素子の熱特性の向上が必要となり、それには、熱特
性の向上を進めることで、高温動作時にも一定の光出力
を一定の消費電力で供給できる、温度調節器等の高価な
制御装置の不要な低コストなシステム設計を可能とする
温度フリーの面発光素子を形成することが望まれる。
2. Description of the Related Art Generally, in order to apply the parallelism and the spatial propagation property of light to information processing, it is desirable to integrate elements in a plane direction two-dimensionally. This surface emitting device is described in "Journal of Quantum.
Electronics "(Journal of Quantum Electronic
s), Iga et al., Vol. 24, pp. 1845-1855. When such surface emitting elements are integrated with high density, heat generation when a plurality of surface emitting elements are simultaneously driven becomes a problem. In particular, since the surface emitting element has a multilayer reflective film, the element resistance is likely to be higher than that of the edge emitting element,
Exothermic heat tends to be noticeable. In order to reduce this heat generation, it is necessary to improve the thermal characteristics of the device. To this end, by improving the thermal characteristics, it is possible to supply a constant optical output with constant power consumption even during high temperature operation. It is desired to form a temperature-free surface-emitting element that enables low-cost system design that does not require expensive control devices such as.

【0003】面発光素子の熱特性を向上させる方法とし
て、前記した素子抵抗を低減させる方法がある。素子抵
抗を低減する努力は交互に異なる材料を積層して構成さ
れる多層反射膜の材料どうしの界面にグレーデッド部を
導入する等して行われてきた。このような方法として
は、例えば、アプライド・フィジックス・レターズ(Ap
plied Physics Letters ),第62巻,1585〜15
87頁,第60巻,466〜468頁記載の論文、エレ
クトロニクス・レターズ(Electronics Letters),第
29巻,1771〜1772頁記載の論文に記載のもの
がある。
As a method of improving the thermal characteristics of the surface emitting element, there is a method of reducing the element resistance described above. Efforts to reduce the element resistance have been made by introducing a graded portion at the interface between the materials of the multilayer reflective film formed by alternately stacking different materials. As such a method, for example, Applied Physics Letters (Ap
plied Physics Letters), vol. 62, 1585-15
87, 60, 466 to 468, and Electronics Letters, 29, 1771 to 1772.

【0004】あるいは、このような素子抵抗の低減方法
の他に、面発光素子特有の性質、つまり共振器によって
決まる共振ピーク波長と活性層によって決まる利得ピー
ク波長とが温度上昇に対して各々独立して長波長側にシ
フトしていくという特性を利用した利得オフセット方法
がある。前者の共振ピークは0.07nm/℃、利得ピ
ークは0.3nm/℃の割合で長波長側にシフトしてい
く。これらが一致するときが素子特性の最も最適化され
る条件になるのであるが、室温でこれらを一致させてし
まうと、高温時にお互いが離れてしまい、素子特性が劣
化する。そこで、利得ピークを室温では共振ピークの短
波長側にオフセット状態に設定しておき、温度上昇時に
お互いが一致するようにしておけば、素子特性を劣化さ
せることなく広い温度範囲にわたって一定の素子特性を
実現できる。
In addition to such a method of reducing the element resistance, the characteristic peculiar to the surface emitting element, that is, the resonance peak wavelength determined by the resonator and the gain peak wavelength determined by the active layer are independent from each other with respect to temperature rise. There is a gain offset method that utilizes the characteristic of shifting to the longer wavelength side. The former resonance peak shifts to 0.07 nm / ° C and the gain peak shifts to the long wavelength side at a rate of 0.3 nm / ° C. When these coincide with each other, the condition for optimizing the element characteristics is most optimized. However, if they coincide with each other at room temperature, they are separated from each other at high temperature and the element characteristics deteriorate. Therefore, if the gain peak is set to an offset state at the short wavelength side of the resonance peak at room temperature so that they coincide with each other when the temperature rises, it is possible to maintain constant device characteristics over a wide temperature range without degrading device characteristics. Can be realized.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな利得オフセット方法にもいくつかの制約がある。先
ず、最適なオフセット量を決めても結晶成長の性格上、
膜厚制御、ソースのフラックス制御には限界がある。例
えば、活性層にInGaAsを用いた場合、量子井戸の
厚さ、あるいはソースのフラックスのふらつき等により
利得ピークが設定値よりずれてしまう場合がでてくる。
また、共振器波長も設定値からずれる可能性もあり、オ
フセット量を設定通りにかけることが困難であった。
However, such a gain offset method has some restrictions. First of all, even if the optimum offset amount is determined, due to the nature of crystal growth,
There are limits to film thickness control and source flux control. For example, when InGaAs is used for the active layer, the gain peak may deviate from the set value due to the thickness of the quantum well or the fluctuation of the source flux.
Also, the resonator wavelength may deviate from the set value, making it difficult to apply the offset amount as set.

【0006】[0006]

【発明の目的】本発明の目的は、利得オフセットの方法
を採用した場合に、そのオフセット量を常に最適な量に
設定できるための面発光素子の製造方法を提供すること
にある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method of manufacturing a surface emitting device which can always set the offset amount to an optimum amount when the gain offset method is adopted.

【0007】[0007]

【課題を解決するための手段】本発明の製造方法は、活
性層の結晶成長時に通常の成長基板温度よりも低温の基
板温度で成長を行う工程と、成長後に共振ピークと利得
ピークの情報を得る工程と、得られた情報から利得ピー
クと共振ピークの間のオフセット量が所望の温度特性と
なるように素子を所定の温度で熱処理する工程とを含ん
でいる。
According to the manufacturing method of the present invention, a step of growing at a substrate temperature lower than a normal growth substrate temperature at the time of crystal growth of an active layer, and information of a resonance peak and a gain peak after the growth are obtained. The method includes a step of obtaining the information and a step of heat-treating the element at a predetermined temperature so that the amount of offset between the gain peak and the resonance peak has desired temperature characteristics based on the obtained information.

【0008】本発明の製造方法の一例としては、GaA
s基板上に通常の成長基板温度でバッファ層、多層膜反
射鏡、クラッド層を形成する工程と、前記成長基板温度
よりも低温の基板温度で活性層、クラッド層の一部を形
成する工程と、これまで形成された素子に対して光を投
射しかつその反射率を測定して共振ピークと利得ピーク
の情報を得る工程と、得られた情報から利得ピークと共
振ピークの間のオフセット量が所定の温度特性となるよ
うに素子を所定の温度で熱処理する工程と、前記クラッ
ド層の残りの層、多層膜反射鏡を積層形成する工程を含
んでいる。
As an example of the manufacturing method of the present invention, GaA
s a step of forming a buffer layer, a multilayer-film reflective mirror, and a clad layer on a substrate at a normal growth substrate temperature; and a step of forming an active layer and a part of the clad layer at a substrate temperature lower than the growth substrate temperature. , The step of projecting light to the element formed so far and measuring the reflectance thereof to obtain the information of the resonance peak and the gain peak, and the offset amount between the gain peak and the resonance peak from the obtained information The method includes a step of heat-treating the element at a predetermined temperature so as to obtain a predetermined temperature characteristic, and a step of laminating and forming the remaining layers of the clad layer and the multilayer film reflecting mirror.

【0009】[0009]

【作用】本発明によれば、活性層を低温で成長するため
に、この成長時に不可避な膜厚分布やフラックスふらつ
き等による利得オフセット量の設計値からのずれを回避
することができる。そして、その後に熱処理により利得
オフセット量を設定しているため、常に最適なオフセッ
ト量に設定でき、面発光素子の温度特性が常に設計通り
の優れた特性となり、熱特性が安定で、かつ耐環境性を
改善することが可能となる。
According to the present invention, since the active layer is grown at a low temperature, it is possible to avoid the deviation of the gain offset amount from the design value due to the film thickness distribution and flux fluctuations which are unavoidable during the growth. Then, since the gain offset amount is set by heat treatment after that, it is possible to always set the optimum offset amount, and the temperature characteristics of the surface emitting element are always excellent characteristics as designed, the thermal characteristics are stable, and the environment resistance is high. It is possible to improve the sex.

【0010】[0010]

【実施例】次に、本発明について図面を参照して説明す
る。図1は本発明の一実施例の面発光素子の断面図であ
る。この面発光素子は発振波長0.98μmの場合の例
を示しており、n型GaAs基板1上に厚さ0.4μm
のn型GaAsからなるバッファ層2を有し、その上に
n型半導体多層膜反射鏡3を有する。このn型半導体多
層膜反射鏡3は、n型AlAs層とn型GaAs層をそ
れぞれ厚さ81.2nm,68.1nmで交互に18.
5周期で積層形成したものである。また、この上に厚さ
0.29μmのAl0.25Ga0.75Asからなるn型クラ
ッド層4を有し、その上に活性層5を有する。この活性
層5は、厚さ10nmのIn0.15Ga0.85As量子井戸
を厚さ10nmのAl0.25Ga0.75Asバリア層で挟ん
で3層に形成したものである。
Next, the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of a surface emitting device according to an embodiment of the present invention. This surface emitting device shows an example in which the oscillation wavelength is 0.98 μm, and the thickness is 0.4 μm on the n-type GaAs substrate 1.
1 has a buffer layer 2 made of n-type GaAs, and has an n-type semiconductor multilayer film reflecting mirror 3 thereon. In this n-type semiconductor multilayer film reflecting mirror 3, n-type AlAs layers and n-type GaAs layers are alternately formed with thicknesses of 81.2 nm and 68.1 nm, respectively.
It is formed by stacking in 5 cycles. Further, an n-type clad layer 4 made of Al 0.25 Ga 0.75 As having a thickness of 0.29 μm is provided thereon, and an active layer 5 is provided thereon. The active layer 5 is formed by forming In 0.15 Ga 0.85 As quantum wells with a thickness of 10 nm between Al 0.25 Ga 0.75 As barrier layers with a thickness of 10 nm to form three layers.

【0011】さらに、その上に厚さ0.29μmのAl
0.25Ga0.75Asからなるp型クラッド層6を有し、そ
の上にメサ状にp型半導体多層膜反射鏡7を有する。こ
のp型半導体多層膜反射鏡7は、p型AlAs層とp型
GaAs層をそれぞれ厚さ81.2nm,68.1nm
で交互に15周期で積層形成したものである。そして、
その上にGaAs位相補正層8が形成されており、後工
程でその上に形成される電極としての金膜との位相補正
を行っている。そして、n型前記クラッド層4、活性層
5、p型クラッド層6にわたってイオン注入により高抵
抗領域9が形成されている。この高抵抗領域9として
は、100KeV、ドーズ量5×1014cm-2でプロト
ンをイオン注入して形成してある。
Furthermore, Al having a thickness of 0.29 μm is further formed thereon.
A p-type clad layer 6 made of 0.25 Ga 0.75 As is provided, and a p-type semiconductor multilayer film reflection mirror 7 is provided thereon in a mesa shape. This p-type semiconductor multilayer film reflecting mirror 7 has a p-type AlAs layer and a p-type GaAs layer with thicknesses of 81.2 nm and 68.1 nm, respectively.
The layers are alternately formed in 15 cycles. And
A GaAs phase correction layer 8 is formed on it, and the phase is corrected with a gold film as an electrode formed thereon in a later step. Then, a high resistance region 9 is formed by ion implantation over the n-type cladding layer 4, the active layer 5, and the p-type cladding layer 6. The high resistance region 9 is formed by ion-implanting protons at 100 KeV and a dose amount of 5 × 10 14 cm −2 .

【0012】このような構成の面発光素子では、例え
ば、トップのメササイズが6μm角で、50℃で利得ピ
ークと共振ピークとが一致し、室温から80℃にわたっ
て略一定の光出力を一定の消費電力で得ようとした場
合、活性層の利得ピーク波長を室温で960nm、共振
ピークを980nmに設定すると、略オフセット量は最
適となる。この温度範囲は実際のシステムで用いる際の
環境温度を考えても極めて妥当な範囲である。
In the surface emitting element having such a structure, for example, when the top mesa size is 6 μm square, the gain peak and the resonance peak coincide with each other at 50 ° C., and a substantially constant light output is constantly consumed from room temperature to 80 ° C. When it is attempted to obtain it by electric power, when the gain peak wavelength of the active layer is set to 960 nm at room temperature and the resonance peak is set to 980 nm, the offset amount becomes optimum. This temperature range is extremely reasonable considering the environmental temperature when used in an actual system.

【0013】図2は本発明の面発光素子の製造方法を工
程順に示す図である。先ず、図2(a)のように、n型
GaAs基板1上に、n型バッファ層2、n型多層膜反
射鏡3、n型クラッド層4を順次成長させる。このとき
の成長基板温度は620℃であり、各層の成長方法はこ
れまでの面発光素子で行われている方法がそのまま採用
できる。
2A to 2C are views showing a method of manufacturing the surface emitting device of the present invention in the order of steps. First, as shown in FIG. 2A, an n-type buffer layer 2, an n-type multilayer-film reflective mirror 3, and an n-type cladding layer 4 are sequentially grown on an n-type GaAs substrate 1. At this time, the temperature of the growth substrate is 620 ° C., and the method of growing each layer can be the same as that used in the conventional surface emitting device.

【0014】次いで、図2(b)のように、前記n型ク
ラッド層4の上に活性層5を成長する。この活性層5の
成長の際には、成長基板温度をそれまでの620℃から
低温の300℃に低下させる。そして、V/III 比はA
sリッチの状態で15程度に設定する。この基板温度に
て量子井戸活性層を成長すると、通常の基板温度550
℃で成長したときに形成される結晶の格子定数に比べて
広がる。これに伴い、歪み量が変化し活性層5の利得ピ
ーク波長がずれることになる。こうした歪み量子井戸は
バリア層であるAlGaAs層によってその歪みが緩和
され、複数の量子井戸を構成することが可能となってい
る。さらに、前記活性層5の成長後、300℃の基板温
度を保った状態でp型クラッド層6−1を10nm程度
積層し、その上にp型GaAs層6−2を酸化防止のパ
ッシベーション膜として2nm程度の厚さに積層する。
Then, as shown in FIG. 2B, an active layer 5 is grown on the n-type cladding layer 4. When the active layer 5 is grown, the temperature of the growth substrate is lowered from 620 ° C. up to then to 300 ° C. which is a low temperature. And the V / III ratio is A
Set to about 15 in the s rich state. When the quantum well active layer is grown at this substrate temperature, the normal substrate temperature of 550
It is broader than the lattice constant of crystals formed when grown at ℃. Along with this, the amount of strain changes and the gain peak wavelength of the active layer 5 shifts. The strain of the strained quantum well is relaxed by the AlGaAs layer, which is a barrier layer, and a plurality of quantum wells can be formed. Further, after the growth of the active layer 5, a p-type clad layer 6-1 is laminated with a thickness of about 10 nm while maintaining the substrate temperature of 300 ° C., and a p-type GaAs layer 6-2 is formed on the p-type clad layer 6-1 as a passivation film for preventing oxidation. Laminate to a thickness of about 2 nm.

【0015】このあと、図2(c)のように、基板温度
を室温まで下げ、前記工程まで形成されている素子に光
を投射してその波長に依存する反射率を測定する。得ら
れた反射率の特性は、例えば図3に示す特性となる。そ
して、この特性に基づき、InGaAsの励起子ピーク
及びn側共振器によりストップバンドから、計算シミュ
レーションとの整合により利得ピーク波長及び共振記共
鳴波長を得る。
After that, as shown in FIG. 2C, the substrate temperature is lowered to room temperature, light is projected on the element formed up to the above step, and the reflectance depending on the wavelength is measured. The obtained reflectance characteristic is, for example, the characteristic shown in FIG. Then, based on this characteristic, the gain peak wavelength and the resonance resonance wavelength are obtained from the stop band by the excitonic peak of InGaAs and the n-side resonator, and by matching with the calculation simulation.

【0016】この情報をもとに最適なオフセット量、例
えばここでは20nmとなるように利得ピーク波長をウ
ェハの熱処理によりシフトさせる。ここで、低温成長3
00℃により形成されたInGaAs量子井戸を熱処理
した際の熱処理温度と利得ピーク波長との関係は図4に
示す通りである。この関係にしたがってウェハを熱思慮
し、温度を制御することで所望の利得ピーク波長にシフ
トさせる。
Based on this information, the gain peak wavelength is shifted by the heat treatment of the wafer so that the optimum offset amount, for example, 20 nm here is obtained. Here, low temperature growth 3
The relationship between the heat treatment temperature and the gain peak wavelength when heat treating the InGaAs quantum well formed at 00 ° C. is as shown in FIG. According to this relationship, the wafer is heated and the temperature is controlled to shift it to the desired gain peak wavelength.

【0017】この実施例では、例えば現在900nmに
利得ピークがあり、共振器共鳴波長が980nmである
と判ったとする。これから、オフセット量20nmを得
るには、利得ピークを960nmの初期設定通りにすれ
ばよいことが判るので、550℃で20分間熱処理すれ
ばよい。
In this embodiment, it is assumed that there is a gain peak at 900 nm and the resonator resonance wavelength is 980 nm. From this, it is understood that the gain peak should be set to the initial setting of 960 nm in order to obtain the offset amount of 20 nm. Therefore, the heat treatment may be performed at 550 ° C. for 20 minutes.

【0018】この熱処理後は、図2(d)のように、基
板温度を550℃に保持したまま、残りのp型クラッド
層6を成長し、さらにその上にp型半導体多層膜反射鏡
7、位相補正層8を形成し、メサ形成した上で高抵抗領
域9を形成することにより、所望の温度特性を有する図
1に示した構造の面発光素子を得ることができる。
After this heat treatment, as shown in FIG. 2D, the remaining p-type cladding layer 6 is grown while the substrate temperature is kept at 550 ° C., and the p-type semiconductor multilayer film reflecting mirror 7 is further formed thereon. By forming the phase correction layer 8 and forming the mesa and then forming the high resistance region 9, it is possible to obtain the surface emitting element having the structure shown in FIG. 1 and having a desired temperature characteristic.

【0019】なお、熱処理温度がAlAsのようにAl
成分を多く含み、基板温度が500℃より低くなると結
晶の品質に問題が生じる場合は、p側の多層膜反射鏡7
をSiとSiO2 等の誘電体で置き換えればよい。
It should be noted that the heat treatment temperature should be the same as that of AlAs.
In the case where the crystal quality is high when the substrate temperature is lower than 500 ° C. because it contains a large amount of components, the p-side multilayer mirror 7
May be replaced with a dielectric such as Si and SiO 2 .

【0020】したがって、この製造方法においては、活
性層5を低温で成長し、その後に熱処理して最適なオフ
セット量を設定するため、成長時に不可避な膜厚分布や
フラックスふらつき等による利得オフセット量の設計値
からのずれを回避することができる。このため、面発光
素子の温度特性が常に設計通りの優れた特性となり、熱
特性が安定で、かつ耐環境性を改善することが可能とな
る。
Therefore, in this manufacturing method, the active layer 5 is grown at a low temperature and then heat-treated to set the optimum offset amount. Therefore, the gain offset amount due to the film thickness distribution and flux fluctuations which are unavoidable during the growth is set. Deviation from the design value can be avoided. Therefore, the temperature characteristics of the surface emitting element are always excellent as designed, the thermal characteristics are stable, and the environment resistance can be improved.

【0021】ここで、前記実施例では、発振波長を98
0nmとしたが、材料系を変えれば発振波長は通信用に
用いられる1500nmや1300nm帯にすることが
できる。この場合にも、活性層は主にInGaAs等の
歪み系材料が用いられるので、本発明は有効となる。ま
た、前記実施例で説明した材料及び面発光素子の構造
は、これに限られるものではない。たたじ、活性層の材
料が変われば、図4に示した利得ピーク波長と熱処理温
度との関係も変わるので、それに応じて予備実験は必要
となる。また、こうした関係は、始めに成長した際の基
板温度にも影響を受けるので、基板温度を変更した場合
にも予備実験を行う必要はでてくる。低温成長の基板温
度には、ある程度の自由度があり、そうした情報に関し
ては、例えば、ジャーナル・オブ・エレクトロニック・
マテリアルズ(Journal of Electronic Matereals )第
22巻にまとめられている。
In the above embodiment, the oscillation wavelength is set to 98.
Although the wavelength is set to 0 nm, the oscillation wavelength can be set to the 1500 nm or 1300 nm band used for communication by changing the material system. Also in this case, the strained material such as InGaAs is mainly used for the active layer, so that the present invention is effective. The materials and the structure of the surface emitting device described in the above embodiments are not limited to this. However, if the material of the active layer changes, the relationship between the gain peak wavelength and the heat treatment temperature shown in FIG. 4 also changes, and a preliminary experiment is required accordingly. In addition, since such a relationship is also affected by the substrate temperature at the time of initial growth, it is necessary to perform a preliminary experiment even when the substrate temperature is changed. There is some degree of freedom in the substrate temperature for low temperature growth. For such information, see, for example, Journal of Electronic
It is summarized in the 22nd volume of Materials (Journal of Electronic Matereals).

【0022】ここでは、温度特性を改善することを目的
として、利得オフセット量を考慮したが、常に室温付近
でしか用いないような場合には、連続発振することに伴
う温度上昇のみを考慮すればよく、オフセット量は5n
m程度で十分である。
Here, the gain offset amount is taken into consideration for the purpose of improving the temperature characteristic. However, when the gain offset amount is always used only near room temperature, only the temperature rise due to continuous oscillation should be taken into consideration. Well, the offset amount is 5n
About m is sufficient.

【0023】[0023]

【発明の効果】以上説明したように本発明は、活性層を
低温で成長するために、その成長時に不可避な膜厚分布
やフラックスふらつき等による利得オフセット量の設計
値からのずれを回避することができ、またその後に熱処
理により利得オフセット量を設定しているため、常に最
適なオフセット量に設定できる。これにより、製造され
る面発光素子の温度特性が常に設計通りの優れた特性と
なり、所望の面発光素子を常に安定して得ることが可能
となる。こうした面発光素子は光集積回路として応用す
る上で、環境に左右されない光源となりうるものである
と同時に、温度制御装置等も不要となるので、低コスト
な光インターコネクションを実現する上でも極めて有効
なものとなる。
As described above, according to the present invention, since the active layer is grown at a low temperature, it is possible to avoid the deviation of the gain offset amount from the design value due to the film thickness distribution and flux fluctuations which are unavoidable during the growth. Since the gain offset amount is set by heat treatment after that, it is possible to always set the optimum offset amount. As a result, the temperature characteristics of the surface emitting element to be manufactured always have excellent characteristics as designed, and it becomes possible to always obtain a desired surface emitting element in a stable manner. Such a surface emitting device can be a light source that is not affected by the environment when applied as an optical integrated circuit, and at the same time, a temperature control device etc. are not necessary, so it is extremely effective in realizing low-cost optical interconnection. It will be

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法で製造された面発光素子の一
例の断面図である。
FIG. 1 is a cross-sectional view of an example of a surface emitting device manufactured by a manufacturing method of the present invention.

【図2】本発明の製造方法を工程順に示す断面図であ
る。
FIG. 2 is a cross-sectional view showing the manufacturing method of the present invention in the order of steps.

【図3】製造途中における面発光素子の反射率特性を示
す図である。
FIG. 3 is a diagram showing reflectance characteristics of the surface emitting device during manufacturing.

【図4】活性層における熱処理温度と利得ピーク波長の
シフト量との関係を示す図である。
FIG. 4 is a diagram showing a relationship between a heat treatment temperature and a shift amount of a gain peak wavelength in an active layer.

【符号の説明】[Explanation of symbols]

1 n型GaAs基板 2 n型バッファ層 3 n型多層膜反射鏡 4 n型クラッド層 5 活性層 6 p型クラッド層 7 p型多層膜反射鏡 8 位相補正層 1 n-type GaAs substrate 2 n-type buffer layer 3 n-type multilayer film reflection mirror 4 n-type clad layer 5 active layer 6 p-type clad layer 7 p-type multilayer film reflection mirror 8 phase correction layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 二つの多層膜反射鏡で構成された共振器
と、前記各多層膜反射鏡で挟まれた活性層とを含む面発
光素子の製造方法において、前記活性層の結晶成長時に
通常の成長基板温度よりも低温の基板温度で成長を行う
工程と、成長後に共振ピークと利得ピークの情報を得る
工程と、得られた情報から利得ピークと共振ピークの間
のオフセット量が所望の温度特性となるように素子を所
定の温度で熱処理する工程とを含むことを特徴とする面
発光素子の製造方法。
1. A method of manufacturing a surface-emitting device comprising a resonator composed of two multilayer film reflecting mirrors and an active layer sandwiched between the multilayer film reflecting mirrors, wherein a crystal is usually formed during the growth of the active layer. Growth at a substrate temperature lower than the growth substrate temperature, a step of obtaining information of the resonance peak and the gain peak after the growth, and an offset amount between the gain peak and the resonance peak from the obtained information at a desired temperature. And a step of heat-treating the element at a predetermined temperature so as to obtain characteristics, a method for manufacturing a surface emitting element.
【請求項2】 GaAs基板上に通常の成長基板温度で
バッファ層、多層膜反射鏡、クラッド層を形成する工程
と、前記成長基板温度よりも低温の基板温度で活性層、
クラッド層の一部を形成する工程と、これまで形成され
た素子に対して光を投射しかつその反射率を測定して共
振ピークと利得ピークの情報を得る工程と、得られた情
報から利得ピークと共振ピークの間のオフセット量が所
定の温度特性となるように素子を所定の温度で熱処理す
る工程と、前記クラッド層の残りの層、多層膜反射鏡を
積層形成する工程を含むことを特徴とする面発光素子の
製造方法。
2. A step of forming a buffer layer, a multilayer-film reflective mirror, and a cladding layer on a GaAs substrate at a normal growth substrate temperature, an active layer at a substrate temperature lower than the growth substrate temperature,
The step of forming a part of the clad layer, the step of projecting light to the element formed so far and measuring the reflectance to obtain the information of the resonance peak and the gain peak, and the gain from the obtained information A step of heat-treating the element at a predetermined temperature so that the offset amount between the peak and the resonance peak has a predetermined temperature characteristic, and a step of laminating and forming the remaining layers of the clad layer and the multilayer film reflection mirror. A method for manufacturing a surface emitting device having the characteristics.
【請求項3】 GaAs層からなるバッファ層と、Al
As層とGaAs層を交互に積層した多層膜反射鏡と、
AlGaAs層からなるクラッド層とを620℃で積層
成長した後、InGaAs量子井戸をAlGaAsバリ
ア層で挟んだ3層構造の活性層と、AlGaAs層のク
ラッド層の一部を300℃で成長し、これよりも高い温
度で熱処理してオフセット量を設定し、続いてこの温度
でAlGaAs層のクラッド層の残りの層と、AlAs
層とGaAs層を交互に積層した多層膜反射鏡とを成長
する請求項2の面発光素子の製造方法。
3. A buffer layer comprising a GaAs layer and Al
A multilayer film mirror in which As layers and GaAs layers are alternately laminated,
After a layered growth of a clad layer made of an AlGaAs layer at 620 ° C., an active layer having a three-layer structure in which an InGaAs quantum well is sandwiched by AlGaAs barrier layers and a part of the clad layer of the AlGaAs layer are grown at 300 ° C. Heat treatment at a higher temperature to set the offset amount, and then at this temperature, the remaining layers of the AlGaAs cladding layer and AlAs
3. The method for manufacturing a surface emitting device according to claim 2, wherein a multi-layered film reflecting mirror in which layers and GaAs layers are alternately laminated is grown.
JP17165995A 1995-06-15 1995-06-15 Manufacturing method of surface emitting element Expired - Fee Related JP2713244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17165995A JP2713244B2 (en) 1995-06-15 1995-06-15 Manufacturing method of surface emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17165995A JP2713244B2 (en) 1995-06-15 1995-06-15 Manufacturing method of surface emitting element

Publications (2)

Publication Number Publication Date
JPH098413A true JPH098413A (en) 1997-01-10
JP2713244B2 JP2713244B2 (en) 1998-02-16

Family

ID=15927322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17165995A Expired - Fee Related JP2713244B2 (en) 1995-06-15 1995-06-15 Manufacturing method of surface emitting element

Country Status (1)

Country Link
JP (1) JP2713244B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6687280B1 (en) 1997-12-24 2004-02-03 Nec Corporation Vertical-cavity surface-emitting laser device
JP2004319643A (en) * 2003-04-14 2004-11-11 Furukawa Electric Co Ltd:The Surface emitting laser element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6687280B1 (en) 1997-12-24 2004-02-03 Nec Corporation Vertical-cavity surface-emitting laser device
JP2004319643A (en) * 2003-04-14 2004-11-11 Furukawa Electric Co Ltd:The Surface emitting laser element

Also Published As

Publication number Publication date
JP2713244B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
EP0896405B1 (en) Method for fabricating surface-emitting semiconductor device
JP3482824B2 (en) Surface emitting semiconductor laser and surface emitting semiconductor laser array
US7881358B2 (en) Surface emitting laser
JP4497859B2 (en) Surface emitting semiconductor laser device, optical transmission module, and optical transmission system
JPH10145003A (en) Semiconductor laser and optical communication system using the same
JPH05283796A (en) Surface emission type semiconductor laser
US6858519B2 (en) Atomic hydrogen as a surfactant in production of highly strained InGaAs, InGaAsN, InGaAsNSb, and/or GaAsNSb quantum wells
JP2713244B2 (en) Manufacturing method of surface emitting element
JP3712686B2 (en) Planar optical semiconductor device
JPH05152674A (en) Surface light emitting semiconductor laser with outer modulator
WO2021125005A1 (en) Light-emitting device and method for manufacturing light-emitting device
JP2007129165A (en) Surface-emitting semiconductor element and manufacturing method thereof
JP3230576B2 (en) Semiconductor light emitting device
JPH0563301A (en) Semiconductor optical element and optical communication system
JP2658883B2 (en) Surface emitting device
JPH06120610A (en) Surface emitting semiconductor laser
JP2875929B2 (en) Semiconductor laser device and method of manufacturing the same
JP3132445B2 (en) Long wavelength band surface emitting semiconductor laser and method of manufacturing the same
JP2943719B2 (en) Semiconductor laser and manufacturing method thereof
JP2005252111A (en) Semiconductor device
JPS6010685A (en) Distributed feedback type plane light emitting semiconductor laser
JPH0964474A (en) Semiconductor crystal structure, semiconductor laser and its manufacture
JP2955250B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP3469051B2 (en) Surface emitting semiconductor laser
JP2868074B2 (en) Surface emitting device and method of manufacturing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071031

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees