JPH0983869A - Method and device for infrared ray image pickup - Google Patents

Method and device for infrared ray image pickup

Info

Publication number
JPH0983869A
JPH0983869A JP7238526A JP23852695A JPH0983869A JP H0983869 A JPH0983869 A JP H0983869A JP 7238526 A JP7238526 A JP 7238526A JP 23852695 A JP23852695 A JP 23852695A JP H0983869 A JPH0983869 A JP H0983869A
Authority
JP
Japan
Prior art keywords
infrared sensor
optical system
image
infrared
optical filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7238526A
Other languages
Japanese (ja)
Inventor
Hiroshi Murofushi
洋 室伏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7238526A priority Critical patent/JPH0983869A/en
Publication of JPH0983869A publication Critical patent/JPH0983869A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce deterioration in the image quality by selecting a ratio of light quantity incident onto an infrared ray sensor from a measured object through a scanning optical system to a light quantity of an image of the infrared ray sensor itself incident onto again the infrared ray sensor through the reflection of the scanning optical system to be higher so as to suppress narcissus to be low. SOLUTION: An optical filter 2 whose transmissivity is ε is inserted obliquely onto an optical path for a scanning optical system 1 and an infrared ray sensor 3 to reduce the narcissus amount by the transmissivity of the optical filter. Furthermore, a face with a low reflectance is arranged to a reflection optical path of the optical filter so that the image of the infrared ray sensor reflected in the optical filter is not again made incident onto the infrared ray sensor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は赤外線撮像装置に関
し、特に冷却された赤外線センサを用いたときに走査光
学系による反射によって生じるナルシサスを低減する赤
外線撮像方法とその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared imaging apparatus, and more particularly to an infrared imaging method and apparatus for reducing narcissus caused by reflection by a scanning optical system when a cooled infrared sensor is used.

【0002】[0002]

【従来の技術】従来、走査光学系による赤外線センサの
像の反射によって生じるナルシサスを低減するために、
走査光学系の各光学素子の形状や配置、更には光学素子
表面に蒸着する反射防止膜等の設計を十分行わなければ
ならないが、他の光学性能を満足させるために設計上の
制約となっていた。
2. Description of the Related Art Conventionally, in order to reduce narcissus caused by reflection of an image of an infrared sensor by a scanning optical system,
It is necessary to sufficiently design the shape and arrangement of each optical element of the scanning optical system, and further design the antireflection film deposited on the surface of the optical element, but there are design restrictions to satisfy other optical performances. It was

【0003】また、一度設計が終了し、製作された光学
系で出たナルシサス量は、光学系の設計変更を行い、再
製作しないと低減することができなかった。
Further, the amount of narcissus produced in an optical system which has been designed once and has been manufactured cannot be reduced unless the optical system is redesigned and remanufactured.

【0004】[0004]

【発明が解決しようとする課題】赤外線センサの走査光
学系からの反射によって生じるナルシサス量は、設計計
算が複雑であり、かつ設計条件として、他の光学性能と
の整合を取りながら設計を行わなければならないので、
走査光学系の設計を難しくしている。
The amount of narcissus generated by the reflection from the scanning optical system of the infrared sensor is complicated in design calculation, and the design condition must be designed while matching with other optical performances. Because I have to
This makes the design of the scanning optical system difficult.

【0005】また、一度設計が終了し、製作された走査
光学系によって生じるナルシサス量は、ナルシサス量を
決める要因が走査光学系の各種設計パラメータ(形状配
置、コーティング等)と絡み合っているので、容易には
低減できないと言う欠点を持っている。
Further, the amount of narcissus produced by a scanning optical system which has been designed once and is manufactured is easy because the factors that determine the amount of narcissus are entangled with various design parameters (shape arrangement, coating, etc.) of the scanning optical system. Has the drawback that it cannot be reduced.

【0006】本発明の目的は、被測定物から走査光学系
を通して赤外線センサに入射される光量と、赤外線セン
サ自身の像が走査光学系の反射によって再び赤外線セン
サに入射される光量との比を大きくすることで、ナルシ
サス量の低減を実現する赤外線撮像方法とその装置を提
供することである。
An object of the present invention is to calculate the ratio between the amount of light that is incident on the infrared sensor from the object to be measured through the scanning optical system and the amount of light that the image of the infrared sensor itself is incident on the infrared sensor again due to the reflection of the scanning optical system. An object of the present invention is to provide an infrared imaging method and an apparatus thereof that realize a reduction in the amount of narcissus by increasing the size.

【0007】[0007]

【課題を解決するための手段】本発明の赤外線撮像方法
は、被測定物からの赤外線放射を走査光学系を通して冷
却された赤外線センサで検出する赤外線撮像方法におい
て、赤外線センサから来るセンサ自身の像および走査光
学系で反射されて来る赤外線センサの像を一部反射さ
せ、他の残りを透過させる、任意の透過率の光学フィル
タを走査光学系と赤外線センサの光路に斜めに配置する
ステップと、前記光学フィルタで反射された像が赤外線
センサに戻らないように、反射率の低い面を反射光路に
配置するステップを有し、前記赤外線センサの像が走査
光学系で反射して、再び赤外線センサに入射して生じる
ナルシサスが前記光学フィルタの透過率に比例して軽減
されることを特徴とする。
The infrared imaging method of the present invention is an infrared imaging method in which infrared radiation from an object to be measured is detected by an infrared sensor cooled through a scanning optical system. And a step of partially reflecting the image of the infrared sensor reflected by the scanning optical system and transmitting the rest of the image, arranging an optical filter having an arbitrary transmittance obliquely in the optical paths of the scanning optical system and the infrared sensor, In order to prevent the image reflected by the optical filter from returning to the infrared sensor, a step of arranging a surface having a low reflectance in the reflection optical path, the image of the infrared sensor is reflected by the scanning optical system, and the infrared sensor is again provided. It is characterized in that the narcissus generated upon incidence on the optical filter is reduced in proportion to the transmittance of the optical filter.

【0008】また、本発明の赤外線撮像装置は、被測定
物からの赤外線放射を走査光学系を通して冷却された赤
外線センサで検出する赤外線撮像装置において、赤外線
センサから来るセンサ自身の像および走査光学系で反射
されて来る赤外線センサの像を一部反射させ、他の残り
を透過させる、走査光学系と赤外線センサの光路に斜め
に配置されている任意の透過率の光学フィルタと、前記
光学フィルタで反射された像が赤外線センサに戻らない
ように、反射光路に配置されている反射率の低い面を有
し、前記赤外線センサの像が走査光学系で反射して、再
び赤外線センサに入射して生じるナルシサスが前記光学
フィルタの透過率に比例して軽減されることを特徴とす
る。
Further, the infrared imaging device of the present invention is an infrared imaging device for detecting infrared radiation from an object to be measured by an infrared sensor cooled through a scanning optical system, and an image of the sensor itself coming from the infrared sensor and the scanning optical system. In the optical filter, which partially reflects the image of the infrared sensor that is reflected by, and transmits the rest of the image, an optical filter having an arbitrary transmittance obliquely arranged in the optical path of the scanning optical system and the infrared sensor, and the optical filter. In order to prevent the reflected image from returning to the infrared sensor, it has a surface with a low reflectance arranged in the reflection optical path, the image of the infrared sensor is reflected by the scanning optical system, and is incident on the infrared sensor again. The narcissus that occurs is reduced in proportion to the transmittance of the optical filter.

【0009】本発明の赤外線撮像装置では、走査光学系
と冷却された赤外線センサの光路間に斜めに入れた透過
率ε[%]の光学フィルタと光学フィルタによる反射光
が赤外線センサに戻らないように配置されている低反射
率の面を有する。
In the infrared imaging device of the present invention, an optical filter having a transmittance ε [%] obliquely inserted between the optical paths of the scanning optical system and the cooled infrared sensor, and the reflected light from the optical filter are not returned to the infrared sensor. Has a low-reflectance surface located at.

【0010】[0010]

【発明の実施の形態】ナルシサスの基となる赤外線セン
サの像は光学フィルタを透過し、走査光学系に反射され
て、再び光学フィルタを透過した光のみが赤外線センサ
に入射される。一方測定対象になっている被測定物から
の光は光学フィルタを1回透過し、赤外線センサに入射
される。従って、赤外線センサからの光は光学フィルタ
を2回透過するため、被測定物からの光に較べ、光学フ
ィルタの透過率分だけナルシサス量を低減できる。
BEST MODE FOR CARRYING OUT THE INVENTION The image of the infrared sensor, which is the basis of Narcissus, passes through the optical filter, is reflected by the scanning optical system, and only the light that has passed through the optical filter again enters the infrared sensor. On the other hand, the light from the object to be measured, which is the object of measurement, passes through the optical filter once and enters the infrared sensor. Therefore, since the light from the infrared sensor passes through the optical filter twice, the amount of narcissus can be reduced by the transmittance of the optical filter as compared with the light from the object to be measured.

【0011】[0011]

【実施例】次に本発明の実施例について図面を参照して
詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail with reference to the drawings.

【0012】図1は本発明の一実施例の赤外線撮像装置
構成図である。図1において赤外線撮像装置は、赤外光
を集光する走査光学系1と透過・反射特性を任意に選択
した光学フィルタ2と赤外線センサ3と反射率の低い面
4から成る。
FIG. 1 is a block diagram of an infrared imaging device according to an embodiment of the present invention. In FIG. 1, the infrared imaging device includes a scanning optical system 1 that collects infrared light, an optical filter 2 having transmission / reflection characteristics arbitrarily selected, an infrared sensor 3, and a surface 4 having a low reflectance.

【0013】次に本発明の実施例の動作について、図2
〜図4を参照して詳細に説明する。
Next, the operation of the embodiment of the present invention will be described with reference to FIG.
This will be described in detail with reference to FIG.

【0014】本発明で得られるナルシサス量の算出概念
図を図2に示す。図2(a)は被測定物からの光が走査
光学系1により集光され、透過率εの光学フィルタ2を
通過して赤外線センサ3に入射される。この時の赤外線
センサ3で検出される信号は、集光された光の強度をV
1 とすると、εV1 となる。
FIG. 2 shows a conceptual diagram of the calculation of the amount of narcissus obtained by the present invention. In FIG. 2A, the light from the object to be measured is collected by the scanning optical system 1, passes through the optical filter 2 having the transmittance ε, and is incident on the infrared sensor 3. The signal detected by the infrared sensor 3 at this time is the intensity of the condensed light is V
When set to 1, it becomes εV1.

【0015】また、図2(b)は赤外線センサ3自身の
像:V2 が光学フィルタ2を通過してεV2 となる。さ
らに、図2(c)は走査光学系1に反射されて、再び光
学フィルタ2を通過するため光の強度がε・εV2 とな
って赤外線センサ3に入射される。この時、ナルシサス
量:NAL(A)は NAL(A)=ε・εV2 /εV1 =εV2 /V1 となる。
In FIG. 2B, the image of the infrared sensor 3 itself: V2 passes through the optical filter 2 and becomes εV2. Further, in FIG. 2C, the light is reflected by the scanning optical system 1 and again passes through the optical filter 2, so that the intensity of the light becomes .epsilon..epsilon.V2 and enters the infrared sensor 3. At this time, the amount of narcissus: NAL (A) becomes NAL (A) = ε · εV2 / εV1 = εV2 / V1.

【0016】よって、本発明で得られるナルシサス量:
NAL(A)と従来型で得られるナルシサス量:NAL
(B)を比較すると、光学フィルタ3の透過率:εの分
だけ低くなる。
Therefore, the amount of narcissus obtained by the present invention:
NAL (A) and conventional type Narcissus amount: NAL
Comparing (B), the transmittance of the optical filter 3 is reduced by the amount of ε.

【0017】また、光学フィルタ2で反射された赤外線
センサ3の像は、赤外線センサ3に戻らないように反射
率の低い面4が光学フィルタ2の両側面に配置されてい
るので、ナルシサスの増量には影響を与えない。
Further, in the image of the infrared sensor 3 reflected by the optical filter 2, since the surfaces 4 having a low reflectance are arranged on both side surfaces of the optical filter 2 so as not to return to the infrared sensor 3, the amount of narcissus is increased. Does not affect.

【0018】[0018]

【発明の効果】光学フィルタを任意の位置に置くことに
よって容易にナルシサスを低減できるので、ナルシサス
低減を考慮した走査光学系の設計が容易になる。
Since the narcissus can be easily reduced by placing the optical filter at an arbitrary position, it becomes easy to design the scanning optical system in consideration of the reduction of the narcissus.

【0019】また、既存の赤外線撮像装置について、走
査光学系の設計変更あるいは再製作をせずに、光学フィ
ルタと反射率の低い面を光路中に配置するだけで、ナル
シサスが低減できるので、画質の向上が図れると言う効
果がある。
Further, regarding the existing infrared image pickup device, the narcissus can be reduced only by disposing the optical filter and the surface having a low reflectance in the optical path without changing the design or remanufacturing of the scanning optical system. There is an effect that it can improve.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の赤外線撮像装置の一実施例を示す機能
ブロック図である。
FIG. 1 is a functional block diagram showing an embodiment of an infrared imaging device of the present invention.

【図2】本発明の赤外線撮像装置で得られるナルシサス
量の算出概念図である。
FIG. 2 is a conceptual diagram of calculation of a narcissus amount obtained by the infrared imaging device of the present invention.

【図3】従来型の赤外線撮像装置の機能ブロック図であ
る。
FIG. 3 is a functional block diagram of a conventional infrared imaging device.

【図4】従来型の赤外線撮像装置で得られるナルシサス
量の算出概念図である。
FIG. 4 is a conceptual diagram of calculation of a narcissus amount obtained by a conventional infrared imaging device.

【符号の説明】[Explanation of symbols]

1 走査光学系 2 光学フィルタ 3 赤外線センサ 4 反射率の低い面 V1 走査光学系で集光された光の強度 V2 赤外線センサ自身の像の強度 ε 光学フィルタの透過率 1 Scanning optical system 2 Optical filter 3 Infrared sensor 4 Surface with low reflectance V1 Intensity of light condensed by scanning optical system V2 Intensity of image of infrared sensor itself ε Transmittance of optical filter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被測定物からの赤外線放射を走査光学系
を通して冷却された赤外線センサで検出する赤外線撮像
方法において、 赤外線センサから来るセンサ自身の像および走査光学系
で反射されて来る赤外線センサの像を一部反射させ、他
の残りを透過させる、任意の透過率の光学フィルタを走
査光学系と赤外線センサの光路に斜めに配置するステッ
プと、 前記光学フィルタで反射された像が赤外線センサに戻ら
ないように、反射率の低い面を反射光路に配置するステ
ップを有し、 前記赤外線センサの像が走査光学系で反射して、再び赤
外線センサに入射して生じるナルシサスが前記光学フィ
ルタの透過率に比例して軽減されることを特徴とする赤
外線撮像方法。
1. An infrared imaging method for detecting infrared radiation from an object to be measured with an infrared sensor cooled through a scanning optical system, comprising an image of the sensor itself coming from the infrared sensor and an infrared sensor reflected from the scanning optical system. A step of obliquely arranging an optical filter having an arbitrary transmittance, which partially reflects an image and transmits the rest, in the optical path of the scanning optical system and the infrared sensor, and the image reflected by the optical filter is transmitted to the infrared sensor. A step of arranging a surface having a low reflectance in the reflection optical path so as not to return, and the narcissus generated when the image of the infrared sensor is reflected by the scanning optical system and again enters the infrared sensor is transmitted by the optical filter. An infrared imaging method characterized by being reduced in proportion to the rate.
【請求項2】 被測定物からの赤外線放射を走査光学系
を通して冷却された赤外線センサで検出する赤外線撮像
装置において、 赤外線センサから来るセンサ自身の像および走査光学系
で反射されて来る赤外線センサの像を一部反射させ、他
の残りを透過させる、走査光学系と赤外線センサの光路
に斜めに配置されている任意の透過率の光学フィルタ
と、 前記光学フィルタで反射された像が赤外線センサに戻ら
ないように、反射光路に配置されている反射率の低い面
を有し、 前記赤外線センサの像が走査光学系で反射して、再び赤
外線センサに入射して生じるナルシサスが前記光学フィ
ルタの透過率に比例して軽減されることを特徴とする赤
外線撮像装置。
2. An infrared imaging device for detecting infrared radiation from an object to be measured by an infrared sensor cooled through a scanning optical system, comprising: an image of the sensor itself coming from the infrared sensor; and an infrared sensor reflected from the scanning optical system. An optical filter having an arbitrary transmittance, which partially reflects an image and transmits the rest, is obliquely arranged in the optical path of the scanning optical system and the infrared sensor, and the image reflected by the optical filter is transmitted to the infrared sensor. It has a surface with a low reflectance arranged in the reflection optical path so as not to return, and the image of the infrared sensor is reflected by the scanning optical system, and the narcissus generated by entering the infrared sensor again is transmitted by the optical filter. An infrared imaging device characterized by being reduced in proportion to the rate.
JP7238526A 1995-09-18 1995-09-18 Method and device for infrared ray image pickup Pending JPH0983869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7238526A JPH0983869A (en) 1995-09-18 1995-09-18 Method and device for infrared ray image pickup

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7238526A JPH0983869A (en) 1995-09-18 1995-09-18 Method and device for infrared ray image pickup

Publications (1)

Publication Number Publication Date
JPH0983869A true JPH0983869A (en) 1997-03-28

Family

ID=17031573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7238526A Pending JPH0983869A (en) 1995-09-18 1995-09-18 Method and device for infrared ray image pickup

Country Status (1)

Country Link
JP (1) JPH0983869A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1311271C (en) * 2001-07-26 2007-04-18 艾伦H·莱丁顿 Scanning apparatus for forming images in the microwave, mm-wave or infrared spectral range
JP2018128318A (en) * 2017-02-07 2018-08-16 コニカミノルタ株式会社 Gas detector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119227A (en) * 1981-01-16 1982-07-24 Fujitsu Ltd Infrared ray detector
JPS63285427A (en) * 1987-05-18 1988-11-22 Nikon Corp Infrared radiation measuring apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119227A (en) * 1981-01-16 1982-07-24 Fujitsu Ltd Infrared ray detector
JPS63285427A (en) * 1987-05-18 1988-11-22 Nikon Corp Infrared radiation measuring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1311271C (en) * 2001-07-26 2007-04-18 艾伦H·莱丁顿 Scanning apparatus for forming images in the microwave, mm-wave or infrared spectral range
JP2018128318A (en) * 2017-02-07 2018-08-16 コニカミノルタ株式会社 Gas detector

Similar Documents

Publication Publication Date Title
JP2004317393A (en) Two color irradiation thermometer
JPS62223634A (en) Color deciding device
JPH07322153A (en) Solid-state image pickup element
JPH0983869A (en) Method and device for infrared ray image pickup
JPH0346507A (en) Distance measuring instrument
JP4732569B2 (en) Method for continuously determining the optical layer thickness of a coating
JP4323048B2 (en) Imaging device
JPH051950A (en) Illuminance measuring method for vehicle light
CN221527951U (en) Display depolarization measurement system based on spectral imaging
JPH1048130A (en) Refractive index measuring method and apparatus therefor
JP3714490B2 (en) Surface condition measurement method
JP3152795B2 (en) Camera ranging device
JP3139748B2 (en) White balance calibration light incidence method and apparatus
JP2503523Y2 (en) Active ranging device
JP3650974B2 (en) Optical sensor device
JPS6167012A (en) Focus detecting device
JP3319666B2 (en) Edge detection device
JPH07231407A (en) Image pickup device
JPS5913213A (en) Optical reflection system
JP2004271360A (en) Refractometer
JPH05273149A (en) Inspecting method and device for color transfer ribbon
JP2759270B2 (en) Photometer for electronic imaging camera
JP2002098515A (en) Surface status measuring device
JP2004251817A (en) Condenser lens, and instrument and method for measuring incident angle
JPH04151628A (en) Photometry device for electronic image pickup device