JPH1048130A - Refractive index measuring method and apparatus therefor - Google Patents

Refractive index measuring method and apparatus therefor

Info

Publication number
JPH1048130A
JPH1048130A JP20952196A JP20952196A JPH1048130A JP H1048130 A JPH1048130 A JP H1048130A JP 20952196 A JP20952196 A JP 20952196A JP 20952196 A JP20952196 A JP 20952196A JP H1048130 A JPH1048130 A JP H1048130A
Authority
JP
Japan
Prior art keywords
light
refractive index
light source
total reflection
total amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20952196A
Other languages
Japanese (ja)
Other versions
JP3285769B2 (en
Inventor
Kenji Kawaguchi
賢治 川口
Hiroshi Tsuda
博司 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co Ltd filed Critical Kyoto Electronics Manufacturing Co Ltd
Priority to JP20952196A priority Critical patent/JP3285769B2/en
Publication of JPH1048130A publication Critical patent/JPH1048130A/en
Application granted granted Critical
Publication of JP3285769B2 publication Critical patent/JP3285769B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure a refractive index without being affected by a change in the quantity of light of a light source. SOLUTION: In a refractive index measuring method by a total reflection method, a refractive index is calculated on the basis of a ratio of the total quantity of the reflected light from the predetermined region within the total reflection region 3a of a substance to be inspected obtained from a specific light source 1 and the total quantity of the reflected light from the region containing the critical angle point 3c of the substance to be inspected obtained from the same light source as the above mentioned light source. By this constitution, standard quantity of light can be simply formed without branching separate reference light.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、全反射法による屈
折率測定方法及びその装置に関し、特に、光源の光量変
化の影響を受けることなく屈折率を測定できる、全反射
法による屈折率測定方法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of measuring a refractive index by a total reflection method and an apparatus therefor, and more particularly, to a method of measuring a refractive index by a total reflection method, which can measure a refractive index without being affected by a change in light amount of a light source. And its device.

【0002】[0002]

【従来の技術】従来、全反射法による屈折率測定方法と
しては、例えば図4に示す屈折率測定装置を用い、プリ
ズム101の被検物質が接する一面102に向かって光
源103から拡散光を照射し、この一面102で反射し
た反射光を受光器104で受光し、この受光器104の
受光量又はその分布曲線に基づいてコンピュータを用い
て屈折率を演算して求める方法がある。
2. Description of the Related Art Conventionally, as a method of measuring the refractive index by the total reflection method, for example, using a refractive index measuring apparatus shown in FIG. Then, there is a method in which the light reflected by the one surface 102 is received by the light receiver 104, and the refractive index is calculated using a computer based on the amount of light received by the light receiver 104 or a distribution curve thereof.

【0003】光源103から上記プリズム101の一面
102、即ち、被検物質の表面に入射した反射光は、臨
界角よりも入射角iが小さくなる透過域では反射光の大
部分が屈折して被検物質中に透過し、臨界角よりも入射
角iが大きくなる全反射域では入射光の全てが反射され
るので、この一面102で反射された反射光の光量分布
は例えば図5に示すように、臨界角点を境にして強弱2
段になる。
[0003] In the transmission region where the incident angle i is smaller than the critical angle, most of the reflected light incident on the one surface 102 of the prism 101, that is, the surface of the test substance from the light source 103 is refracted and refracted. In the total reflection region where the light is transmitted through the test substance and the incident angle i is larger than the critical angle, all the incident light is reflected. Therefore, the light amount distribution of the reflected light reflected by the one surface 102 is, for example, as shown in FIG. , Strength 2 at the critical angle point
Become a step.

【0004】受光器104としては例えばCCDのよう
に多数の受光素子を備えるものを用いることもでき、ま
た図4に破線で示すように前記一面102からの反射光
を1点に結像させ、この結像点に単一の受光素子を有す
る受光器104aを配置し、この受光器104の受光量
に基づいて屈折率を演算する構成も採用されている。
[0004] As the light receiver 104, one having a large number of light receiving elements such as a CCD, for example, can be used. Also, as shown by a broken line in FIG. A configuration is also adopted in which a light receiver 104a having a single light receiving element is arranged at this image forming point, and the refractive index is calculated based on the amount of light received by the light receiver 104.

【0005】ところで、この従来の全反射法による屈折
率測定方法及び装置では、光源103の光量が長期間使
用している間に変化したり、電源投入後に周囲温度の影
響によって変化し、測定誤差が生じるという問題があ
る。
In the conventional method and apparatus for measuring the refractive index by the total reflection method, the amount of light of the light source 103 changes during a long period of use or the influence of the ambient temperature after the power is turned on. There is a problem that occurs.

【0006】そこで、この従来の全反射法による屈折率
測定方法では、光源103から出射される反射光の一部
分を基準光として別の受光素子106に受光させ、この
受光素子106の受光量Laと所定の基準光量に対応す
る基準受光量L0 との比(La/L0 )で受光器104
の受光量Lbを除算して所定の基準光量に対応する補正
受光量L(=Lb・La/L0 )を演算し、この補正受
光量Lに基づいて屈折率を演算するようにしている。
Therefore, in this conventional method of measuring the refractive index by the total reflection method, a part of the reflected light emitted from the light source 103 is received by another light receiving element 106 as reference light, and the received light amount La of this light receiving element 106 is The light receiver 104 is calculated by the ratio (La / L 0 ) to the reference light receiving amount L 0 corresponding to the predetermined reference light amount.
The light receiving amount Lb is divided to calculate a corrected light receiving amount L (= Lb · La / L 0 ) corresponding to a predetermined reference light amount, and the refractive index is calculated based on the corrected light receiving amount L.

【0007】尚、上記別の受光素子106は単に光源の
近くに配置するだけでもよいし、またミラーやプリズム
よりなる分光器を介して分岐した反射光を受光するよう
にしてもよい。
The another light receiving element 106 may be simply arranged near the light source, or may receive reflected light branched via a spectroscope including a mirror and a prism.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、この従
来の屈折率測定方法及びその装置によれば、光源103
の強度分布の変化は全方向(試料に向かう方向にも基準
光の方向にも)にリニアに表れるのでなく、方向によっ
て異なって表れることがあり、この場合には上記光源の
強度変化の前後で異なった強度の基準光を用いることに
なって測定誤差を生じることになる。
However, according to the conventional method and the apparatus for measuring the refractive index, the light source 103 is used.
Of the intensity distribution of the light source may not appear linearly in all directions (in the direction toward the sample or in the direction of the reference light) but may appear differently depending on the direction. In this case, before and after the intensity change of the light source, The use of reference lights of different intensities results in measurement errors.

【0009】また、測定用の光路から分岐した基準用の
光路が設けられる場合には、分光器を必要とするので、
装置が大型化になるという問題がある。又、部品点数が
多く、構成が複雑になる嫌いがあり、又、組立て作業性
を高める上で不利になるという問題もある。
When a reference optical path branched from the measuring optical path is provided, a spectroscope is required.
There is a problem that the device becomes large. In addition, there is a problem that the number of parts is large and the configuration is disliked, and there is a disadvantage that the assembling workability is increased.

【0010】本発明は、上記の事情を鑑みてなされたも
のであり、光源の光量変化の影響を受けることなく正確
に被検物質の屈折率を測定でき、しかも、小型化及びコ
ンパクト化を図ることができる上、部品点数が少なく、
構成が簡単になり、更に組立て作業性を高められるよう
にした屈折率測定方法と、この方法を実施できるように
した全反射式屈折率測定装置を提供することを目的とす
るものである。
The present invention has been made in view of the above circumstances, and can accurately measure the refractive index of a test substance without being affected by a change in the amount of light of a light source, and achieve miniaturization and downsizing. And the number of parts is small,
It is an object of the present invention to provide a refractive index measuring method which has a simple structure and can further improve the assembling workability, and a total reflection type refractive index measuring device which can execute this method.

【0011】[0011]

【課題を解決するための手段】本発明は上記の目的を達
成するために、以下の手段を採用している。すなわち、
全反射法による屈折率測定方法において、特定の光源よ
り得られる被検物質の全反射域中の所定の領域よりの反
射光の総量と、上記特定の光源と同じ光源より得られる
被検物質の臨界角点を含む領域よりの反射光の総量との
比に基づいて屈折率を求めるようにしている。
The present invention employs the following means to achieve the above object. That is,
In the refractive index measurement method by the total reflection method, the total amount of reflected light from a predetermined area in the total reflection area of the test substance obtained from a specific light source, and the test substance obtained from the same light source as the specific light source The refractive index is determined based on the ratio to the total amount of light reflected from the region including the critical angle point.

【0012】具体的には図1に示すように、特定の光源
1より得られる被検物質の全反射域中の所定の領域より
の反射光の総量を受光する受光素子7aと、上記特定の
光源と同じ光源1より得られる被検物質の臨界角点を含
む領域よりの反射光の総量を受光する受光素子7bと、
上記2つの受光素子7a,7bの受光量の比に基づいて
屈折率を演算する演算手段10とを備える構成とする。
More specifically, as shown in FIG. 1, a light receiving element 7a for receiving a total amount of reflected light of a test substance obtained from a specific light source 1 from a predetermined area in a total reflection area, A light receiving element 7b for receiving the total amount of reflected light from a region including the critical angle point of the test substance obtained from the same light source 1 as the light source;
An arithmetic unit 10 for calculating the refractive index based on the ratio of the amounts of light received by the two light receiving elements 7a and 7b is provided.

【0013】上記において、入射側の凸レンズ4の焦点
を出射側のプリズム面付近とし、出射側のプリズム面
に、上記全反射域中の所定の領域よりの反射光の総量を
受光する受光素子7aと、臨界角点を含む領域よりの反
射光の総量を受光する受光素子7bを貼り付ける構成と
することができる。この構成によって、出射側のレンズ
を省略することができる。
In the above, the focal point of the convex lens 4 on the incident side is set near the exit-side prism surface, and the light-receiving element 7a for receiving the total amount of reflected light from a predetermined area in the total reflection area on the exit-side prism surface. And a light receiving element 7b for receiving the total amount of reflected light from a region including the critical angle point. With this configuration, the lens on the emission side can be omitted.

【0014】更に、上記受光素子7aと受光素子7bと
して、同一のウェーハより形成された単一モジュールを
用いると、両受光素子7a,7bで電気的特性の変化が
同じになるので、測定誤差を更に少なくすることができ
る。
Further, if a single module formed from the same wafer is used as the light receiving element 7a and the light receiving element 7b, the change in the electrical characteristics of the two light receiving elements 7a and 7b becomes the same. It can be further reduced.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて具体的に説明する。図1の構成図に示す本発明の
一実施例に係る屈折率測定装置は、光源1と、プリズム
2とを備え、この光源1からプリズム2の試料面3に所
定の角度で分散光を照射するようにしている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below with reference to the drawings. The refractive index measuring apparatus according to one embodiment of the present invention shown in the configuration diagram of FIG. 1 includes a light source 1 and a prism 2, and irradiates the sample surface 3 of the prism 2 with dispersed light from the light source 1 at a predetermined angle. I am trying to do it.

【0016】即ち、光源1とプリズム2との間には凸レ
ンズ4が配置され、光源1よりの出射光を擬似光源点5
に収束させることにより、前記試料面3には擬似光源点
5から拡散する光が入射する。
That is, the convex lens 4 is disposed between the light source 1 and the prism 2, and the light emitted from the light source 1
In this way, light diffused from the pseudo light source point 5 enters the sample surface 3.

【0017】この試料面3には被検物質が接し、光源1
の光の入射角が被検物質によって決定される臨界角ic
よりも大きい全反射域3aでは入射光が全部反射され、
臨界角icよりも小さい透過域3bでは入射光の大部分
が屈折して被検物質中に透過する。この全反射域3aと
透過域3bとの境界が臨界角点3cである。
The test substance comes into contact with the sample surface 3 and the light source 1
Critical angle ic at which the incident angle of light is determined by the analyte
In the larger total reflection area 3a, the incident light is totally reflected,
In the transmission region 3b smaller than the critical angle ic, most of the incident light is refracted and transmitted through the test substance. The boundary between the total reflection area 3a and the transmission area 3b is a critical angle point 3c.

【0018】この全反射域3a中の一定の領域での反射
光は別の凸レンズ6を介して受光器7の第1の受光素子
7aに収束して受光され、又、臨界角点3cとその両側
の全反射域3a及び透過域3bとにわたる臨界角点を含
む領域3dよりの反射光は同じ凸レンズ6を通って受光
器7の第2の受光素子7bに収束して受光される。
The reflected light in a certain area in the total reflection area 3a is converged and received by the first light receiving element 7a of the light receiver 7 through another convex lens 6, and the critical angle point 3c and its The reflected light from the region 3d including the critical angle point extending to the total reflection region 3a and the transmission region 3b on both sides passes through the same convex lens 6 and converges on the second light receiving element 7b of the light receiver 7 and is received.

【0019】本発明では、このようにして被検物質の全
反射域3aの所定の領域よりの受光量Laと、前記臨界
角点を含む領域よりの受光量Lbとを得る。そして、こ
れら全反射域3aの所定の領域よりの受光量Laと臨界
角点を含む領域3dよりの受光量Lbとの比(Lb/L
a)と屈折率nとの間には例えば図3に示すような一定
の関係が成立するので、演算手段10で上記の全反射域
3aの所定の領域よりの受光量Laと臨界角点を含む領
域3dよりの受光量Lbの比(Lb/La)を求め、こ
の比(Lb/La)に基づいて屈折率nを求めることに
より、光源1の光量変化に関係無く正確に屈折率nを求
めることができる。
In the present invention, the amount of received light La from a predetermined area of the total reflection area 3a of the test substance and the amount of received light Lb from an area including the critical angle point are obtained in this manner. Then, the ratio (Lb / L) of the light reception amount La from a predetermined region of the total reflection region 3a to the light reception amount Lb from the region 3d including the critical angle point.
Since a certain relationship as shown in FIG. 3, for example, is established between a) and the refractive index n, the arithmetic means 10 determines the amount of received light La from a predetermined region of the total reflection area 3a and the critical angle point. By calculating the ratio (Lb / La) of the amount of received light Lb from the included region 3d and obtaining the refractive index n based on the ratio (Lb / La), the refractive index n can be accurately determined regardless of the change in the light amount of the light source 1. You can ask.

【0020】しかも、この場合全反射域中の所定の領域
と臨界角点を含む領域に対応する光源よりの入射光の方
向は大きなずれがないので、光源1の強度変化は両領域
(全反射域と臨界角点を含む領域)に対してリニアにあ
らわれ、従って、上記2つの受光素子7a,7bの受光
量も光源1の強度変化に対してリニアに現れ、より精度
の高い測定が可能となる。
Further, in this case, since the direction of the incident light from the light source corresponding to the predetermined area in the total reflection area and the area including the critical angle point does not largely shift, the intensity change of the light source 1 is changed in both areas (total reflection). Area including the area and the critical angle point), and therefore, the light receiving amounts of the two light receiving elements 7a and 7b also appear linearly with the change in the intensity of the light source 1, thereby enabling more accurate measurement. Become.

【0021】又、前記臨界角点を含む領域域3dは全反
射域3aを含んでいるので、反射光の光路を凸レンズ6
で収束させることによって、各受光素子7a,7bを微
小距離に隣接させることができ、装置の小型化及びコン
パクト化を図ることができる上に、組立て作業性を高め
ることができる。また、分光器等で光源1よりの光を分
光する必要がないので、上記小型化及びコンパクト化一
層すすめることができる。
Further, since the area 3d including the critical angle point includes the total reflection area 3a, the optical path of the reflected light is changed by the convex lens 6.
, The light receiving elements 7a and 7b can be adjacent to each other at a very small distance, so that the size and size of the device can be reduced, and the assembling workability can be improved. Further, since there is no need to split the light from the light source 1 with a spectroscope or the like, the above-mentioned miniaturization and compactness can be further promoted.

【0022】特に、この実施例では隣接して2つの受光
素子7a,7bが同一ウエ−ハ−より形成された単一モ
ジュールを用いる場合には、部品点数が更に削減され、
構成が一層簡単で、組立て作業性を一層高めることがで
きる上、両受光素子7a,7bの電気的特性のばらつき
がほとんど無なくなるので、更に、測定精度を高めるこ
とができる。
In particular, in this embodiment, when a single module in which two adjacent light receiving elements 7a and 7b are formed from the same wafer is used, the number of parts is further reduced,
The structure is simpler, the assembling workability can be further improved, and the electrical characteristics of both light receiving elements 7a and 7b are hardly varied, so that the measurement accuracy can be further improved.

【0023】図2の構成図に示す本発明の他の実施例に
係る屈折率測定装置では、受光器7がプリズム2の出射
面8に貼り付けられ、光源1から出射した光が凸レンズ
4により集束されながらプリズム2の試料面3に入射
し、試料面3、即ち、被検物質の表面で反射した後、前
記受光器7付近に集束されるようにしている。
In a refractive index measuring apparatus according to another embodiment of the present invention shown in FIG. 2, a light receiver 7 is attached to an emission surface 8 of a prism 2, and light emitted from a light source 1 is reflected by a convex lens 4. The light is incident on the sample surface 3 of the prism 2 while being focused, is reflected on the sample surface 3, that is, the surface of the test substance, and is then focused near the light receiver 7.

【0024】但しこの図2に示す例では、レンズ4より
の光を一旦収束させないので、全反射域3aと透過域3
b、さらにを臨界角点を含む領域域3dは図1に示す例
と左右に逆転する。
However, in the example shown in FIG. 2, since the light from the lens 4 is not once converged, the total reflection area 3a and the transmission area 3a are not reflected.
b, and the region 3d including the critical angle point is reversed left and right from the example shown in FIG.

【0025】上記の構成により、出射面8側の第2の凸
レンズ6を省略することができ、部品点数を更に削減で
きると共に、構成を一層簡単にでき、又、装置全体を更
に小型に、かつ、更にコンパクトにできる上、組立て作
業性を一層高めることができる。
With the above configuration, the second convex lens 6 on the emission surface 8 side can be omitted, the number of parts can be further reduced, the configuration can be further simplified, and the entire apparatus can be further reduced in size and size. In addition, it is possible to further reduce the size and further enhance the assembling workability.

【0026】この実施例のその他の構成、作用ないし効
果は前記の一実施例のそれらと同様であるので、重複を
避けるためこれらの説明は省略する。
The other constructions, operations and effects of this embodiment are the same as those of the above-described embodiment, and therefore, description thereof will be omitted to avoid duplication.

【0027】[0027]

【発明の効果】以上に説明したように、本発明は、被検
物質の全反射域中の所定の領域よりの反射光の総量と、
臨界角点を含む領域よりの反射光の総量との比に基づい
て屈折率を求めており、しかもこの場合、全反射域と臨
界角点を含む領域の方向は略同じであるので、、光源の
強度変化は両方向にリニアに現れ、光源の強度変化の影
響を受けることなく正確に被検物質の屈折率の測定がで
きる。
As described above, according to the present invention, the total amount of light reflected from a predetermined area in the total reflection area of a test substance is determined.
The refractive index is determined based on the ratio to the total amount of reflected light from the area including the critical angle point.Moreover, in this case, the direction of the total reflection area and the area including the critical angle point are substantially the same. Changes linearly in both directions, and the refractive index of the test substance can be accurately measured without being affected by the change in the intensity of the light source.

【0028】また従来光源とプリズムの間に設けていた
基準光を受光する素子、あるいは分光構造を省略して、
部品点数を削減することができると共に構成を簡単にで
きる。又、両受光素子を隣接して設けることにより、装
置全体を小型に、かつ、コンパクトにできる。更に、上
記隣接する2つの受光素子として単一モジュールに組み
込まれた2つの受光素子を使用することによって、更に
装置を小型に、かつ、コンパクトにできる上、組立て作
業性を高めることができるなどの効果を得ることができ
る。
Also, the element for receiving the reference light or the spectral structure provided between the conventional light source and the prism is omitted,
The number of parts can be reduced and the configuration can be simplified. Further, by providing both light receiving elements adjacent to each other, it is possible to make the entire device small and compact. Further, by using two light receiving elements incorporated in a single module as the two adjacent light receiving elements, it is possible to further reduce the size and size of the device and to improve the assembling workability. The effect can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】本発明の他の実施例の構成図である。FIG. 2 is a configuration diagram of another embodiment of the present invention.

【図3】本発明の臨界角点を含む領域域と全反射域中の
所定の領域の光量比−屈折率関係図である。
FIG. 3 is a graph showing a relationship between a light amount ratio and a refractive index in a region including a critical angle point and a predetermined region in a total reflection region according to the present invention.

【図4】従来例の構成図である。FIG. 4 is a configuration diagram of a conventional example.

【図5】被検物質表面からの反射光の強度分布図であ
る。
FIG. 5 is an intensity distribution diagram of reflected light from the surface of a test substance.

【符号の説明】[Explanation of symbols]

1 光源 3a 全反射域 3b 透過域 3c 臨界角点 7a,7b,受光素子 DESCRIPTION OF SYMBOLS 1 Light source 3a Total reflection area 3b Transmission area 3c Critical angle point 7a, 7b, light receiving element

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 全反射法による屈折率測定方法におい
て、特定の光源より得られる被検物質の全反射域中の所
定の領域よりの反射光の総量と、上記特定の光源と同じ
光源より得られる被検物質の臨界角点を含む領域よりの
反射光の総量の比に基づいて屈折率を求めることを特徴
とする屈折率測定方法。
In a method of measuring a refractive index by a total reflection method, a total amount of reflected light of a test substance obtained from a specific light source from a predetermined area in a total reflection area and obtained from the same light source as the specific light source. A method for measuring a refractive index based on a ratio of a total amount of reflected light from a region including a critical angle point of a test substance to be measured.
【請求項2】 全反射法による屈折率測定装置におい
て、特定の光源より得られる被検物質の全反射域中の所
定の領域よりの反射光の総量を受光する受光素子と、上
記特定の光源と同じ光源より得られる被検物質の臨界角
点を含む領域よりの反射光の総量を受光する受光素子
と、 上記両受光素子の出力の比に基づいて屈折率の演算をす
る演算手段とを備えることを特徴とする屈折率測定装
置。
2. A light-receiving element for receiving a total amount of reflected light of a test substance obtained from a specific light source from a predetermined region in a total reflection area, wherein the specific light source is provided. A light-receiving element for receiving the total amount of reflected light from a region including the critical angle point of the test substance obtained from the same light source; and calculating means for calculating a refractive index based on a ratio between the outputs of the two light-receiving elements. A refractive index measuring device, comprising:
【請求項3】 入射側の凸レンズの焦点を出射側のプリ
ズム面付近とし、出射側のプリズム面に、上記全反射域
中の所定の領域よりの反射光の総量を受光する受光素子
と、臨界角点を含む領域よりの反射光の総量を受光する
受光素子を貼り付けた請求項2に記載の屈折率測定装
置。
3. A light-receiving element for receiving a total amount of reflected light from a predetermined area in the total reflection area on the exit-side prism surface, wherein a focal point of the entrance-side convex lens is set near the exit-side prism surface; The refractive index measuring device according to claim 2, wherein a light receiving element that receives a total amount of reflected light from a region including the corner point is attached.
【請求項4】 上記全反射域中の所定の領域よりの反射
光の総量を受光する受光素子と臨界角点を含む領域より
の反射光の総量を受光する受光素子が同一のウェーハよ
り形成された単一モジュールである請求項2または3に
記載の屈折率測定装置。
4. A light receiving element for receiving the total amount of reflected light from a predetermined area in the total reflection area and a light receiving element for receiving the total amount of reflected light from an area including the critical angle point are formed from the same wafer. The refractive index measuring device according to claim 2 or 3, which is a single module.
JP20952196A 1996-08-08 1996-08-08 Refractive index measuring method and apparatus Expired - Lifetime JP3285769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20952196A JP3285769B2 (en) 1996-08-08 1996-08-08 Refractive index measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20952196A JP3285769B2 (en) 1996-08-08 1996-08-08 Refractive index measuring method and apparatus

Publications (2)

Publication Number Publication Date
JPH1048130A true JPH1048130A (en) 1998-02-20
JP3285769B2 JP3285769B2 (en) 2002-05-27

Family

ID=16574176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20952196A Expired - Lifetime JP3285769B2 (en) 1996-08-08 1996-08-08 Refractive index measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP3285769B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7570362B2 (en) 2007-09-28 2009-08-04 Olympus Corporation Optical measurement apparatus utilizing total reflection
JP2010127622A (en) * 2008-11-25 2010-06-10 Kyoto Electron Mfg Co Ltd Refractive index measuring apparatus
JP2014130030A (en) * 2012-12-28 2014-07-10 Omega:Kk Evaluation method of liquid property
KR101959990B1 (en) * 2017-11-09 2019-07-15 (주)에이치엠디지털 기미상궁 Apparatus and method for measuring refractive index

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4889772B2 (en) * 2009-09-18 2012-03-07 株式会社アタゴ Refractometer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7570362B2 (en) 2007-09-28 2009-08-04 Olympus Corporation Optical measurement apparatus utilizing total reflection
JP2010127622A (en) * 2008-11-25 2010-06-10 Kyoto Electron Mfg Co Ltd Refractive index measuring apparatus
JP2014130030A (en) * 2012-12-28 2014-07-10 Omega:Kk Evaluation method of liquid property
KR101959990B1 (en) * 2017-11-09 2019-07-15 (주)에이치엠디지털 기미상궁 Apparatus and method for measuring refractive index

Also Published As

Publication number Publication date
JP3285769B2 (en) 2002-05-27

Similar Documents

Publication Publication Date Title
US11175221B2 (en) Instantaneous ellipsometer or scatterometer and associated measuring method
JP2002098591A (en) Spectral oval polarimeter provided with refractive lighting optical system
FR2749388A1 (en) APPARATUS FOR MEASURING THE PHOTOMETRIC AND COLORIMETRIC CHARACTERISTICS OF AN OBJECT
JP2002277348A (en) Transmissivity measuring method and device
JP3285769B2 (en) Refractive index measuring method and apparatus
JPH09292334A (en) Surface plasmon sensor
JPH0627706B2 (en) Reflectance measuring device
JP3107410B2 (en) Optical waveguide section refractive index distribution measurement device
JPH1062344A (en) Method of measuring refractive index and device therefor
CN103453845A (en) Scattering metering device and scattering metering method
JPH11108838A (en) Method and device for measuring turbidity
JP3599908B2 (en) Refractive index measurement method and apparatus
JP2002195945A (en) Sensor utilizing attenuated total reflection
JPH11142241A (en) Measuring apparatus for spectral transmittance
JP2003075334A (en) Sensor using attenuated total reflection
US11249018B2 (en) Optical refractometer and real time monitoring analysis device having the same
JP4713769B2 (en) High-frequency superposition operation inspection system for semiconductor laser
JP2003065946A (en) Sensor using attenuated total reflection
JP2004271360A (en) Refractometer
JP4053236B2 (en) Sensor using total reflection attenuation
JP3319666B2 (en) Edge detection device
JP3139748B2 (en) White balance calibration light incidence method and apparatus
JPS61226619A (en) Spectrophotometer using integrating sphere
JPH06109635A (en) Optical measuring device
JPH04262244A (en) Optical measuring apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110308

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110308

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120308

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130308

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130308

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140308

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term