JPH0983078A - Semiconductor laser transmitting/receiving element - Google Patents

Semiconductor laser transmitting/receiving element

Info

Publication number
JPH0983078A
JPH0983078A JP23691395A JP23691395A JPH0983078A JP H0983078 A JPH0983078 A JP H0983078A JP 23691395 A JP23691395 A JP 23691395A JP 23691395 A JP23691395 A JP 23691395A JP H0983078 A JPH0983078 A JP H0983078A
Authority
JP
Japan
Prior art keywords
light receiving
light
region
layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23691395A
Other languages
Japanese (ja)
Inventor
Yasumasa Suzaki
泰正 須崎
Yuichi Tomori
裕一 東盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP23691395A priority Critical patent/JPH0983078A/en
Publication of JPH0983078A publication Critical patent/JPH0983078A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a semiconductor laser transmitting/receiving element in which oscillation takes place without causing any supersaturation absorbing phenomenon in the receiving layer. SOLUTION: A light emitting region 14 having a laser active layer 11 is coupled optically with a light receiving region 13 having a light receiving layer 12. Wavelength at the light absorbing end of light receiving layer 12 is set longer than the emission wavelength of laser active layer 11. The light receiving region 13 and the light emitting region 14 are provided individually with electrodes 15, 16 connected through a resistor 17. The resistor 17 is integrated on a semiconductor formed the light receiving region 13 and light emitting region 14 or an external resistor is employed. The electrode 15 in the light receiving region 13 serves as a joint to an external electric circuit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、送信用発光素子お
よび受信用受光素子として用いる半導体レーザ送受信素
子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser transmitting / receiving element used as a transmitting light emitting element and a receiving light receiving element.

【0002】[0002]

【従来の技術】光通信では、送信時には半導体レーザな
どの発光素子で電気信号を光信号に変換し、受信時には
ホトダイオードなどの受光素子で光信号を電気信号に変
換している。半導体レーザ送受信素子は、これら両方の
機能を一素子で行うものであり、低コスト化を図る上で
有用な素子である。
2. Description of the Related Art In optical communication, a light emitting element such as a semiconductor laser converts an electric signal into an optical signal during transmission, and a light receiving element such as a photodiode converts an optical signal into an electric signal during reception. The semiconductor laser transmission / reception element performs both of these functions by one element, and is a useful element for cost reduction.

【0003】特開平7−106700号公報に記載の従
来の半導体レーザ送受信素子は、レーザ活性層と受光層
とを備え、送信時にはレーザ活性層を発振させて信号光
を生成し、受信時には受光層で光信号を受信する構造に
なっていた。この半導体レーザ送受信素子では、送受信
のためのp側電極としてレーザ活性層と受光層の上部に
共通する1つだけが備えられ、送信時にはレーザ活性層
および受光層に均一に電流が注入されていた。
The conventional semiconductor laser transmitting / receiving element described in Japanese Patent Laid-Open No. 7-106700 has a laser active layer and a light receiving layer, and oscillates the laser active layer at the time of transmission to generate signal light, and at the time of receiving, the light receiving layer It was structured to receive optical signals. In this semiconductor laser transmitting / receiving element, only one common electrode is provided above the laser active layer and the light receiving layer as a p-side electrode for transmission / reception, and a current is uniformly injected into the laser active layer and the light receiving layer during transmission. .

【0004】[0004]

【発明が解決しようとする課題】ところで、従来の半導
体レーザ送受信素子は、送信時にレーザ活性層および受
光層に均一に電流注入が行われるので、閾値電流付近で
受光層が過飽和吸収領域として働き、光出力が急激に立
ち上がり高速送信が困難になっていた。本発明は、受光
層の過飽和吸収現象を発生させず発振動作を可能とする
半導体レーザ送受信素子を提供することを目的とする。
By the way, in the conventional semiconductor laser transmitting / receiving element, since current is uniformly injected into the laser active layer and the light receiving layer during transmission, the light receiving layer functions as a supersaturation absorption region near the threshold current, The optical output rapidly rose, making high-speed transmission difficult. SUMMARY OF THE INVENTION It is an object of the present invention to provide a semiconductor laser transmitting / receiving element capable of oscillating without generating a supersaturated absorption phenomenon of a light receiving layer.

【0005】[0005]

【課題を解決するための手段】図1は、請求項1の半導
体レーザ送受信素子の基本構成を示す。ここに示す半導
体レーザ送受信素子は、レーザ活性層11を有する発光
領域14と、受光層12を有する受光領域13を光学的
に結合した構成である。(1) は受光領域13における受
光層11とレーザ活性層12が2層構造になっている例
であり、(2) は受光領域13が受光層11のみから構成
される例である。受光層11の光吸収端波長は、レーザ
活性層12の発光波長より長波長に設定される。受光領
域13と発光領域14にはそれぞれ個別に電極15,1
6が配置され、その電極間を抵抗体17を介して接続す
る。この抵抗体17は、受光領域13および発光領域1
4を形成する半導体上に集積化するか、外部抵抗体が用
いられる。受光領域13の電極15は、外部電気回路へ
の接続点となる。
FIG. 1 shows a basic structure of a semiconductor laser transmitting / receiving element according to a first aspect of the present invention. The semiconductor laser transmitting / receiving element shown here has a structure in which a light emitting region 14 having a laser active layer 11 and a light receiving region 13 having a light receiving layer 12 are optically coupled. (1) is an example in which the light receiving layer 11 and the laser active layer 12 in the light receiving region 13 have a two-layer structure, and (2) is an example in which the light receiving region 13 is composed of only the light receiving layer 11. The light absorption edge wavelength of the light receiving layer 11 is set to be longer than the emission wavelength of the laser active layer 12. The light receiving area 13 and the light emitting area 14 are individually provided with electrodes 15 and 1 respectively.
6 is arranged, and the electrodes thereof are connected via a resistor 17. The resistor 17 includes a light receiving area 13 and a light emitting area 1.
4 is integrated on the semiconductor forming 4 or an external resistor is used. The electrode 15 of the light receiving region 13 becomes a connection point to an external electric circuit.

【0006】図2は、請求項2の半導体レーザ送受信素
子の基本構成を示す。ここに示す半導体レーザ送受信素
子は、図1の半導体レーザ送受信素子の構成において、
発光領域14の所定の位置にブラッグ波長がレーザ活性
層12の発光波長に設定された回折格子18を有する構
成である。(1) は受光領域13における受光層11とレ
ーザ活性層12が2層構造になっている例であり、(2)
は受光領域13が受光層11のみから構成される例であ
る。
FIG. 2 shows the basic structure of the semiconductor laser transmitting / receiving element of claim 2. The semiconductor laser transmitting / receiving element shown here is the same as the semiconductor laser transmitting / receiving element of FIG.
The diffraction grating 18 having the Bragg wavelength set to the emission wavelength of the laser active layer 12 is provided at a predetermined position of the emission region 14. (1) is an example in which the light receiving layer 11 and the laser active layer 12 in the light receiving region 13 have a two-layer structure, and (2)
Is an example in which the light receiving region 13 is composed only of the light receiving layer 11.

【0007】図3は、本発明の半導体レーザ送受信素子
の等価回路を示す。ここでは、静電容量成分を無視し
た。発光動作時の素子抵抗は、典型的な半導体レーザの
I−V曲線より導出し、閾値電流付近の値である5
〔Ω〕とした。受光領域13の長さを15〔μm〕、発光
領域14の長さを 385〔μm〕とすると、抵抗率は変化
せずに抵抗面積が変化するので、受光領域13における
閾値電流付近の素子抵抗は 5・385/15≒130〔Ω〕とな
る。また、受光領域13と発光領域14の分離抵抗をR
sep 〔Ω〕とし、抵抗体17の抵抗値をR〔Ω〕とし
た。
FIG. 3 shows an equivalent circuit of the semiconductor laser transmitting / receiving element of the present invention. Here, the capacitance component is ignored. The element resistance during the light emitting operation is a value near the threshold current, which is derived from the IV curve of a typical semiconductor laser.
[Ω]. If the length of the light receiving region 13 is 15 [μm] and the length of the light emitting region 14 is 385 [μm], the resistance area changes without changing the resistivity. Therefore, the element resistance near the threshold current in the light receiving region 13 is changed. Is 5.385 / 15 ≈ 130 [Ω]. Further, the separation resistance of the light receiving area 13 and the light emitting area 14 is R
The resistance value of the resistor 17 was R [Ω].

【0008】送信時の電流は、電極15から受光領域1
3に注入されるとともに、抵抗体17を介して電極16
から発光領域14に注入される。このとき、抵抗体17
の抵抗値Rを大きくすることにより、図4に示すよう
に、発光領域14よりも受光領域13に供給される電流
密度が大きくなる。例えば、R=5〔Ω〕とすることに
より、受光領域13に発光領域14の約2倍の電流密度
で供給される。なお、受光領域13と発光領域14の分
離抵抗Rsep が 100〔Ω〕から2〔kΩ〕まで変動して
も電流密度はほとんど変動しない。
The electric current at the time of transmission is from the electrode 15 to the light receiving region 1
3 and is injected into the electrode 16 through the resistor 17.
Is injected into the light emitting region 14. At this time, the resistor 17
As shown in FIG. 4, the current density supplied to the light receiving region 13 is larger than that of the light emitting region 14 by increasing the resistance R of the light receiving region 13. For example, by setting R = 5 [Ω], the current density is supplied to the light receiving region 13 at about twice the current density of the light emitting region 14. Even if the separation resistance Rsep of the light receiving region 13 and the light emitting region 14 changes from 100 [Ω] to 2 [kΩ], the current density hardly changes.

【0009】このように受光領域13には、閾値電流以
下でも十分なキャリアが注入されて利得が生じ、発振波
長に対して透明となる。したがって、受光領域13で
は、閾値電流が供給されても過飽和吸収によるI−L曲
線の急激な立ち上がりは観測されず、滑らかに光出力を
増加させることができる。これにより、高速送信が可能
となる。
As described above, in the light-receiving region 13, sufficient carriers are injected even at a threshold current or less to generate a gain, which is transparent to the oscillation wavelength. Therefore, in the light receiving region 13, even if the threshold current is supplied, a sharp rise of the IL curve due to the absorption of supersaturation is not observed, and the light output can be smoothly increased. This enables high-speed transmission.

【0010】[0010]

【発明の実施の形態】図5は、請求項1および請求項3
の半導体レーザ送受信素子の実施形態を示す。図におい
て、31はn型InP基板、32はInGaAsP下側SC
H層、33はInGaAsP−MQW活性層、34はInG
aAsP上側SCH層、35はInPエッチストップ層、
36はInGaAsP受光層、37はp型InPクラッド
層、38はFe−InP埋め込み層、39は受光領域のp
側AuZnNi 電極、40は発光領域のp側AuZnNi 電
極、41はn側AuGeNi 電極、42はPt 抵抗体、4
3はSiO2絶縁膜である。なお、図では一部を切り欠い
て内部の様子も併せて示している。以下の実施例におい
ても同様である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 5 shows claims 1 and 3.
2 shows an embodiment of the semiconductor laser transmitting / receiving element of FIG. In the figure, 31 is an n-type InP substrate, 32 is an InGaAsP lower SC.
H layer, 33 is an InGaAsP-MQW active layer, and 34 is InG
aAsP upper SCH layer, 35 is an InP etch stop layer,
36 is an InGaAsP light receiving layer, 37 is a p-type InP cladding layer, 38 is a Fe-InP buried layer, and 39 is a light receiving region p.
Side AuZnNi electrode, 40 is a p-side AuZnNi electrode in the light emitting region, 41 is an n-side AuGeNi electrode, 42 is a Pt resistor, 4
3 is a SiO 2 insulating film. In the figure, a part is cut away to show the inside. The same applies to the following examples.

【0011】本実施例の半導体レーザ送受信素子の作製
方法について簡単に説明する。最初に、有機金属気相エ
ピタキシャル成長法を用いて、n型In P基板31上に
InGaAsP下側SCH層32、InGaAsP−MQW活
性層33、InGaAsP上側SCH層34、InPエッチ
ストップ層35、InGaAsP受光層36を順次形成す
る。次に、InGaAsP受光層36上にSiO2 薄膜を形
成し、フォトリソグラフィで発光領域となる部分のSi
2薄膜を除去し、さらにウェットエッチングによりIn
GaAsP受光層36を除去する。
A method of manufacturing the semiconductor laser transmitting / receiving element of this embodiment will be briefly described. First, an InGaAsP lower SCH layer 32, an InGaAsP-MQW active layer 33, an InGaAsP upper SCH layer 34, an InP etch stop layer 35, an InGaAsP light receiving layer are formed on an n-type InP substrate 31 by using a metalorganic vapor phase epitaxial growth method. 36 are sequentially formed. Next, a SiO 2 thin film is formed on the InGaAsP light-receiving layer 36, and a portion of the Si that becomes a light emitting region is formed by photolithography.
The O 2 thin film is removed, and then In is applied by wet etching.
The GaAsP light receiving layer 36 is removed.

【0012】次に、SiO2薄膜をすべて除去した後に、
有機金属気相エピタキシャル成長法を用いて全面にp型
In Pクラッド層37を形成する。次に、横モードを制
御するためにストライプ状にメサ構造を形成する。次
に、有機金属気相エピタキシャル成長法を用いてFe−
InP埋め込み層38を形成する。次に、SiO2絶縁膜
43を全面に形成し、ストライプ部分のSiO2絶縁膜4
3をフォトリソグラフィとウェットエッチングにより除
去し、受光領域のp側AuZnNi電極39と発光領域の
p側AuZnNi 電極40をリフトオフにより形成する。
さらに、各電極を接続するように半導体上にPt 抵抗体
42をリフトオフにより形成する。次に、n側AuGeN
i 電極41を形成する。
Next, after removing all the SiO 2 thin film,
A p-type InP clad layer 37 is formed on the entire surface by using a metal organic vapor phase epitaxial growth method. Next, a mesa structure is formed in a stripe shape in order to control the transverse mode. Next, using the metalorganic vapor phase epitaxial growth method, Fe-
An InP buried layer 38 is formed. Next, the SiO 2 insulating film 43 is formed on the entire surface, and the SiO 2 insulating film 4 in the stripe portion is formed.
3 is removed by photolithography and wet etching, and a p-side AuZnNi electrode 39 in the light receiving region and a p-side AuZnNi electrode 40 in the light emitting region are formed by lift-off.
Further, a Pt resistor 42 is formed on the semiconductor by lift-off so as to connect each electrode. Next, n-side AuGeN
The i electrode 41 is formed.

【0013】ここで、InGaAsP−MQW 活性層33
のバンドギャップ波長(発光波長)は 1.3〔μm〕であ
り、InGaAsP 受光層36のバンドギャップ波長(光
吸収端波長)は1.34〔μm〕である。半導体上のPt 抵
抗体42は幅10〔μm〕、長さ 200〔μm〕、厚さ 400
〔nm〕である。なお、本実施形態は、受光領域がIn
GaAsP−MQW活性層33とInGaAsP受光層36
の2層構造になっている例であるが、受光領域はバット
ジョイント成長により作製される受光層のみで構成して
もよい。
Here, the InGaAsP-MQW active layer 33 is formed.
Has a bandgap wavelength (emission wavelength) of 1.3 [μm], and the InGaAsP light-receiving layer 36 has a bandgap wavelength (light absorption edge wavelength) of 1.34 [μm]. The Pt resistor 42 on the semiconductor has a width of 10 [μm], a length of 200 [μm], and a thickness of 400.
[Nm]. In this embodiment, the light receiving area is In
GaAsP-MQW active layer 33 and InGaAsP light receiving layer 36
However, the light receiving region may be composed of only a light receiving layer formed by butt joint growth.

【0014】図6は、請求項1および請求項4の半導体
レーザ送受信素子の実施形態を示す。本実施形態では、
受光領域のp側AuZnNi 電極39と発光領域のp側A
uZnNi 電極40とをチップ抵抗44を介して接続する
ことを特徴とする。チップ抵抗44と各電極との間は、
ボンディングワイヤ45,46により接続される。その
他は、図5の構成と同様の方法により作製される。
FIG. 6 shows an embodiment of the semiconductor laser transmitting / receiving element according to claims 1 and 4. In this embodiment,
P-side AuZnNi electrode 39 in the light-receiving region and p-side A in the light-emitting region
The uZnNi electrode 40 is characterized in that it is connected via a chip resistor 44. Between the chip resistor 44 and each electrode,
Bonding wires 45 and 46 are used for connection. Others are manufactured by the same method as the structure of FIG.

【0015】また、受光領域および発光領域を有する光
素子をパッケージに封入し、受光領域のp側AuZnNi
電極39および発光領域のp側AuZnNi 電極40を個
別に引き出し、その間に外部抵抗体を接続する構成とし
てもよい。なお、高速信号を送信する場合には抵抗体は
各電極に近接している方がよく、図5に示す集積化する
構成が好ましい。
An optical element having a light receiving region and a light emitting region is enclosed in a package, and the p-side AuZnNi of the light receiving region is enclosed.
The electrode 39 and the p-side AuZnNi electrode 40 in the light emitting region may be individually drawn out, and an external resistor may be connected therebetween. When transmitting a high-speed signal, it is preferable that the resistor is close to each electrode, and the integrated structure shown in FIG. 5 is preferable.

【0016】図7は、請求項2および請求項3の半導体
レーザ送受信素子の実施形態を示す。本実施形態は、図
5の構成において、InGaAsP−MQW 活性層33の
所定の位置に回折格子18を有することを特徴とする。
この回折格子18の作製方法は、InPエッチストップ
層35を発光領域のみ除去し、InGaAsP上側SCH
層34にブラッグ波長が活性層の発光波長になるように
設定した回折格子18を干渉露光法等で形成する。その
他は図5の構成と同様の方法により作製される。
FIG. 7 shows an embodiment of the semiconductor laser transmitting / receiving element according to claims 2 and 3. The present embodiment is characterized in that the diffraction grating 18 is provided at a predetermined position of the InGaAsP-MQW active layer 33 in the configuration of FIG.
This diffraction grating 18 is manufactured by removing the InP etch stop layer 35 only in the light emitting region and removing the InGaAs AsP upper SCH.
The diffraction grating 18 having the Bragg wavelength set to the emission wavelength of the active layer is formed in the layer 34 by an interference exposure method or the like. Others are manufactured by the same method as the structure of FIG.

【0017】図8は、請求項2および請求項4の半導体
レーザ送受信素子の実施形態を示す。本実施形態は、図
6の構成において、InGaAsP−MQW 活性層33の
所定の位置に回折格子18を有することを特徴とする。
回折格子18の作製方法は図7に示すものと同様であ
る。その他は、図5の構成と同様の方法により作製され
る。
FIG. 8 shows an embodiment of the semiconductor laser transmitting / receiving element of claims 2 and 4. The present embodiment is characterized in that the InGaAsP-MQW active layer 33 has a diffraction grating 18 at a predetermined position in the configuration of FIG.
The method of manufacturing the diffraction grating 18 is the same as that shown in FIG. Others are manufactured by the same method as the structure of FIG.

【0018】図5〜図8に示すいずれの構成において
も、送信時にはInGaAsP−MQW活性層33のバン
ドギャップ波長で発振し、I−L特性においても過飽和
吸収現象は観測されなかった。ただし、発振閾値は受光
層をもたない半導体レーザに比べて10〜25%の増加であ
った。また、受信時には受光層のバンドギャップ波長ま
で平坦な受光感度が得られた。
In any of the structures shown in FIGS. 5 to 8, oscillation occurred at the bandgap wavelength of the InGaAsP-MQW active layer 33 during transmission, and no supersaturated absorption phenomenon was observed in the IL characteristics. However, the oscillation threshold was increased by 10 to 25% as compared with the semiconductor laser without the absorption layer. Further, at the time of reception, a flat light receiving sensitivity up to the bandgap wavelength of the light receiving layer was obtained.

【0019】以上の構成では、レーザ活性層をMQW
(多重量子井戸構造)としているが、単一層であっても
同様に動作させることができる。
In the above structure, the MQW is used as the laser active layer.
(Multiple quantum well structure) is used, but a single layer can be operated in the same manner.

【0020】[0020]

【発明の効果】以上説明したように、本発明の半導体レ
ーザ送受信素子は、送信時に受光領域を発振波長に対し
て透明となり、過飽和吸収現象を生じさせずに発振動作
が可能となる。これにより高速送信が可能となる。な
お、受信時には、発光領域よりも長いバンドギャップ波
長を有する受光領域で光をほぼ 100%吸収することがで
きる。
As described above, in the semiconductor laser transmitting / receiving element of the present invention, the light receiving region becomes transparent to the oscillation wavelength during transmission, and the oscillation operation can be performed without causing the supersaturation absorption phenomenon. This enables high-speed transmission. During reception, almost 100% of light can be absorbed in the light receiving region having a bandgap wavelength longer than that of the light emitting region.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1の半導体レーザ送受信素子の基本構成
を示す図。
FIG. 1 is a diagram showing a basic configuration of a semiconductor laser transmitting / receiving element according to claim 1.

【図2】請求項2の半導体レーザ送受信素子の基本構成
を示す図。
FIG. 2 is a diagram showing a basic configuration of a semiconductor laser transmitting / receiving element according to claim 2;

【図3】本発明の半導体レーザ送受信素子の等価回路を
示す図。
FIG. 3 is a diagram showing an equivalent circuit of a semiconductor laser transmitting / receiving element of the present invention.

【図4】抵抗体の抵抗値Rと電流密度の関係を示す図。FIG. 4 is a diagram showing a relationship between a resistance value R of a resistor and a current density.

【図5】請求項1および請求項3の半導体レーザ送受信
素子の実施形態を示す図。
FIG. 5 is a diagram showing an embodiment of the semiconductor laser transmitting / receiving element according to claims 1 and 3;

【図6】請求項1および請求項4の半導体レーザ送受信
素子の実施形態を示す図。
FIG. 6 is a diagram showing an embodiment of the semiconductor laser transmitting / receiving element according to claims 1 and 4.

【図7】請求項2および請求項3の半導体レーザ送受信
素子の実施形態を示す図。
FIG. 7 is a diagram showing an embodiment of the semiconductor laser transmitting / receiving element according to claims 2 and 3;

【図8】請求項2および請求項4の半導体レーザ送受信
素子の実施形態を示す図。
FIG. 8 is a diagram showing an embodiment of the semiconductor laser transmitting / receiving element according to claim 2 and claim 4;

【符号の説明】[Explanation of symbols]

11 受光層 12 レーザ活性層 13 受光領域 14 発光領域 15,16 電極 17 抵抗体 18 回折格子 31 n型InP基板 32 InGaAsP下側SCH層 33 InGaAsP−MQW活性層 34 InGaAsP上側SCH層 35 InPエッチストップ層 36 InGaAsP受光層 37 p型InPクラッド層 38 Fe−InP埋め込み層 39 受光領域のp側AuZnNi電極 40 発光領域のp側AuZnNi電極 41 n側AuGeNi電極 42 Pt 抵抗体 43 SiO2絶縁膜 44 チップ抵抗 45,46 ボンディングワイヤ11 light receiving layer 12 laser active layer 13 light receiving area 14 light emitting area 15 and 16 electrode 17 resistor 18 diffraction grating 31 n-type InP substrate 32 InGaAsP lower SCH layer 33 InGaAsP-MQW active layer 34 InGaAsP upper SCH stop layer 35 InP 36 InGaAsP light receiving layer 37 p-type InP clad layer 38 Fe-InP buried layer 39 p-side AuZnNi electrode 40 in light-receiving region p-side AuZnNi electrode 41 in light-emitting region 42 n-side AuGeNi electrode 42 Pt resistor 43 SiO 2 insulating film 44 , 46 Bonding wire

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 レーザ活性層を有する発光領域と、 前記レーザ活性層と光学的に結合される受光層を有し、
この受光層の光吸収端波長が前記レーザ活性層の発光波
長より長波長に設定された受光領域と、 前記受光領域と前記発光領域にそれぞれ個別に配置され
た電極と、 前記受光領域の電極と前記発光領域の電極とを接続する
抵抗体とを備え、 前記受光領域の電極を外部電気回路への接続点とするこ
とを特徴とする半導体レーザ送受信素子。
1. A light emitting region having a laser active layer, and a light receiving layer optically coupled to the laser active layer,
The light absorption edge wavelength of the light receiving layer is set to a longer wavelength than the light emission wavelength of the laser active layer, the light receiving area and the electrodes individually arranged in the light emitting area, and the electrode of the light receiving area A semiconductor laser transmitting / receiving element, comprising: a resistor connecting to an electrode in the light emitting region, wherein the electrode in the light receiving region serves as a connection point to an external electric circuit.
【請求項2】 請求項1に記載の半導体レーザ送受信素
子において、 発光領域の所定の位置にブラッグ波長がレーザ活性層の
発光波長に設定された回折格子を有することを特徴とす
る半導体レーザ送受信素子。
2. The semiconductor laser transmitter / receiver device according to claim 1, wherein the semiconductor laser transmitter / receiver device has a diffraction grating whose Bragg wavelength is set to the emission wavelength of the laser active layer at a predetermined position in the light emitting region. .
【請求項3】 請求項1または請求項2に記載の半導体
レーザ送受信素子において、 受光領域の電極と発光領域の電極とを接続する抵抗体が
集積化されていることを特徴とする半導体レーザ送受信
素子。
3. The semiconductor laser transmitter / receiver device according to claim 1, wherein a resistor connecting an electrode in the light receiving region and an electrode in the light emitting region is integrated. element.
【請求項4】 請求項1または請求項2に記載の半導体
レーザ送受信素子において、 受光領域の電極と発光領域の電極とを接続する抵抗体が
外部抵抗体であることを特徴とする半導体レーザ送受信
素子。
4. The semiconductor laser transmitter / receiver device according to claim 1, wherein the resistor connecting the electrode in the light receiving region and the electrode in the light emitting region is an external resistor. element.
JP23691395A 1995-09-14 1995-09-14 Semiconductor laser transmitting/receiving element Pending JPH0983078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23691395A JPH0983078A (en) 1995-09-14 1995-09-14 Semiconductor laser transmitting/receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23691395A JPH0983078A (en) 1995-09-14 1995-09-14 Semiconductor laser transmitting/receiving element

Publications (1)

Publication Number Publication Date
JPH0983078A true JPH0983078A (en) 1997-03-28

Family

ID=17007616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23691395A Pending JPH0983078A (en) 1995-09-14 1995-09-14 Semiconductor laser transmitting/receiving element

Country Status (1)

Country Link
JP (1) JPH0983078A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019040950A (en) * 2017-08-23 2019-03-14 日本電信電話株式会社 Semiconductor optical integrated element
JP2019212888A (en) * 2018-06-05 2019-12-12 日本電信電話株式会社 Optical transmitter and multi-wavelength optical transmitter
WO2019235235A1 (en) * 2018-06-05 2019-12-12 日本電信電話株式会社 Optical transmitter and multi-wavelength optical transmitter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019040950A (en) * 2017-08-23 2019-03-14 日本電信電話株式会社 Semiconductor optical integrated element
JP2019212888A (en) * 2018-06-05 2019-12-12 日本電信電話株式会社 Optical transmitter and multi-wavelength optical transmitter
WO2019235235A1 (en) * 2018-06-05 2019-12-12 日本電信電話株式会社 Optical transmitter and multi-wavelength optical transmitter

Similar Documents

Publication Publication Date Title
EP0896405B1 (en) Method for fabricating surface-emitting semiconductor device
JP3484394B2 (en) Optical semiconductor device and method of manufacturing the same
US8000370B2 (en) Laser-induced optical wiring apparatus
JPH0575214A (en) Semiconductor device
JPH03256386A (en) Semiconductor laser, its manufacture and optical communication system
JP2827411B2 (en) Optical semiconductor device and method of manufacturing the same
JPH0983078A (en) Semiconductor laser transmitting/receiving element
JPH0797661B2 (en) Light emitting diode and manufacturing method thereof
US5346854A (en) Method of making a semiconductor laser
JPH11186661A (en) Semiconductor laser with modulator
JPH0951142A (en) Semiconductor light emitting element
JP4243506B2 (en) Semiconductor laser and optical module using the same
JPH05327111A (en) Semiconductor laser and its manufacture
JPH06244502A (en) Surface-emission laser apparatus and its manufacture
JP2001267639A (en) Optical element mounting board and multi-wavelength light source
JPS61289689A (en) Semiconductor light emission device
JP3685925B2 (en) Super luminescent diode
JPH06112595A (en) Fabrication of semiconductor optical functional element
JPH0685456B2 (en) Method of manufacturing semiconductor laser device
JPH11330624A (en) Semiconductor device
JPH10178200A (en) Semiconductor optically integrated element
JPH0677583A (en) Integrated light source with semiconductor laser and optical modulator
JPH07142697A (en) Optical semiconductor device
JPH04305991A (en) Semiconductor laser element
JP2001144381A (en) Light transmission device and method for manufacturing the same