JPH0982986A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0982986A
JPH0982986A JP23367195A JP23367195A JPH0982986A JP H0982986 A JPH0982986 A JP H0982986A JP 23367195 A JP23367195 A JP 23367195A JP 23367195 A JP23367195 A JP 23367195A JP H0982986 A JPH0982986 A JP H0982986A
Authority
JP
Japan
Prior art keywords
layer
type semiconductor
concentration
voltage
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23367195A
Other languages
Japanese (ja)
Other versions
JP3456065B2 (en
Inventor
Tomoyuki Yamazaki
智幸 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP23367195A priority Critical patent/JP3456065B2/en
Publication of JPH0982986A publication Critical patent/JPH0982986A/en
Application granted granted Critical
Publication of JP3456065B2 publication Critical patent/JP3456065B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a leakage current while improving on-state voltage and the trade-off of switching loss. SOLUTION: A high-concentration n-type semiconductor substrate is used as an n<+> buffer layer 2, an n<-> layer 1 is formed on the surface of the buffer layer 2, a p<-> layer 5 is shaped onto the surface layer of the n<-> layer 1, trench grooves 10 reaching the n<-> layer 1 are formed to the surface of the layer 5, boron is diffused to the side walls and bases of the trench grooves 10 in a vapor phase, p<+> regions 6 are formed, and a surface electrode 3 is formed onto the p<+> layers 5 and the p<+> regions 6 and a rear electrode 4 onto the n<+> buffer layer 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、電力変換装置に
用いられるダイオードなどの半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device such as a diode used in a power conversion device.

【0002】[0002]

【従来の技術】電力変換装置に用いられるダイオードは
低オン電圧で、且つ、高速性が要求される。数十Vの低
耐圧素子ではショットキーダイオードがこの特性を兼ね
備えているが、高耐圧化するとシリコン厚みの増大のた
め、オン電圧(順電圧降下ともいう)が大幅に増加する
と共に、ショットキー接合ゆえに漏れ電流が大幅に増大
する。このためショットキーダイオードは一般には高耐
圧素子としては使用されない。高耐圧素子としては、伝
導度変調(正孔と電子の注入により、半導体の伝導度を
低下させること)を利用してオン電圧を低下させるpi
nダイオード(構造としてはpn- + である)が良く
知られている。
2. Description of the Related Art A diode used in a power converter is required to have a low on-voltage and high speed. In a low withstand voltage element of several tens of volts, a Schottky diode has this characteristic as well. However, when the withstand voltage is increased, the on-voltage (also called forward voltage drop) is greatly increased due to the increase in silicon thickness, and the Schottky junction Therefore, the leakage current is significantly increased. Therefore, the Schottky diode is not generally used as a high breakdown voltage element. As a high breakdown voltage element, conductivity modulation (reducing the conductivity of a semiconductor by injecting holes and electrons) is used to reduce the on-voltage.
N-diodes (pn - n + in structure) are well known.

【0003】図8はpinダイオード(従来例(1))
の素子断面図に電圧を印加した状態を示し、同図(a)
は順バイアス時の図、同図(b)は逆バイアス時の図を
示す。このpinダイオードはp層8、n- 層1、n+
バッファ層2の3層で構成され、p層8上とn+ バッフ
ァ層2上に表面電極3と裏面電極4が形成される。同図
(a)において、pinダイオードを順バイアスする
と、p層8から正孔、n + バッファ層2から電子がn-
層1に注入され、矢印で示した電流が流れる。このオン
状態ではn- 層1では熱平衡状態でのキャリア(正孔と
電子)の量より多くなり、所謂、伝導度変調が起こり、
オン電圧を低下させる。しかし、オン状態で蓄積された
キャリア量が多いため、逆回復過程で、大きな逆回復電
流が流れる。これを小さく抑制するために、通常、ダイ
オード内にライフタイムキラーを導入している。しか
し、ライフタイムキラーの導入はオン電圧を増大させ
る。このように、pinダイオードではオン電圧と、逆
回復電流はトレードオフの関係にあり、またスイッチン
グ損失は逆回復電流に依存するため、オン電圧とスイッ
チング損失もトレードオフの関係にある。同図(b)に
おいて、pinダイオードを逆バイアスすると、n-
1に空乏層が拡がる。空乏層端がn+ バッファ層2に達
すると空乏層はn+ バッファ層2内では殆ど拡がらない
ため、n+ バッファ層2を設けることで、n- 層1の厚
さを小さくでき、オン電圧の低下に役立つ。また、p層
8の濃度が比較的高いため、p層8内の空乏層の拡がり
は小さい。
FIG. 8 shows a pin diode (conventional example (1)).
A state in which a voltage is applied is shown in the element cross-sectional view of FIG.
Shows the diagram when forward biased, and (b) shows the diagram when reverse biased.
Show. This pin diode has ap layer 8, n-Layer 1, n+
The buffer layer 2 is composed of three layers, on the p layer 8 and the n layer.+Buff
A front surface electrode 3 and a back surface electrode 4 are formed on the upper layer 2. Same figure
In (a), forward bias the pin diode
From the p layer 8 to holes, n +Electrons from the buffer layer 2-
It is injected into the layer 1 and the current indicated by the arrow flows. This on
N in the state-In layer 1, carriers in thermal equilibrium (with holes and
More than the amount of electrons), so-called conductivity modulation occurs,
Lower the on-voltage. But accumulated in the on state
Due to the large amount of carrier, a large reverse recovery voltage is generated during the reverse recovery process.
The flow flows. In order to suppress this
A lifetime killer is introduced in the ode. Only
However, the introduction of lifetime killer increases the on-voltage.
You. In this way, in the pin diode,
There is a trade-off between recovery current and
Since the switching loss depends on the reverse recovery current, the on-voltage and the switching
The ching loss also has a trade-off relationship. In the figure (b)
When the pin diode is reverse biased,-layer
The depletion layer spreads to 1. Depletion layer edge is n+Reach buffer layer 2
Then the depletion layer is n+Hardly spreads in the buffer layer 2
Therefore, n+By providing the buffer layer 2, n-Layer 1 thickness
This helps reduce the on-voltage. Also, p layer
Since the concentration of 8 is relatively high, the expansion of the depletion layer in the p-layer 8
Is small.

【0004】前記のオン電圧とスイッチング損失のトレ
ードオフを改善するために、pinダイオードのp層8
の濃度を低下させ、正孔がn- 層1に注入されるのを抑
制し、伝導度変調の度合いを小さくして、p層8とn-
層1の接合であるpn接合付近のキャリアの濃度を下げ
る。またライフタイムキラーを積極的に導入しないこと
で、キャリアのライフタイムを長いまま保ち、オン電圧
を増大させない。この両者を成立させて、オン電圧を増
大させずに、逆回復電流を小さくし、且つ、ソフトリカ
バリー化(逆回復電流が滑らかに減少すること)と低ス
イッチング損失化を図ったp- inダイオードが開発さ
れている。
In order to improve the trade-off between the ON voltage and the switching loss, the p-layer 8 of the pin diode is used.
Concentration reduce the positive hole the n - suppressed from being injected into the layer 1, by reducing the degree of conductivity modulation, p layer 8 and the n -
The carrier concentration near the pn junction, which is the junction of the layer 1, is reduced. In addition, by not introducing the lifetime killer positively, the lifetime of the carrier is kept long and the on-voltage is not increased. By establishing both of these, the p - in diode is designed to reduce the reverse recovery current without increasing the on-voltage and to realize soft recovery (the reverse recovery current smoothly decreases) and low switching loss. Is being developed.

【0005】[0005]

【発明が解決しようとする課題】しかし、このp- in
ダイオードは逆バイアス時にp- 層にも空乏層が拡が
り、空乏層が表面電極に達する、所謂、パンチスルー現
象により高耐圧化には限度がある。これを改善するため
にp+ ウェル9を設けたp- inダイオードが開発され
ている。
However, this p - in
In the diode, the depletion layer spreads to the p layer at the time of reverse bias, and the depletion layer reaches the surface electrode, so that the high breakdown voltage is limited by the so-called punch-through phenomenon. In order to improve this, a p - in diode provided with a p + well 9 has been developed.

【0006】図9はp+ ウェル9を設けたp- inダイ
オード(従来例(2))の素子断面図に電圧を印加した
状態を示し、同図(a)は順バイアス時の図、同図
(b)は逆バイアス時の図を示す。このp- inダイオ
ードは図8のpinダイオードのp層8に相当する層を
- 層5と島状のp+ ウェル9で形成している。p+
ェル9を設けた構造により、同図(a)のように順バイ
アス時にはp- 層5から正孔、n+ バッファ層2から電
子が注入され、電流はp- 層5からn+ バッファ層2に
向かって流れる。このとき、p+ ウェル9とn- 層1で
のpn接合のえん層電圧(電流が流れはじめる電圧)が
- 層5とn- 層1でのpn接合のえん層電圧より大
きいため、p+ ウェル9からの正孔の注入はない。電流
はp+ ウェル9の下を横方向にも流れ、横方向の抵抗と
電流の積で決まる電圧がえん層電圧より大きくなると、
+ ウェル9からも正孔の注入が起こる。この構造では
横方向の抵抗が大きいため、比較的小さい電流でp+
ェル9からも正孔の注入が起こり、スイッチイング損失
が大きくなる。また、同図(b)のように逆バイアス時
には、p+ ウェル9で挟まれたn- 層の空乏層が拡が
り、このn- 層をピンチオフさせることで、空乏層がn
- 層側に大きく拡がり、p- 層でのパンチスルー現象が
防止され、高耐圧が維持される。耐圧確保上、このp+
ウェル9の深さは約15μm以上必要であるが、この深
さではp+ ウェル9の横幅が広く、前記の横方向の抵抗
が大きく、p+ ウェル9からの正孔の注入が小さな電流
でも生じる。さらにp+ ウェル9からの正孔の注入がな
い状態では導通面積が低下し、オン電圧が大きくなる。
当然、この深さを浅くするとp- 層でのパンチスルー現
象が起きやすくなり、耐圧低下を招くという問題が生ず
る。
FIG. 9 shows a state in which a voltage is applied to a device cross-sectional view of a p - in diode (conventional example (2)) provided with a p + well 9, and FIG. 9 (a) is a diagram at the time of forward bias, Figure (b) shows a diagram at the time of reverse bias. In this p - in diode, a layer corresponding to the p-layer 8 of the pin diode in FIG. 8 is formed by a p - layer 5 and an island-shaped p + well 9. The structure in which a p + well 9, is at the time of the forward bias as shown in FIG. (a) p - holes from the layer 5, n + electron from the buffer layer 2 is injected, the current p - n + buffer from layer 5 Flows towards layer 2. At this time, the p-well voltage of the pn junction in the p + well 9 and the n layer 1 (voltage at which current starts flowing) is larger than the pir junction voltage of the pn junction in the p layer 5 and the n layer 1, so that p + There is no injection of holes from the well 9. The current also flows laterally under the p + well 9, and when the voltage determined by the product of the lateral resistance and the current becomes larger than the engraved layer voltage,
Injection of holes also occurs from the p + well 9. Since the lateral resistance is large in this structure, holes are also injected from the p + well 9 with a relatively small current, resulting in a large switching loss. Further, as shown in FIG. 7B, at the time of reverse bias, the depletion layer of the n layer sandwiched by the p + wells 9 expands, and the n layer is pinched off.
- spread greatly in the layer side, p - punch-through phenomenon in the layer can be prevented, a high breakdown voltage is maintained. This p +
The depth of the well 9 is required to be about 15 μm or more, but at this depth, the lateral width of the p + well 9 is wide, the lateral resistance is large, and even if the injection of holes from the p + well 9 is small, Occurs. Further, in the state where holes are not injected from the p + well 9, the conduction area decreases and the on-voltage increases.
As a matter of course, if this depth is made shallow, a punch-through phenomenon easily occurs in the p layer, which causes a problem that the breakdown voltage is lowered.

【0007】この発明の目的は、前記の課題を解決し、
漏れ電流が小さく、オン電圧とスイッチング損失の両者
を低減できる半導体装置を提供することにある。
The object of the present invention is to solve the above problems,
It is an object of the present invention to provide a semiconductor device which has a small leakage current and can reduce both the on-voltage and the switching loss.

【0008】[0008]

【課題を解決するための手段】前記の目的を達成するた
めに、高濃度第一導電形半導体層上に、低濃度第一導電
形半導体層を形成し、低濃度第一導電形半導体層の表面
層に低濃度第二導電形半導体層が形成され、低濃度第二
半導体層の表面から低濃度第一導電形半導体層に達する
複数個のトレンチ溝を選択的に形成し、トレンチ溝の表
面層に高濃度第二導電形半導体領域を形成するとよい。
このトレンチ溝の平面上の形状がストライプ状、または
セル状とするとよい。
In order to achieve the above object, a low-concentration first conductivity type semiconductor layer is formed on a high-concentration first conductivity type semiconductor layer to form a low-concentration first conductivity type semiconductor layer. A low-concentration second conductivity type semiconductor layer is formed on the surface layer, and a plurality of trench grooves reaching the low-concentration first conductivity type semiconductor layer from the surface of the low-concentration second semiconductor layer are selectively formed. A high concentration second conductivity type semiconductor region may be formed in the layer.
The planar shape of the trench groove may be stripe-shaped or cell-shaped.

【0009】また高濃度第一導電形半導体層上に、低濃
度第一導電形半導体層を形成し、低濃度第一導電形半導
体層の表面層に低濃度第二導電形半導体層が形成され、
低濃度第二導電形半導体層の近傍の低濃度第一導電形半
導体層内に、複数個、埋め込まれた高濃度第二導電形半
導体領域を選択的に形成するとよい。トレンチ溝に高濃
度第二導電形半導体領域を形成するか、もしくは埋め込
んで高濃度第二導電形半導体領域を形成することで、高
濃度第二導電形半導体領域に挟まれた低濃度第一導電形
半導体層に拡がる空乏層を低電圧でもピンチオフできる
ようにする。こうすることで、低濃度第二導電形半導体
層内に拡がる空乏層が表面電極に達する、所謂パンチス
ルー現象を抑え、高耐圧化が達成できる。また、ライフ
タイムキラーを導入せずに導通時のキャリア濃度を低減
することで、低オン電圧化と低スイッチング損失化の両
者が達成できる。
A low concentration first conductivity type semiconductor layer is formed on the high concentration first conductivity type semiconductor layer, and a low concentration second conductivity type semiconductor layer is formed on the surface layer of the low concentration first conductivity type semiconductor layer. ,
A plurality of high-concentration second-conductivity-type semiconductor regions embedded in the low-concentration first-conductivity-type semiconductor layer near the low-concentration second-conductivity-type semiconductor layer may be selectively formed. By forming a high-concentration second conductivity type semiconductor region in the trench groove or by burying it to form a high-concentration second conductivity type semiconductor region, the low-concentration first conductivity type sandwiched between the high-concentration second conductivity type semiconductor regions is formed. The depletion layer extending to the semiconductor layer can be pinched off even at a low voltage. By doing so, a so-called punch-through phenomenon in which the depletion layer spreading in the low-concentration second conductivity type semiconductor layer reaches the surface electrode is suppressed, and a high breakdown voltage can be achieved. Further, by reducing the carrier concentration during conduction without introducing a lifetime killer, both low on-voltage and low switching loss can be achieved.

【0010】[0010]

【発明の実施の形態】図1はこの発明の第1実施例にお
ける素子断面図である。高濃度n形半導体基板をn+
ッファ層2とし、この表面にn- 層1をエピタキシャル
成長などで形成し、n- 層1の表面層にイオン注入また
はエピタキシャル成長でp- 層5を形成する。この表面
にn- 層1に達するトレンチ溝10を形成し、このトレ
ンチ溝10の側壁や底面にホウ素を気相拡散し、p+
域6を作り込む。このp+ 領域6の拡散深さは数μm以
内とし、活性領域に対するp+ 領域6の面積比率の増加
を抑える。p- 層5上、p+ 領域6上に表面電極3、n
+ バッファ層2上に裏面電極4を形成する。これらの電
極材料としてはオーミック接続するものを選定する。こ
のトレンチ溝10にp+ 領域6を形成することで、従来
素子であるp+ ウェルを設けたp- inダイオードのp
+ ウェルと比較して、p+ 領域6の底部の幅(p+ ウェ
ルの横幅に相当)を小さく、且つ、p+ 領域6の表面か
ら底部までの距離(p+ ウェルの深さに相当)を大きく
できる。従って、p+ 領域6の底部の横方向の抵抗が小
さく、且つ、p+ 領域6で挟まれたn- 層1でのピンチ
オフが低電圧で確実に起こる素子とすることができる。
尚、低濃度n形半導体基板をn- 層1とし、一方の主面
にp- 層5を形成し、他方の主面に拡散等でn+ バッフ
ァ層2を形成してもよい。
1 is a sectional view of an element according to a first embodiment of the present invention. The high-concentration n-type semiconductor substrate is used as the n + buffer layer 2, the n layer 1 is formed on this surface by epitaxial growth or the like, and the p layer 5 is formed on the surface layer of the n layer 1 by ion implantation or epitaxial growth. A trench groove 10 reaching the n layer 1 is formed on this surface, and boron is vapor-phase diffused to the side wall and the bottom surface of the trench groove 10 to form ap + region 6. The diffusion depth of the p + region 6 is within several μm to suppress an increase in the area ratio of the p + region 6 to the active region. The surface electrodes 3, n on the p layer 5 and the p + region 6
+ A back electrode 4 is formed on the buffer layer 2. As these electrode materials, those which make ohmic contact are selected. By forming the p + region 6 to the trench 10, p provided p + well is a conventional element - an in diode p
+ As compared to the well, the width of the bottom of the p + region 6 (p + corresponding to the width of the well) small and, (corresponding to the depth of the p + well) distance from the surface of the p + region 6 to the bottom Can be increased. Therefore, the resistance in the lateral direction at the bottom of the p + region 6 is small, and the pinch-off in the n layer 1 sandwiched between the p + regions 6 can surely occur at a low voltage.
The low-concentration n-type semiconductor substrate may be the n layer 1, the p layer 5 may be formed on one main surface, and the n + buffer layer 2 may be formed on the other main surface by diffusion or the like.

【0011】図2は第1実施例の素子の平面図で、同図
(a)はストライプ状のパターン図、同図(b)はセル
状のパターン図を示す。いずれの場合もトレンチ溝10
の回りにp+ 領域6が形成されている。またセル状の場
合のセルの配置はこの図では三角形配置であるが四角
形、六角形等の配置もある。図3は第1実施例の素子に
電圧を印加した図で、同図(a)は順バイアス時の図、
同図(b)は逆バイアス時の図を示す。図2のように、
トレンチ溝の表面パターンはストライプ状(縞状)また
はセル状(島状)にする。ストライプ状の場合、溝幅が
狭すぎると図示されていない溝パターンの先端部でp+
領域6の曲率がきつくなり耐圧が低下し、逆に広すぎる
と溝直下の電流分による電圧降下でp + 領域6からn-
層1への正孔の注入が起こるため、溝幅は1〜15μm
程度と見込まれる。トレンチ溝10の深さは、浅すぎる
とp+ 領域6に挟まれたn- 層1でピンチオフが十分起
こらず漏れ電流が増加する。そのため、p+ 領域6の深
さは約3μm以上が必要である。またp+ 領域6で挟ま
れたp- 層5の幅は耐圧とオン電圧の設定で変わるが、
- 層1の比抵抗に依存する空乏層の伸びと比べて、こ
の幅が広すぎるとピンチオフが十分行われなず、漏れ電
流が増大することになる。またトレンチ溝10にp+
域6を形成することで、オン状態時には電流はp- 層5
とn- 層1の接合で流れ、両者の層での不純物濃度が低
いために、ライフタイムキラーを導入せずともキャリア
の注入が抑えられる。そのため、逆回復電流が小さいに
もかかわらず、ライフタイムキラーを導入していないた
め、低オン電圧化が図れる。
FIG. 2 is a plan view of the element of the first embodiment.
(A) is a stripe pattern diagram, (b) is a cell
The pattern figure of the shape is shown. In any case, the trench groove 10
Around p+Region 6 is formed. In the case of cellular
The cells are arranged in a triangle in this figure, but in a square
There are also arrangements such as shapes and hexagons. FIG. 3 shows the device of the first embodiment.
In the figure where voltage is applied, the figure (a) is the figure at the time of forward bias,
FIG. 7B shows a diagram when the reverse bias is applied. As shown in FIG.
The surface pattern of the trench groove is striped or
Is a cell shape (island shape). In the case of stripes, the groove width
If it is too narrow, p at the tip of the groove pattern not shown+
The curvature of the area 6 becomes tight and the withstand voltage decreases, and conversely it is too wide.
And p due to the voltage drop due to the current directly below the groove +Region 6 to n-
Since the injection of holes into the layer 1 occurs, the groove width is 1 to 15 μm.
Expected to be around. The depth of the trench groove 10 is too shallow
And p+N sandwiched between regions 6-Pinch-off occurs sufficiently in layer 1
Without increasing, the leakage current increases. Therefore, p+Area 6 depth
The required length is about 3 μm or more. Also p+Sandwiched by region 6
P-The width of the layer 5 varies depending on the setting of withstand voltage and ON voltage,
n-Compared with the elongation of the depletion layer, which depends on the resistivity of layer 1,
If the width of the
The flow will increase. In addition, p in the trench groove 10+Territory
By forming the area 6, the current is p-Layer 5
And n-It flows at the junction of layer 1, and the impurity concentration in both layers is low.
To be a career without introducing a lifetime killer
Injection is suppressed. Therefore, the reverse recovery current is small.
Nonetheless, I didn't introduce Lifetime Killer
Therefore, low on-voltage can be achieved.

【0012】図4はこの発明の第2実施例における素子
断面図を示す。図1との違いは表面層のトレンチ溝10
にp+ 領域6を形成する代わりに、n- 層1に埋め込み
型のp+ 領域7を形成する点である。この埋め込み型の
+ 領域7はp- 層5と接続させず電気的に浮いた状態
にしている。図5は第2実施例の素子に電圧を印加した
図で、同図(a)は順バイアス時の図、同図(b)は逆
バイアス時の図を示す。埋め込み型のp+ 領域7はp-
層5と接続させず電気的に浮いた状態であるためp+
域7からの正孔の注入は基本的に起こらない。また例え
電気的に接続した場合でもp+ 領域7を電流が回り込む
際の電圧降下は小さいため、p+ 領域7からの正孔の注
入は起こらない。逆バイアス時には、p+ 領域7はp-
層5に近接しているので、n- 層1に拡がる空乏層でほ
とんどアノード電位と等しくなり、またp+ 領域7で挟
まれたn- 層1は低電圧でピンチオフし、高耐圧を維持
できる。この埋め込み型のp+ 領域7を有するダイオー
ドは前記のトレンチ溝10を有するダイオードと同様の
効果が得られる。
FIG. 4 is a sectional view of the element in the second embodiment of the present invention. The difference from FIG. 1 is that the trench groove 10 in the surface layer
Instead of forming the p + region 6 in the n layer 1, a buried p + region 7 is formed in the n layer 1. The embedded p + region 7 is not connected to the p layer 5 and is in an electrically floating state. 5A and 5B are diagrams in which a voltage is applied to the element of the second embodiment. FIG. 5A shows a diagram when forward biased, and FIG. 5B shows a diagram when reverse biased. The buried p + region 7 is p
Injecting holes from the p + region 7 basically does not occur because it is in an electrically floating state without being connected to the layer 5. Since a voltage drop when current flows around the p + region 7 even when electrically connected small example, injection of holes from the p + region 7 does not occur. When reverse biased, the p + region 7 is p
Since it is close to the layer 5, the depletion layer extending to the n layer 1 is almost equal to the anode potential, and the n layer 1 sandwiched between the p + regions 7 is pinched off at a low voltage and can maintain a high breakdown voltage. . The diode having the buried p + region 7 has the same effect as that of the diode having the trench groove 10.

【0013】図6は従来ダイオードとこの発明のダイオ
ードの逆回復電流波形図を示す。この発明のダイオード
(トレンチ溝型の実施例(1)、埋め込み型の実施例
(2))は逆回復電流Irrが小さく、また従来ダイオー
ド(従来例(1)のpin型の従来例(1)、p+ ウェ
ル型の従来例(2))と比べ、逆回復電流の減少率di
/dtが小さく、低スイッチング損失でソフトリカバリ
ーとなっている。このソフトリカバリー波形になるとい
うことは回路配線のインダクタンスとdi/dtとの積
で発生する回路内サージ電圧が小さいことを意味し、こ
のことはサージ電圧による素子破壊が起きにくく、使い
勝手がよい素子であることを意味する。
FIG. 6 shows reverse recovery current waveform diagrams of the conventional diode and the diode of the present invention. The diode (trench groove type embodiment (1) and buried type embodiment (2)) of the present invention has a small reverse recovery current I rr , and the conventional diode (conventional example (1) pin type conventional example (1 ), P + well type conventional example (2)), the reverse recovery current reduction rate di
/ Dt is small and low switching loss results in soft recovery. This soft recovery waveform means that the surge voltage in the circuit generated by the product of the inductance of the circuit wiring and di / dt is small, which means that the device is less likely to be damaged by the surge voltage and is easy to use. Means that.

【0014】図7は従来ダイオードとこの発明のダイオ
ードの逆バイアス時の電圧─電流曲線図を示す。逆バイ
アス時には、従来例(2)のp+ ウェル型のダイオード
と比べ、トレンチ溝型(実施例(1))および埋め込み
型(実施例(2))のダイオードではn- 層1がピンチ
オフし易くなり、漏れ電流レベルは従来例(2)のp +
ウェル型のダイオードより小さく、従来例(1)のpi
nダイオード並に小さくできる。
FIG. 7 shows a conventional diode and the diode of the present invention.
A voltage-current curve diagram for the reverse bias of the card is shown. Reverse buy
At the time of ass, p of the conventional example (2)+Well type diode
Compared with trench groove type (Example (1)) and filling
N in a diode of the type (Example (2))-Layer 1 is in a pinch
It is easy to turn off, and the leakage current level is p of the conventional example (2). +
It is smaller than the well type diode and has a pi of the conventional example (1).
It can be made as small as an n diode.

【0015】[0015]

【発明の効果】この発明によれば、トレンチ溝型または
埋め込み型のダイオードにおいて、オン状態時に、電流
が流れるのはp- 層、n- 層のpn接合であり、ライフ
タイムキラーを導入せずにキャリアの注入が抑制される
ため、伝導度変調の度合いが比較的小さいにもかかわら
ず、ライフタイムが長いため、オン電圧を小さくでき
る。また逆回復過程では、注入されるキャリアが抑制さ
れるため、蓄積キャリアの量が少なく、従って、逆回復
電流と逆回復電流の減少率di/dtも小さくできる。
そのため、スイッチング損失が小さく、ソフトリカバリ
ーな素子が得られる。一方、逆バイアス時には、従来の
+ ウェルのあるダイオードと比べ、ピンチオフが確実
に起きるため、漏れ電流はpinダイオード並に小さく
できる。
According to the present invention, in the trench groove type or buried type diode, in the ON state, the current flows in the pn junction of the p layer and the n layer, and the lifetime killer is not introduced. In addition, since the carrier injection is suppressed, the ON voltage can be reduced because the lifetime is long even though the degree of conductivity modulation is relatively small. Further, in the reverse recovery process, the injected carriers are suppressed, so that the amount of accumulated carriers is small, and therefore the reverse recovery current and the reduction rate di / dt of the reverse recovery current can be reduced.
Therefore, a switching loss is small and a soft recovery element can be obtained. On the other hand, at the time of reverse bias, pinch-off is certainly generated as compared with the conventional diode having ap + well, so that the leakage current can be made as small as a pin diode.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1実施例における素子断面図FIG. 1 is a sectional view of an element according to a first embodiment of the present invention.

【図2】第1実施例の平面図で、(a)はストライプ状
のパターン図、(b)はセル状のパターン図
FIG. 2 is a plan view of the first embodiment, in which (a) is a stripe pattern diagram and (b) is a cell pattern diagram.

【図3】第1実施例の素子に電圧を印加した図で、
(a)は順バイアス時の図、(b)は逆バイアス時の図
FIG. 3 is a diagram in which a voltage is applied to the device of the first embodiment,
(A) is a diagram with forward bias, (b) is a diagram with reverse bias

【図4】この発明の第2実施例における素子断面図FIG. 4 is a sectional view of an element according to a second embodiment of the present invention.

【図5】第2実施例の素子に電圧を印加した図で、
(a)は順バイアス時の図、(b)は逆バイアス時の図
FIG. 5 is a diagram in which a voltage is applied to the device of the second embodiment,
(A) is a diagram with forward bias, (b) is a diagram with reverse bias

【図6】従来ダイオードとこの発明のダイオードの逆回
復電流波形図
FIG. 6 is a reverse recovery current waveform diagram of a conventional diode and a diode of the present invention.

【図7】従来ダイオードとこの発明のダイオードの逆バ
イアス時の電圧─電流曲線図
FIG. 7 is a voltage-current curve diagram of a conventional diode and a diode of the present invention when reverse biased.

【図8】pinダイオード(従来例(1))の素子断面
図に電圧を印加した状態を示し、同図(a)は順バイア
ス時の図、同図(b)は逆バイアス時の図
FIG. 8 shows a state in which a voltage is applied to the element cross-sectional view of a pin diode (conventional example (1)), where FIG. 8A is a diagram when forward biased and FIG. 8B is a diagram when reverse biased.

【図9】p+ ウェルを有するp- inダイオード(従来
例(2))の素子断面図に電圧を印加した状態を示し、
同図(a)は順バイアスした時の図、同図(b)は逆バ
イアスした時の図
FIG. 9 shows a state in which a voltage is applied to a device cross-sectional view of a p - in diode (conventional example (2)) having a p + well,
The figure (a) is a figure when forward biased, and the figure (b) is a figure when reverse biased.

【符号の説明】[Explanation of symbols]

1 n- 層 2 n+ バッファ層 3 表面電極 4 裏面電極 5 p- 層 6 p+ 領域 7 p+ 領域(埋め込み) 8 p層 9 p+ ウェル 10 トレンチ溝 A アノード K カソード1 n Layer 2 n + Buffer Layer 3 Front Electrode 4 Back Surface Electrode 5 p Layer 6 p + Region 7 p + Region (Embedded) 8 p Layer 9 p + Well 10 Trench Groove A Anode K Cathode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】高濃度第一導電形半導体層上に、低濃度第
一導電形半導体層が形成され、低濃度第一導電形半導体
層の表面層に低濃度第二導電形半導体層が形成され、低
濃度第二導電形半導体層の表面から低濃度第一導電形半
導体層に達する複数個のトレンチ溝が選択的に形成さ
れ、トレンチ溝の表面層に高濃度第二導電形半導体領域
が形成されることを特徴とする半導体装置。
1. A low concentration first conductivity type semiconductor layer is formed on a high concentration first conductivity type semiconductor layer, and a low concentration second conductivity type semiconductor layer is formed on a surface layer of the low concentration first conductivity type semiconductor layer. A plurality of trench grooves reaching the low concentration first conductivity type semiconductor layer from the surface of the low concentration second conductivity type semiconductor layer are selectively formed, and a high concentration second conductivity type semiconductor region is formed in the surface layer of the trench groove. A semiconductor device characterized by being formed.
【請求項2】トレンチ溝の平面上の形状がストライプ
状、またはセル状であることを特徴とする請求項1記載
の半導体装置。
2. The semiconductor device according to claim 1, wherein the planar shape of the trench groove is a stripe shape or a cell shape.
【請求項3】高濃度第一導電形半導体層上に、低濃度第
一導電形半導体層を形成し、低濃度第一導電形半導体層
の表面層に低濃度第二導電形半導体層が形成され、低濃
度第二導電形半導体層の近傍の低濃度第一導電形半導体
層内に、複数個、埋め込まれた高濃度第二導電形半導体
領域が選択的に形成されることを特徴とする半導体装
置。
3. A low concentration first conductivity type semiconductor layer is formed on a high concentration first conductivity type semiconductor layer, and a low concentration second conductivity type semiconductor layer is formed on a surface layer of the low concentration first conductivity type semiconductor layer. A plurality of embedded high-concentration second-conductivity-type semiconductor regions are selectively formed in the low-concentration first-conductivity-type semiconductor layer in the vicinity of the low-concentration second-conductivity-type semiconductor layer. Semiconductor device.
JP23367195A 1995-09-12 1995-09-12 Semiconductor device Expired - Fee Related JP3456065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23367195A JP3456065B2 (en) 1995-09-12 1995-09-12 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23367195A JP3456065B2 (en) 1995-09-12 1995-09-12 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH0982986A true JPH0982986A (en) 1997-03-28
JP3456065B2 JP3456065B2 (en) 2003-10-14

Family

ID=16958714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23367195A Expired - Fee Related JP3456065B2 (en) 1995-09-12 1995-09-12 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3456065B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005012150A (en) * 2003-06-20 2005-01-13 Semiconductor Res Found Electrostatic induction diode
JP2006339527A (en) * 2005-06-03 2006-12-14 Denso Corp Semiconductor device and its manufacturing method
US7276771B2 (en) 1997-06-02 2007-10-02 Fuji Electric Co., Ltd. Diode and method for manufacturing the same
CN103618006A (en) * 2013-10-30 2014-03-05 国家电网公司 A fast recovery diode and a manufacturing method thereof
US9059236B2 (en) 2012-11-06 2015-06-16 Kabushiki Kaisha Toshiba Semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7276771B2 (en) 1997-06-02 2007-10-02 Fuji Electric Co., Ltd. Diode and method for manufacturing the same
DE19824514B4 (en) * 1997-06-02 2010-02-11 Fuji Electric Co., Ltd., Kawasaki diode
JP2005012150A (en) * 2003-06-20 2005-01-13 Semiconductor Res Found Electrostatic induction diode
JP4686782B2 (en) * 2003-06-20 2011-05-25 国立大学法人東北大学 Electrostatic induction diode
JP2006339527A (en) * 2005-06-03 2006-12-14 Denso Corp Semiconductor device and its manufacturing method
US9059236B2 (en) 2012-11-06 2015-06-16 Kabushiki Kaisha Toshiba Semiconductor device
US9337189B2 (en) 2012-11-06 2016-05-10 Kabushiki Kaisha Toshiba Semiconductor device
CN103618006A (en) * 2013-10-30 2014-03-05 国家电网公司 A fast recovery diode and a manufacturing method thereof

Also Published As

Publication number Publication date
JP3456065B2 (en) 2003-10-14

Similar Documents

Publication Publication Date Title
US11552184B2 (en) Carrier storage enhanced superjunction IGBT
US6252288B1 (en) High power trench-based rectifier with improved reverse breakdown characteristic
JP5787853B2 (en) Power semiconductor device
US4982260A (en) Power rectifier with trenches
US4831423A (en) Semiconductor devices employing conductivity modulation
US6091107A (en) Semiconductor devices
KR20130093126A (en) Improved schottky rectifier
JPH09283754A (en) High withstand voltage semiconductor device
JP2003520430A (en) Trench insulated gate bipolar transistor with improved safe operating area
JP2005303027A (en) Semiconductor device
US9048095B2 (en) Method for manufacturing a semiconductor device having a channel region in a trench
US5714775A (en) Power semiconductor device
JP4680330B2 (en) Silicon Carbide Field Controlled Bipolar Switch
US20170256614A1 (en) Vertical insulated gate turn-off thyristor with intermediate p+ layer in p-base
US5861638A (en) Insulated gate bipolar transistor
US5387805A (en) Field controlled thyristor
JP2987040B2 (en) Insulated gate semiconductor device
JPH098301A (en) Power semiconductor device
JP3456065B2 (en) Semiconductor device
JP2002076370A (en) Super junction schottky diode
JP3977518B2 (en) Static induction semiconductor device
US7741655B2 (en) Semiconductor device
US6753588B2 (en) Semiconductor rectifier
JPS6042624B2 (en) Field effect switching element
JP3876538B2 (en) Bipolar rectifier

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070801

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees