JPH0982769A - Impurity analyzing method for silicon wafer interior - Google Patents

Impurity analyzing method for silicon wafer interior

Info

Publication number
JPH0982769A
JPH0982769A JP25814895A JP25814895A JPH0982769A JP H0982769 A JPH0982769 A JP H0982769A JP 25814895 A JP25814895 A JP 25814895A JP 25814895 A JP25814895 A JP 25814895A JP H0982769 A JPH0982769 A JP H0982769A
Authority
JP
Japan
Prior art keywords
oxide film
silicon wafer
surface layer
wafer
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25814895A
Other languages
Japanese (ja)
Inventor
Yutaka Ota
豊 太田
Hiroshi Saijo
廣 西條
Akira Ogata
明 小形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Naoetsu Electronics Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Naoetsu Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd, Naoetsu Electronics Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP25814895A priority Critical patent/JPH0982769A/en
Publication of JPH0982769A publication Critical patent/JPH0982769A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to simply, accurately distribute impurity with high sensitivity by altering the surface layer of one side of a wafer that strain is introduced by causing mechanical damage, dissolving the surface layer containing the thermal oxide film with reagent, and distributing it as to the recovery liquid. SOLUTION: After mechanical damage is caused to the main surface of a silicon wafer 1 of one side to introduce strain 3, the surface layer of the wafer of the side that the strain 3 is introduced is altered to a thermal oxide film 5. The film 5, or the film 5 and a silicon surface layer 6a directly under the film 5 are dissolved with reagent, the dissolved liquid 7 is recovered, and the recovered liquid is distributed. For example, a sample sandblasted with SiO2 powder at one side is oxidized in an oxygen atmosphere at 430 deg.C for 10min, and the surface layer of the sandblasted side is altered to a thermal oxide film 5. The film 5 is dissolved with hydrofluoric acid, the dissolved liquid 7 is recovered, and the quantitative distribution of metal element is obtained by a flameless atomic absorption analyzer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、シリコンウエーハ
内部の不純物を簡便、高精度、かつ高感度で分析する方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for analyzing impurities inside a silicon wafer in a simple, highly accurate and highly sensitive manner.

【0002】[0002]

【従来の技術】シリコンウエーハの表面や内部に金属元
素等の不純物(Al,Na,Fe,Cr,Ni,Cu
等)が存在すると、これらの不純物が半導体素子の電気
的特性などに大きな影響を及ぼすことはよく知られてい
る。このため、これらの不純物の量をできるだけ少なく
押さえることが重要となり、その種類や付着量・含有量
を精確に分析することが要求される。
2. Description of the Related Art Impurities (Al, Na, Fe, Cr, Ni, Cu) such as metal elements are formed on the surface or inside of a silicon wafer.
Is present, it is well known that these impurities have a great influence on the electrical characteristics and the like of the semiconductor element. For this reason, it is important to keep the amount of these impurities as small as possible, and it is required to accurately analyze the type, amount of adhesion, and content.

【0003】従来、シリコンウエーハ表面層の金属不純
物の分析方法としては、(1)シリコンウエーハ表面層
について直接分析する方法ものとして、二次イオン質量
分析法や、全反射蛍光X線分析法が採用され、(2)分
析試料をシリコンウエーハ表面層から採取するものとし
て例えば、シリコン表面上に生成している自然酸化膜を
フッ酸(HF)の蒸気で溶解し、該溶解液を試料として
回収し、分析する方法が実施されてきた。
Conventionally, as a method for analyzing metallic impurities in a silicon wafer surface layer, (1) secondary ion mass spectrometry or total reflection fluorescent X-ray analysis method is adopted as a method for directly analyzing the silicon wafer surface layer. (2) As a sample for collecting an analysis sample from the surface layer of a silicon wafer, for example, a natural oxide film formed on the silicon surface is dissolved by vapor of hydrofluoric acid (HF), and the solution is collected as a sample. , The method of analysis has been implemented.

【0004】ところが上記(1)(2)の分析方法は、
いずれもシリコンウエーハ表面層の不純物を分析するに
すぎないものであって、シリコンウエーハ内部の不純物
を分析することは難しかった。また、不純物がウエーハ
表面と比較してウエーハ内部に多量に存在する場合や、
不純物の拡散速度が速い場合には、正確な定量評価は期
待できなかった。
However, the analysis methods (1) and (2) above are
All of them only analyze the impurities in the surface layer of the silicon wafer, and it is difficult to analyze the impurities inside the silicon wafer. Also, when impurities are present in a large amount inside the wafer as compared with the surface of the wafer,
Accurate quantitative evaluation could not be expected when the diffusion rate of impurities was high.

【0005】一方、ウエーハ内部の不純物を分析する方
法として、ウエーハ全体を薬液により溶解し、該溶解液
について分析するものや、二次イオン質量分析法が採用
されてきた。
On the other hand, as a method for analyzing impurities inside the wafer, a method of dissolving the whole wafer with a chemical solution and analyzing the dissolved solution, and a secondary ion mass spectrometry method have been adopted.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前者で
は前記溶液量が多量に必要で十分な分析精度および感度
が得られず、分析に時間がかかるうえに、試料ウエーハ
を完全に消耗してしまうという問題があった。後者では
高価な設備が必要となるだけでなく、1回のスパッタリ
ングで得られる情報は、例えば2mm角の試料部分につ
いてのものにすぎないから(実際に分析できるのは、直
径1mmの領域である)、分析に時間がかかり、そのう
え破壊試験であるという問題があった。
However, in the former case, a large amount of the solution is required, so that sufficient analysis accuracy and sensitivity cannot be obtained, and the analysis takes time, and the sample wafer is completely consumed. There was a problem. In the latter case, not only expensive equipment is required, but the information obtained by one-time sputtering is only for a sample portion of 2 mm square, for example (actually, the area of 1 mm diameter can be analyzed). ), The analysis is time consuming and, in addition, there is a problem that it is a destructive test.

【0007】したがって本発明の目的は、シリコンウエ
ーハ内部の不純物を簡便、高精度、かつ高感度で分析す
ることができ、しかも試料ウエーハの消耗や、これに与
える損傷を最小限に抑えることができて、有用なシリコ
ンウエーハ製品と使用することが可能は方法を提供する
ことである。
Therefore, the object of the present invention is to analyze impurities in a silicon wafer easily, with high accuracy and with high sensitivity, and to minimize the consumption of the sample wafer and the damage to the sample wafer. Thus, it is to provide a method that can be used with useful silicon wafer products.

【0008】[0008]

【課題を解決するための手段】第一発明に係るシリコン
ウエーハ内部の不純物分析方法は、シリコンウエーハの
片側の主面に機械的ダメージを与えて歪を導入した後、
当該シリコンウエーハを熱酸化処理し、シリコンウエー
ハ内部の不純物をその歪領域にゲッタリングさせた後、
歪領域を含んで生成した該熱酸化膜、または該熱酸化膜
およびその直下のシリコン表面層を薬液により溶解して
該溶解液を回収し、該回収液について分析を行うことを
特徴とするものである。
A method for analyzing impurities in a silicon wafer according to the first invention is a method of mechanically damaging one main surface of a silicon wafer to introduce strain,
After subjecting the silicon wafer to thermal oxidation treatment to getter the impurities inside the silicon wafer into the strained region,
Characterized in that the thermal oxide film formed including a strained region, or the thermal oxide film and the silicon surface layer immediately thereunder are dissolved by a chemical solution to recover the dissolved solution, and the recovered solution is analyzed. Is.

【0009】第一発明において前記ウエーハ表面層を熱
酸化膜に変えるに際しては、シリコンウエーハを酸素ガ
スの存在下、300℃以上、650℃以下の温度で2〜
120分間加熱することが好ましい。この条件下では、
加熱により歪領域を含んだ熱酸化膜の形成と、シリコン
ウエーハ内部の不純物の歪層への移動が進行して不純物
が捕獲されやすくなるが、300℃未満では、シリコン
ウエーハ内部の不純物の移行速度が小さく、十分な捕獲
までに長時間を要する。650℃を超えると(シリコン
ウエーハ内部の)不純物の拡散速度が速くなって、歪領
域の捕獲エネルギーよりも、拡散エネルギーの方が大き
くなるため、不純物の捕獲が難しくなる。また、加熱処
理の時間を上記範囲に設定した理由は、あまりに短時間
である場合、十分な捕獲効果が得られず、内部に存在す
る不純物の絶対量の把握が困難となるためである。ま
た、長時間では処理の効率が低下するためと、長時間の
熱処理では低温といえども外部からの汚染が懸念される
からである。
In the first invention, when the wafer surface layer is changed to a thermal oxide film, the silicon wafer is heated in the presence of oxygen gas at a temperature of 300 ° C. to 650 ° C.
It is preferable to heat for 120 minutes. Under these conditions,
The heating facilitates the formation of a thermal oxide film including a strained region and the movement of impurities inside the silicon wafer to the strained layer to facilitate the trapping of the impurities, but below 300 ° C, the migration rate of impurities inside the silicon wafer Is small, and it takes a long time to fully capture it. When the temperature exceeds 650 ° C., the diffusion rate of impurities (inside of the silicon wafer) becomes faster, and the diffusion energy becomes larger than the capture energy in the strained region, so that it becomes difficult to capture the impurities. The reason for setting the heat treatment time in the above range is that if it is too short, a sufficient trapping effect cannot be obtained, and it becomes difficult to grasp the absolute amount of impurities present inside. Further, it is because the efficiency of the treatment is lowered for a long time, and the heat treatment for a long time may cause contamination from the outside even at a low temperature.

【0010】第二発明に係るシリコンウエーハ内部の不
純物分析方法は、シリコンウエーハの片側の主面に機械
的ダメージを与えて歪を導入した後、ウエーハ表面を自
然酸化膜(SiO2 膜)または、化学的に形成された酸
化膜(SiO2 膜)に変え、300℃以上、650℃以
下の温度で2〜120分間熱処理後、(1)前記自然酸
化膜、(2)該自然酸化膜およびその直下のシリコン表
面層、(3)前記化学的に形成された酸化膜、(4)該
化学的に形成された酸化膜およびその直下のシリコン表
面層のいずれかを薬液により溶解して該溶解液を回収
し、該回収液について分析を行うことを特徴とする。
The method for analyzing impurities in the silicon wafer according to the second aspect of the invention is such that mechanical stress is applied to one main surface of the silicon wafer to introduce strain, and then the wafer surface is subjected to a natural oxide film (SiO 2 film) or After changing to a chemically formed oxide film (SiO 2 film) and performing heat treatment at a temperature of 300 ° C. or higher and 650 ° C. or lower for 2 to 120 minutes, (1) the natural oxide film, (2) the natural oxide film and the natural oxide film The silicon surface layer directly underneath, (3) the chemically formed oxide film, (4) any one of the chemically formed oxide film and the silicon surface layer immediately thereunder is dissolved by a chemical solution to form the solution. Is collected, and the collected liquid is analyzed.

【0011】前記自然酸化膜は周知の方法、例えばシリ
コンウエーハを常温・常圧の大気中に保存することによ
り形成される。上記「化学的に形成された酸化膜」は、
シリコンウエーハの片側の主面を、例えば、シリコンウ
エーハの洗浄に用いられる過酸化水素とアンモニアの混
合液に浸漬することで形成することができる。第二発明
においては、300℃以上、650℃以下の温度で2〜
120分間熱処理することによりシリコンウエーハ内部
の不純物は、シリコンウエーハの歪層、酸化膜中の一方
または双方に移動する。
The natural oxide film is formed by a known method, for example, by storing a silicon wafer in the atmosphere at room temperature and pressure. The above "chemically formed oxide film" is
It can be formed, for example, by immersing one main surface of the silicon wafer in a mixed solution of hydrogen peroxide and ammonia used for cleaning the silicon wafer. In the second invention, at a temperature of 300 ° C. or higher and 650 ° C. or lower, 2 to
By performing the heat treatment for 120 minutes, the impurities inside the silicon wafer move to one or both of the strained layer and the oxide film of the silicon wafer.

【0012】第三発明に係るシリコンウエーハ内部の不
純物分析方法は、シリコンウエーハの片側の主面に機械
的ダメージを与えて歪を導入した後、この歪を導入した
側の主面上に酸化膜(SiO2 膜)を常圧CVD法また
は減圧CVD法により堆積し、該酸化膜、または該酸化
膜およびその直下のシリコンウエーハ表面層を薬液によ
り溶解して該溶解液を回収し、該回収液について分析を
行うことを特徴とするものである。
According to the method for analyzing impurities in a silicon wafer according to the third aspect of the invention, after mechanical strain is applied to one main surface of the silicon wafer to introduce strain, an oxide film is formed on the main surface on which the strain is introduced. (SiO 2 film) is deposited by a normal pressure CVD method or a low pressure CVD method, and the oxide film, or the oxide film and the surface layer of the silicon wafer directly under the oxide film are dissolved by a chemical solution to recover the solution, and the recovered solution It is characterized by carrying out an analysis.

【0013】第三発明において前記酸化膜を堆積するに
際しては、CVD法による処理を300℃以上、650
℃以下の温度で2〜120分間行うことが好ましい。3
00℃未満では、このシリコンウエーハ内部の不純物の
移行速度が小さくなる。650℃を超えると不純物の拡
散速度が速くなり歪領域の捕獲エネルギーよりも拡散エ
ネルギーの方が大きくなるため、シリコンウエーハの歪
み層に捕獲され難くなる。また、CVD処理時間を上記
範囲に設定した理由は、あまりに短時間である場合、十
分な捕獲効果が得られず、内部に存在する不純物の絶対
量の把握が困難となるためである。また、長時間では処
理の効率が低下するためと、長時間の熱処理では低温と
いえども外部からの汚染が懸念されるからである。
In depositing the oxide film according to the third aspect of the invention, the process by the CVD method is performed at a temperature of 300 ° C. or higher and 650
It is preferable to carry out the treatment at a temperature of 0 ° C or lower for 2 to 120 minutes. 3
If the temperature is lower than 00 ° C., the migration rate of impurities inside the silicon wafer becomes small. If the temperature exceeds 650 ° C., the diffusion rate of impurities becomes faster and the diffusion energy becomes larger than the capture energy in the strained region, so that it is difficult to be captured by the strained layer of the silicon wafer. Further, the reason why the CVD processing time is set within the above range is that if it is too short, a sufficient trapping effect cannot be obtained and it becomes difficult to grasp the absolute amount of impurities existing inside. Further, it is because the efficiency of the treatment is lowered for a long time, and the heat treatment for a long time may cause contamination from the outside even at a low temperature.

【0014】本発明(第一発明乃至第三発明)において
は、シリコンウエーハ表面に機械的ダメージを付与する
方法としてサンドブラスト;ドライアイス、純水、酸の
水溶液、−20〜10℃で固体で10℃を超えると液体
の有機物質等の粒体、または粉体の衝突を利用したブラ
スト;ラッピング、レーザ照射等を適用することができ
る。機械的ダメージをシリコンウエーハの半導体素子形
成面側(表面側)、その反対側(裏面側)のいずれに付
与するべきかは、ウエーハ溶解用薬液への内部不純物回
収率を第一に考慮して決めるのが好ましい。
In the present invention (first to third inventions), sand blasting is a method for imparting mechanical damage to the surface of a silicon wafer; dry ice, pure water, an aqueous solution of acid, and a solid at -20 to 10 ° C. When the temperature exceeds ℃, it is possible to apply blasting utilizing collision of particles or powder of liquid organic substance; lapping, laser irradiation and the like. Whether the mechanical damage should be applied to the surface of the silicon wafer on which the semiconductor elements are formed (front surface side) or the opposite side (back surface side) should be given first the internal impurity recovery rate to the chemical solution for wafer dissolution. It is preferable to decide.

【0015】本発明において、前記熱酸化膜(前記自然
酸化膜、化学的に形成された酸化膜もしくは前記CVC
法による堆積酸化膜)のみを、またはこれら熱酸化膜等
とその直下のシリコン表面層とを溶解するための薬液と
しては、公知のエッチング液が採用できる。前者では例
えばフッ酸が好ましく、後者では例えばフッ酸・硝酸・
酢酸の混合液が好ましい。
In the present invention, the thermal oxide film (the natural oxide film, the chemically formed oxide film or the CVC) is used.
A known etching solution can be used as the chemical solution for dissolving only the deposited oxide film by the method) or the thermal oxide film and the silicon surface layer immediately thereunder. In the former case, for example, hydrofluoric acid is preferable, and in the latter case, for example, hydrofluoric acid / nitric acid /
A mixture of acetic acid is preferred.

【0016】内部不純物の定性分析・定量分析のいずれ
の場合にも、試料ウエーハの熱酸化膜(自然酸化膜、化
学的に形成された酸化膜、または堆積酸化膜)、その直
下のシリコンウエーハ表面層の全体をエッチング液に接
触させることが望ましい。これは、ウエーハ溶解用薬液
への内部不純物回収率を高めるためである。そのための
方法としては例えば、(1)試料ウエーハを密閉容器に
収納し、熱酸化膜全面に上記混合エッチング液の蒸気を
供給し凝縮させるものや、(2)試料ウエーハを密閉容
器に収納し、熱酸化膜全面にフッ酸の蒸気を供給・凝縮
させて疎水性とした後、上記混合エッチング液を試料面
に滴下し、この液滴を試料面全体にわたって移動・接触
させるもの(特開平2−28533号公報:「不純物の
測定方法及び測定装置」を参照)が採用できる。
In both cases of qualitative and quantitative analysis of internal impurities, the thermal oxide film (natural oxide film, chemically formed oxide film or deposited oxide film) of the sample wafer and the surface of the silicon wafer immediately below it It is desirable to contact the entire layer with the etchant. This is to increase the recovery rate of internal impurities in the chemical solution for wafer dissolution. As a method therefor, for example, (1) a sample wafer is housed in a closed container, and the vapor of the mixed etching solution is supplied and condensed on the entire surface of the thermal oxide film; or (2) a sample wafer is housed in a closed container, A method in which vapor of hydrofluoric acid is supplied and condensed on the entire surface of the thermal oxide film to make it hydrophobic, and then the above-mentioned mixed etching solution is dropped onto the sample surface and the droplets are moved / contacted over the entire sample surface (JP-A-2- No. 28533: See "Method and apparatus for measuring impurities").

【0017】本発明において、試料ウエーハの酸化膜の
みが溶解できたことを確認するには、例えば、酸化膜の
溶解の薬液としてフッ酸を用いた場合、酸化膜存在時に
親水性であったものが、酸化膜溶解とともに疎水性に変
化し、フッ酸はシリコンウエーハ表面ではじかれ、丸い
水滴になってしまう現象が利用できる。また、酸化膜直
下のシリコン表面層が溶解できたことを確認するには、
溶解の過程でシリコンウエーハの肉厚を適宜に測定し、
溶解前の肉厚との差が酸化膜の膜厚よりも充分大きくな
ったことを確認すればよい。
In the present invention, in order to confirm that only the oxide film of the sample wafer could be dissolved, for example, when hydrofluoric acid was used as the chemical solution for dissolving the oxide film, it was hydrophilic when the oxide film was present. However, it is possible to use a phenomenon in which hydrofluoric acid becomes hydrophobic as the oxide film dissolves, and hydrofluoric acid is repelled on the surface of the silicon wafer to form round water droplets. Also, to confirm that the silicon surface layer just below the oxide film could be dissolved,
In the process of melting, measure the thickness of the silicon wafer appropriately,
It suffices to confirm that the difference from the thickness before melting is sufficiently larger than the thickness of the oxide film.

【0018】[0018]

【発明の実施の形態】第一発明においては、図1(a)
に示すような内部に不純物2を含むシリコンウエーハ1
の片側の主面に、図1(b)に示すように歪3を導入す
る。図1(c)に示すように、歪3を導入した側のウエ
ーハ1表面層を熱酸化膜5に変えることにより、歪層4
が熱酸化膜5の表面層になるとともに、熱酸化膜5とシ
リコン層6との界面よりも下層にあった内部不純物2
は、熱エネルギーによりシリコン中を移動して歪層4中
に捕獲され、前記界面または熱酸化膜5中に移動し、該
界面またはその近傍かつ上層にあった内部不純物2は、
熱酸化膜5中または前記界面に移動する。
BEST MODE FOR CARRYING OUT THE INVENTION In the first invention, FIG.
Silicon wafer 1 containing impurities 2 inside as shown in
As shown in FIG. 1B, strain 3 is introduced into the main surface on one side of. As shown in FIG. 1C, the strained layer 4 is formed by changing the surface layer of the wafer 1 on which the strained 3 is introduced into a thermal oxide film 5.
Becomes the surface layer of the thermal oxide film 5 and the internal impurities 2 existing below the interface between the thermal oxide film 5 and the silicon layer 6.
Is moved in silicon by thermal energy and is trapped in the strained layer 4 and moved into the interface or the thermal oxide film 5, and the internal impurity 2 existing in the interface or in the vicinity thereof and in the upper layer is
It moves into the thermal oxide film 5 or to the interface.

【0019】したがって、図1(d)に示すように、熱
酸化膜5およびその直下にあるシリコン層6の表面層
(上端層)6aを薬液で溶解して溶解液7を回収し、該
溶解液7について分析を行うことにより、ウエーハ1表
面に付着していた不純物、ウエーハ1表面に吸着されて
いた不純物、および内部不純物2の合計量について、高
精度、かつ高感度の定量分析を行うことができる。な
お、熱酸化膜5のみを溶解・除去した場合の不純物回収
率は、図1の場合に比べてわずかに低下する。
Therefore, as shown in FIG. 1 (d), the surface layer (upper layer) 6a of the thermal oxide film 5 and the silicon layer 6 immediately below the thermal oxide film 5 is dissolved with a chemical solution to recover the solution 7, and the solution 7 is dissolved. Performing a highly accurate and highly sensitive quantitative analysis of the total amount of the impurities adhering to the surface of the wafer 1, the impurities adsorbed on the surface of the wafer 1, and the internal impurities 2 by analyzing the liquid 7. You can The impurity recovery rate when only the thermal oxide film 5 is dissolved and removed is slightly lower than that in the case of FIG.

【0020】第一発明の分析方法では、試料ウエーハの
表面層のみを熱酸化膜に変え、該熱酸化膜とその直下の
シリコン層の表面層までの範囲を溶解・除去するから、
分析試料の採取に時間がかからない。また、分析試料す
なわち、所定の溶解液の量が少ないので、十分な分析精
度および感度が得られる。加えて、分析試料採取後のウ
エーハの肉厚は、分析試料採取前に比べて、熱酸化膜の
厚さに近似した分だけ薄くなってはいるものの、表面お
よび内部の不純物の殆どが除去されているため電気的特
性に優れたウエーハとなるので、分析試料の採取と同時
に不純物を除去した高品質のウエーハが得られる利点も
ある。
In the analysis method of the first invention, only the surface layer of the sample wafer is changed to the thermal oxide film, and the range up to the surface layer of the thermal oxide film and the silicon layer immediately thereunder is dissolved and removed.
It takes no time to collect an analytical sample. Moreover, since the amount of the analysis sample, that is, the predetermined solution is small, sufficient analysis accuracy and sensitivity can be obtained. In addition, the thickness of the wafer after the analysis sample collection is smaller than that before the analysis sample collection by the amount close to the thickness of the thermal oxide film, but most of the impurities on the surface and inside are removed. Since the wafer has excellent electrical characteristics, there is also an advantage that a high-quality wafer in which impurities are removed can be obtained at the same time as the analysis sample is taken.

【0021】第二発明では、熱酸化膜5に代えて自然酸
化膜、または化学的に形成された酸化膜を形成後、所定
条件下で熱処理を行えばよく、その作用効果は第一発明
と殆ど同様である。
In the second invention, a natural oxide film or a chemically formed oxide film may be formed in place of the thermal oxide film 5, and then heat treatment may be performed under predetermined conditions. Almost the same.

【0022】第三発明においては、図2(a)に示すよ
うな内部に不純物2を含むシリコンウエーハ1の片側の
主面に、図2(b)に示すように歪3を導入する。図2
(c)に示すように、歪3を導入した側のウエーハ1の
主面上に酸化膜15を堆積する時の熱エネルギーによ
り、シリコン層6中の内部不純物2が、酸化膜15とシ
リコン層6との界面または酸化膜15中に移動する。
In the third aspect of the invention, strain 3 is introduced into the main surface on one side of the silicon wafer 1 containing impurities 2 inside as shown in FIG. 2A, as shown in FIG. 2B. FIG.
As shown in (c), internal impurities 2 in the silicon layer 6 cause the oxide film 15 and the silicon layer to move due to thermal energy when the oxide film 15 is deposited on the main surface of the wafer 1 on which the strain 3 is introduced. It moves to the interface with 6 or into the oxide film 15.

【0023】したがって、図2(d)に示すように、酸
化膜15およびその直下にあるシリコン層6の表面層6
aを薬液で溶解して溶解液17を回収し、該溶解液17
について分析を行うことにより、ウエーハ1表面に付着
していた不純物、ウエーハ1表面に吸着されていた不純
物、および内部不純物2の合計量について、比較的高精
度、かつ高感度の定性・定量分析を行うことができる。
Therefore, as shown in FIG. 2D, the surface layer 6 of the oxide film 15 and the silicon layer 6 immediately thereunder.
a is dissolved with a chemical solution to recover the solution 17, and the solution 17
By analyzing the above, the total amount of impurities adhering to the surface of the wafer 1, impurities adsorbed on the surface of the wafer 1 and internal impurities 2 can be qualitatively and quantitatively analyzed with relatively high accuracy and high sensitivity. It can be carried out.

【0024】第三発明の分析方法では、試料ウエーハの
表面上に酸化膜を形成し、該酸化膜とその直下のシリコ
ン層の表面層までの範囲を溶解・除去するから、分析試
料の採取に時間がかからない。また、分析試料すなわ
ち、所定の溶解液の量が少ないので、十分な分析精度お
よび感度が得られる。また、試料ウエーハの残りの部分
は、分析試料を採取する前に比べて肉厚が殆ど減少しな
いし、表面および内部の不純物の殆どが除去されている
ため電気的特性に優れたウエーハとなるので、分析試料
の採取と同時に不純物を除去した高品質のウエーハが得
られる利点もある。
In the analysis method of the third invention, an oxide film is formed on the surface of the sample wafer, and the oxide film and the range up to the surface layer of the silicon layer immediately below the oxide film are dissolved and removed. It doesn't take long. Moreover, since the amount of the analysis sample, that is, the predetermined solution is small, sufficient analysis accuracy and sensitivity can be obtained. In addition, the remaining portion of the sample wafer has a thickness that is hardly reduced as compared with that before the analysis sample is collected, and most of the impurities on the surface and inside are removed, so that the wafer has excellent electrical characteristics. Another advantage is that a high-quality wafer free from impurities can be obtained at the same time as the analysis sample is taken.

【0025】[0025]

【実施例】次に、本発明の実施例および比較例について
説明する。 実施例1 試料として、全く同一の工程を経て得られた直径200
mm、厚さ725mm、p型〈100〉のシリコンウエ
ーハを複数枚用意した。これから選んだ1枚の試料の片
面に、SiO2 粉でサンドブラスト処理を行った後、こ
の試料を乾燥度100%、430℃の酸素雰囲気中で1
0分間、酸化処理を行い、サンドブラスト側のウエーハ
表面層を熱酸化膜に変えた。この熱酸化膜をフッ酸で溶
解し、溶解液を回収してフレームレス原子吸光分析装置
により金属元素の定量分析を行った。その結果、Ni含
有量が100×1010 atoms/cm2、Cu含有量が1×1
10atoms/cm2であることが判った。
Next, examples of the present invention and comparative examples will be described. Example 1 As a sample, a diameter of 200 obtained through the same steps
A plurality of p-type <100> silicon wafers having a thickness of 725 mm and a thickness of 725 mm were prepared. One surface of one sample selected from these was sandblasted with SiO 2 powder, and this sample was dried at 100% dryness in an oxygen atmosphere at 430 ° C.
Oxidation treatment was performed for 0 minutes to change the wafer surface layer on the sandblast side to a thermal oxide film. The thermal oxide film was dissolved with hydrofluoric acid, the solution was recovered, and the quantitative analysis of the metal element was performed by a flameless atomic absorption spectrometer. As a result, the Ni content is 100 × 10 10 atoms / cm 2 , and the Cu content is 1 × 1.
It was found to be 0 10 atoms / cm 2 .

【0026】比較例1 実施例1で残ったシリコンウエーハから1枚を選び、こ
の試料についてSiO2 粉でのサンドブラスト処理を行
わない点以外は、実施例1と全く同一の処理を施した。
熱酸化膜をフッ酸で溶解し、溶解液を回収してフレーム
レス原子吸光分析装置により金属元素の定性分析および
定量分析を行った。その結果、Ni,Cuのいずれも検
出することができなかった。
Comparative Example 1 One of the silicon wafers remaining in Example 1 was selected, and the same treatment as in Example 1 was performed except that the sand blast treatment with SiO 2 powder was not performed for this sample.
The thermal oxide film was dissolved with hydrofluoric acid, and the solution was collected and subjected to qualitative and quantitative analysis of metal elements by a flameless atomic absorption spectrometer. As a result, neither Ni nor Cu could be detected.

【0027】比較例2 実施例1で残ったシリコンウエーハから1枚を選び、こ
の試料について実施例1と同様に試料の片面にSiO2
粉でサンドブラスト処理を行った後、クリーンブース内
に放置してウエーハ表面に自然酸化膜を成長させた。こ
の自然酸化膜をフッ酸で溶解し、溶解液を回収してフレ
ームレス原子吸光分析装置により金属元素の定量分析を
行った。その結果、Ni,Cuのいずれも検出すること
ができなかった。
Comparative Example 2 One of the silicon wafers remaining in Example 1 was selected, and this sample was subjected to SiO 2 on one side of the sample in the same manner as in Example 1.
After sandblasting with powder, it was left in a clean booth to grow a natural oxide film on the surface of the wafer. This natural oxide film was dissolved with hydrofluoric acid, and the solution was collected and quantitatively analyzed for the metal element by a flameless atomic absorption spectrometer. As a result, neither Ni nor Cu could be detected.

【0028】[0028]

【発明の効果】以上の説明で明らかなように、第一発明
によれば、シリコンウエーハの片側の主面に機械的ダメ
ージを与えて歪を導入した後、シリコンウエーハを熱酸
化処理することにより、シリコンウエーハ内部の不純物
を酸化膜およびその直下のシリコン表面層(歪領域)に
集めることができ、この該熱酸化膜、または該熱酸化膜
およびその直下のシリコン表面層を薬液により溶解して
該溶解液を回収し、該回収液について分析を行うように
したので、ウエーハ内部の不純物を簡便、高精度、かつ
高感度に分析することができる効果がある。第二発明に
よれば、シリコンウエーハ内部の不純物を、例えば、該
ウエーハの表面層を形成する自然酸化膜中およびその直
下のシリコン表面層に移動させ、以下第一発明と同様の
手順で所定の溶解液を調製し分析を行うようにしたの
で、第一発明と同様の効果が得られる。第三発明によれ
ば、シリコンウエーハ内部の不純物を、該ウエーハ表面
層上に形成した歪領域をCVD処理する際の熱エネルギ
ーにより、シリコンウエーハ中を移動させ、堆積した酸
化膜中およびその直下のシリコン表面層(歪領域)に移
動させ、以下第一発明と同様の手順で所定の溶解液を調
製し分析を行うようにしたので、第一発明と同様の効果
を奏することができる。
As is apparent from the above description, according to the first invention, the silicon wafer is thermally oxidized after the mechanical damage is applied to one main surface of the silicon wafer to introduce the strain. , The impurities inside the silicon wafer can be collected in the oxide film and the silicon surface layer (strained region) immediately thereunder, and the thermal oxide film or the thermal oxide film and the silicon surface layer immediately thereunder are dissolved by a chemical solution. Since the solution is collected and the collected solution is analyzed, the impurities in the wafer can be easily and accurately analyzed with high sensitivity. According to the second invention, the impurities inside the silicon wafer are moved to, for example, the natural oxide film forming the surface layer of the wafer and the silicon surface layer immediately below the natural oxide film. Since the solution is prepared and analyzed, the same effect as the first invention can be obtained. According to the third invention, the impurities inside the silicon wafer are moved in the silicon wafer by the thermal energy when the strained region formed on the surface layer of the wafer is subjected to the CVD treatment, and the impurities in the deposited oxide film and immediately below it are moved. Since it is moved to the silicon surface layer (strained region) and a predetermined solution is prepared and analyzed by the same procedure as in the first invention, the same effect as the first invention can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】第一発明による処理工程および、その作用を説
明する断面図である。
FIG. 1 is a cross-sectional view illustrating a processing step according to the first invention and its operation.

【図2】第三発明による処理工程および、その作用を説
明する断面図である。
FIG. 2 is a cross-sectional view illustrating a processing step according to the third invention and its operation.

【符号の説明】[Explanation of symbols]

1 シリコンウエーハ 2 内部不純物 3 歪 4 歪層 5 熱酸化膜 6 シリコン層 7 溶解液 15 酸化膜 17 溶解液 1 Silicon Wafer 2 Internal Impurity 3 Strain 4 Strained Layer 5 Thermal Oxide Film 6 Silicon Layer 7 Dissolution Solution 15 Oxide Film 17 Dissolution Solution

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西條 廣 新潟県中頸城郡頸城村大字城野腰新田596 番地2 直江津電子工業株式会社内 (72)発明者 小形 明 新潟県中頸城郡頸城村大字城野腰新田596 番地2 直江津電子工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiro Saijo Niigata Prefecture Nakakubiki-gun Kubiki-mura large size 596 Jono Koshi Nitta 2 Naoetsu Electronics Industry Co., Ltd. Jono Koshi Nitta 596 Address 2 Naoetsu Electronics Industry Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 シリコンウエーハの片側の主面に機械的
ダメージを与えて歪を導入した後、この歪を導入した側
のウエーハ表面層を熱酸化膜に変え、該熱酸化膜、また
は該熱酸化膜およびその直下のシリコン表面層を薬液に
より溶解して該溶解液を回収し、該回収液について分析
を行うことを特徴とするシリコンウエーハ内部の不純物
分析方法。
1. A silicon wafer is mechanically damaged on one main surface thereof to introduce strain, and then the wafer surface layer on the strain-introduced side is changed to a thermal oxide film. A method for analyzing impurities in a silicon wafer, characterized in that an oxide film and a silicon surface layer immediately below the oxide film are dissolved by a chemical solution, the solution is recovered, and the recovered solution is analyzed.
【請求項2】 前記ウエーハ表面層を熱酸化膜に変える
に際し、シリコンウエーハを酸素ガスの存在下、300
℃以上、650℃以下の温度で2〜120分間加熱する
ことを特徴とする請求項1記載のシリコンウエーハ内部
の不純物分析方法。
2. When converting the surface layer of the wafer into a thermal oxide film, the silicon wafer is treated in the presence of oxygen gas for 300 times.
The method for analyzing impurities in a silicon wafer according to claim 1, wherein heating is performed at a temperature of not less than ℃ and not more than 650 ° C for 2 to 120 minutes.
【請求項3】 シリコンウエーハの片側の主面に機械的
ダメージを与えて歪を導入した後、この歪を導入した側
のウエーハ表面層を自然酸化膜または化学的に形成され
た酸化膜に変え、300℃以上、650℃以下の温度で
2〜120分間熱処理後、(1)前記自然酸化膜、
(2)該自然酸化膜およびその直下のシリコン表面層、
(3)前記化学的に形成された酸化膜、(4)該化学的
に形成された酸化膜およびその直下のシリコン表面層の
いずれかを薬液により溶解して該溶解液を回収し、該回
収液について分析を行うことを特徴とするシリコンウエ
ーハ内部の不純物分析方法。
3. A silicon wafer is subjected to mechanical damage on one main surface thereof to introduce strain, and then the wafer surface layer on the strain-introduced side is changed to a natural oxide film or a chemically formed oxide film. After heat treatment at a temperature of 300 ° C. or higher and 650 ° C. or lower for 2 to 120 minutes, (1) the natural oxide film,
(2) The natural oxide film and the silicon surface layer immediately below it,
(3) Any one of the chemically formed oxide film, (4) the chemically formed oxide film and the silicon surface layer immediately thereunder is dissolved by a chemical liquid to recover the dissolved liquid, and the recovery is performed. A method for analyzing impurities in a silicon wafer, which comprises performing analysis on a liquid.
【請求項4】 シリコンウエーハの片側の主面に機械的
ダメージを与えて歪を導入した後、この歪を導入した側
の主面上に酸化膜を常圧CVD法または減圧CVD法に
より堆積し、該酸化膜、または該酸化膜およびその直下
のシリコンウエーハ表面層を薬液により溶解して該溶解
液を回収し、該回収液について分析を行うことを特徴と
するシリコンウエーハ内部の不純物分析方法。
4. A silicon wafer is subjected to mechanical damage on one main surface thereof to introduce strain, and then an oxide film is deposited on the main surface on which the strain is introduced by atmospheric pressure CVD method or low pressure CVD method. A method for analyzing impurities in a silicon wafer, characterized in that the oxide film, or the oxide film and the surface layer of the silicon wafer immediately below the oxide film are dissolved by a chemical solution to recover the solution, and the recovered solution is analyzed.
【請求項5】 常圧CVD法または減圧CVD法による
前記酸化膜の堆積処理を300℃以上、650℃以下の
温度で2〜120分間行うことを特徴とする請求項4記
載のシリコンウエーハ内部の不純物分析方法。
5. The inside of the silicon wafer according to claim 4, wherein the deposition process of the oxide film by the atmospheric pressure CVD method or the low pressure CVD method is performed at a temperature of 300 ° C. or higher and 650 ° C. or lower for 2 to 120 minutes. Impurity analysis method.
JP25814895A 1995-09-11 1995-09-11 Impurity analyzing method for silicon wafer interior Pending JPH0982769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25814895A JPH0982769A (en) 1995-09-11 1995-09-11 Impurity analyzing method for silicon wafer interior

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25814895A JPH0982769A (en) 1995-09-11 1995-09-11 Impurity analyzing method for silicon wafer interior

Publications (1)

Publication Number Publication Date
JPH0982769A true JPH0982769A (en) 1997-03-28

Family

ID=17316197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25814895A Pending JPH0982769A (en) 1995-09-11 1995-09-11 Impurity analyzing method for silicon wafer interior

Country Status (1)

Country Link
JP (1) JPH0982769A (en)

Similar Documents

Publication Publication Date Title
JPH0982770A (en) Impurity analyzing method for silicon wafer interior
JPH11218474A (en) Measuring method for impurities
JP3494102B2 (en) Evaluation method of metal impurity concentration in silicon wafer
JPH0964133A (en) Detecting method of cu concentration in semiconductor substrate
JPH09145564A (en) Method for analyzing contamination of inside of hole
JPH0982769A (en) Impurity analyzing method for silicon wafer interior
JP2004335955A (en) METHOD FOR DETECTING CONCENTRATION OF Cu ON SILICON SUBSTRATE
JP2843600B2 (en) Method for measuring the amount of impurities on the wafer surface
JP4073138B2 (en) Method for analyzing metals contained in quartz
JP2001242052A (en) Method for analyzing impurity in semiconductor substrate or chemicals
US6146909A (en) Detecting trace levels of copper
JP2950310B2 (en) Method for analyzing metal impurities on semiconductor substrate surface and substrate
JPH01189558A (en) Analyzing method of surface of si semiconductor substrate
JPH10339691A (en) Method for measuring surface impurities
JPH11195685A (en) Pattern defect inspection system and method of inspecting pattern defect
JP2847228B2 (en) Evaluation method of semiconductor jig material
JPS63295953A (en) Pretreatment for microanalysis
JP2000332072A (en) Surface analysis method of semiconductor substrate
JP3558759B2 (en) Method for removing impurities inside silicon wafer
JP4232457B2 (en) Method for analyzing metal impurities in surface oxide film on silicon substrate surface
US20090277875A1 (en) Method for the Determination of the Surface Occupation of a Silica Glass Component
KR100999358B1 (en) Method of estimating the concentration of metal contamination in wafer
JP2762814B2 (en) Impurity analysis method
JPH05283381A (en) Recovery of contaminant metal element on silicon wafer surface
JP2000107672A (en) Semiconductor substrate surface impurity recovering device