JPS63295953A - Pretreatment for microanalysis - Google Patents

Pretreatment for microanalysis

Info

Publication number
JPS63295953A
JPS63295953A JP62132735A JP13273587A JPS63295953A JP S63295953 A JPS63295953 A JP S63295953A JP 62132735 A JP62132735 A JP 62132735A JP 13273587 A JP13273587 A JP 13273587A JP S63295953 A JPS63295953 A JP S63295953A
Authority
JP
Japan
Prior art keywords
solid sample
sputtering
sample
solid
rare gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62132735A
Other languages
Japanese (ja)
Inventor
Masahiro Shibata
柴田 雅裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62132735A priority Critical patent/JPS63295953A/en
Publication of JPS63295953A publication Critical patent/JPS63295953A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable accurate analysis and measurement, by a method wherein the surface of a solid sample is purified in a vacuum sample chamber beforehand and then, the surface of at least a part of the solid sample is coated with a conductive material without exposure of the sample to atmospheric air. CONSTITUTION:A sample holder 3 and a target 4 are held on a fixed plate 5 in a vacuum sample chamber 8 and the fixed plate 5 is made rotatable centered on a rotating shaft 6. A shielding plate 7 is provided to prevent the coating of the surface of the target 4 with particles sputtered during a sputter etching of the solid sample 2. After the sputtering within the vacuum sample chamber 8, the surface of the target is further coated with a conductive material without exposure of the solid sample 2 to atmospheric air to form at least one conductive layer, thereby enabling accurate analysis and measurement.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、微量分析のために行う前処理法の改良に関゛
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to improvements in pretreatment methods for trace analysis.

[従来の技術] 固体試料の微量元素分析法としては、グロー放電質量分
析法(以下、GDMSという)、スパーク質量分析法(
以下、55M5という)、二次イオン質量分析法(以下
、SIMSという)等が広く使用されいる。これらの分
析法はppm又はppb以下の検出感度を有するが、固
体試料表面の汚染層に対しても敏感ということがあるの
で、固体試料中の微量元素の分析を行なうためには、汚
染層をできる限り除去するという前処理が必要である。
[Prior art] As trace element analysis methods for solid samples, there are glow discharge mass spectrometry (hereinafter referred to as GDMS) and spark mass spectrometry (hereinafter referred to as GDMS).
55M5), secondary ion mass spectrometry (hereinafter referred to as SIMS), etc. are widely used. Although these analytical methods have a detection sensitivity of ppm or ppb or less, they are also sensitive to the contaminant layer on the surface of the solid sample, so in order to analyze trace elements in the solid sample, it is necessary to remove the contaminant layer. Pretreatment is necessary to remove as much as possible.

S IMSでは、あらかじめ分析領域を予備スパッタリ
ングにより表面層を除去してから測定するということが
可能であり、GDMSにおいても充分予備放電を行なっ
てから測定するということが可能である。しかし、予備
スパッタリング及び予備放電には、多大の時間を必要と
する。そこで、表面汚染層を除去するためには、(固体
表面の脱脂洗浄)→(酸やアルカリによるエツチング)
→(水洗)→(乾燥)という前処理が行われている。
In SIMS, it is possible to remove the surface layer of the analysis area by preliminary sputtering before measurement, and in GDMS, it is also possible to carry out sufficient preliminary discharge before measurement. However, preliminary sputtering and preliminary discharge require a large amount of time. Therefore, in order to remove the surface contamination layer, (degrease cleaning of the solid surface) → (etching with acid or alkali)
Pretreatment is performed: → (washing) → (drying).

しかし、このような前処理法では、水洗しても、酸やア
ルカリ溶液を構成する元素(HlSO,系の場合には例
えばS)やそれらに含まれる不純物(例えばNa、K)
の残存がどうしても避けられなかった。固体中の微量元
素分析対象となる元素が、これらの表面残存元素に関係
する場合、正確な微量分析測定を行うことは不可能であ
った。
However, with this pretreatment method, even after washing with water, the elements constituting the acid or alkaline solution (for example, S in the case of HlSO) and the impurities contained therein (for example, Na, K) are removed.
It was inevitable that the . When the elements targeted for trace element analysis in solids are related to these surface residual elements, it has been impossible to perform accurate trace analysis measurements.

゛ [発明の目的] 本発明の、目的は、かかる問題点を解消し、正確な微量
分析測定を可能にする前処理法を提供することにある。
゛ [Object of the Invention] An object of the present invention is to provide a pretreatment method that solves these problems and enables accurate microanalysis measurements.

[発明の構成] 本発明の要旨は、固体試料表面を真空試料室内でスパッ
タリングにより予め清浄化した後に、大気にさらすこと
なく固体試料の少なくとも一部分の表面に導電性物質を
コーティングして少なくとも1つの導電層を形成するこ
とを特徴とする微量分析用前処理法に存する。
[Structure of the Invention] The gist of the present invention is to pre-clean the surface of a solid sample by sputtering in a vacuum sample chamber, and then coat at least a portion of the surface of the solid sample with a conductive substance without exposing it to the atmosphere. A pretreatment method for trace analysis characterized by forming a conductive layer.

本発明においては、固体試料について、(脱脂洗浄)→
(酸やアルカリ溶液によるエツチング)→(水洗)−(
乾燥)の処理を行なった後に或はこのような処理を行わ
ずに、真空試料室内でスパッタリングにより表面層を除
去し、その後さらに固体試料を大気に触れさせることな
く固体試料表面に導電性物質をコーティングする。
In the present invention, for solid samples, (degreasing and cleaning) →
(Etching with acid or alkaline solution) → (Washing) - (
After or without such treatment, the surface layer is removed by sputtering in a vacuum sample chamber, and then a conductive substance is applied to the surface of the solid sample without exposing the solid sample to the atmosphere. Coat.

本発明において、固体試料は、導電性材料、半導体材料
、半絶縁性材料または絶縁性材料などのいずれの固体材
料からできていてもよい。固体試料として、例えば、ア
ンドープ又は各種ドーパントを含むGaAs結晶、In
P結晶、GaP結晶、InAs結晶及びInSb結晶な
どが挙げられろ。
In the present invention, the solid sample may be made of any solid material such as a conductive material, a semiconductor material, a semi-insulating material or an insulating material. As a solid sample, for example, undoped or GaAs crystal containing various dopants, In
Examples include P crystal, GaP crystal, InAs crystal, and InSb crystal.

スパッタリングは、稀ガス雰囲気内での放電を利用した
スパッタリング或いは稀ガスのイオンビーム又は中性原
子ビームを固体試料表面に照射するスパッタリングによ
って行うことが好ましい。
The sputtering is preferably performed by sputtering using a discharge in a rare gas atmosphere or by irradiating the surface of a solid sample with an ion beam or a neutral atomic beam of a rare gas.

スパッタリングにおいて、固体試料を回転させることが
好ましい。
In sputtering, it is preferable to rotate the solid sample.

スパッタリングにおいて、アルゴン、ヘリウム等の稀ガ
スを使用することが好ましい。たとえ稀ガスの元素が僅
かに固体試料表面層に注入されても、微量元素分析の分
析対象元素となることが極めて稀であるため分析の障害
とならない。
In sputtering, it is preferable to use a rare gas such as argon or helium. Even if a small amount of a rare gas element is injected into the surface layer of a solid sample, it will not interfere with the analysis because it is extremely rare for it to become an element to be analyzed in trace element analysis.

固体試料の真空試料室内でのスパッタリングは、従来の
酸やアルカリ溶液によるエツチング後の再汚染層を除去
する効果を有する。すなわち、固体試料を酸やアルカリ
溶液によりエツチングする場合、充分にエツチングすれ
ば固体試料そのものも一部除去され、新鮮な固体試料内
部が表面として露出している。しかしこれを溶液から取
出した場合、固体試料表面に一部溶液が付着し、また薄
層の反応生成物層を形成することもあり得る。これらは
、次の水洗により完全に除去することは不可能である。
Sputtering of a solid sample in a vacuum sample chamber has the effect of removing the recontamination layer after conventional etching with an acid or alkaline solution. That is, when a solid sample is etched with an acid or alkaline solution, if the etching is sufficient, part of the solid sample itself is also removed, and the fresh interior of the solid sample is exposed as the surface. However, when this is removed from the solution, some of the solution may adhere to the surface of the solid sample, and a thin reaction product layer may also be formed. These cannot be completely removed by subsequent washing with water.

しかし、これらを真空試料室内で、中性原子ビームやイ
オンビーム等でスパッタリングすることによって、再表
面層を除去し再び新鮮な固体試料内部を表面として露出
させることができる。しかも、溶液による洗浄と異なり
、固体試料表面は真空に保持されているため、その後の
表面の再汚染が極めて少ない。
However, by sputtering these with a neutral atomic beam, ion beam, etc. in a vacuum sample chamber, the surface layer can be removed again and the inside of a fresh solid sample can be exposed as the surface again. Moreover, unlike cleaning with a solution, the surface of the solid sample is kept in a vacuum, so subsequent re-contamination of the surface is extremely rare.

真空試料室内でスパッタリングした後、固体試料を大気
にさらすことなくさらに表面に導電性物質をコーティン
グし、少なくとも1つの導電層を形成する。
After sputtering in the vacuum sample chamber, the surface of the solid sample is further coated with a conductive material without exposing it to the atmosphere to form at least one conductive layer.

導電性物質は、例えば、銀、アルミニウム、金、白金、
インジウム、銅、カーボン又はパラジウムである。なお
、これら物質以外の導電性である物質を導電性物質とし
て使用してもよい。
Examples of conductive substances include silver, aluminum, gold, platinum,
Indium, copper, carbon or palladium. Note that conductive substances other than these substances may be used as the conductive substance.

導電性物質をコーティングして導電層を形成するには、
バスケット加熱による真空蒸着、スパッタコーティング
、電子ビーム蒸着又はイオンコーティングを使用すれば
よい。特に、スパッタコーティングが好ましい。スパッ
タコーティングは、稀ガス雰囲気内での放電を利用した
スパッタコーティング或いは稀ガスのイオンビーム又は
中性原子ビームを導電性物質からなるターゲットに照射
してスパッタリングし、これを固定試料表面に付着させ
るスパッタコーティングであることが好ましい。
To coat a conductive material to form a conductive layer,
Vacuum deposition with basket heating, sputter coating, electron beam deposition or ion coating may be used. Particularly preferred is sputter coating. Sputter coating is sputter coating that uses electrical discharge in a rare gas atmosphere, or sputtering that involves irradiating a target made of a conductive material with a rare gas ion beam or neutral atomic beam and sputtering the target, which is then deposited on the surface of a fixed sample. A coating is preferred.

この導電層には次のような効果がある。第1に、固体試
料表面に導電性をもたせることである。これは、固体試
料が半導体、半絶縁性材料又は絶縁材料であるときのS
 IMS、GDMS又は55M5の分析測定に有効であ
る。すなわち、SIMSでは測定中の固体試料表面の帯
電防止の役割を果たす。またGDMS及び55M5では
放電の開始を容易にし、かつ安定した放電を持続せしめ
、導電性物質のコーティングなしでは測定困難な測定を
可能にする。第2に、固体試料最表面層の汚染保護膜を
形成する。スパッタリングにより固体試料表面を清浄化
しても、SIMS%GDMS又は55M5分析に供する
ときに、固体試料を真空試料室内から大気中に取出し大
気に触れさせることにより、固体試料表面は大気からの
汚染を受け、その雰囲気にもよるが、C,O,Nはもと
よりSi。
This conductive layer has the following effects. The first is to make the solid sample surface conductive. This is the S when the solid sample is a semiconductor, semi-insulating material or insulating material.
Effective for IMS, GDMS or 55M5 analytical measurements. That is, in SIMS, it plays a role in preventing the surface of a solid sample from being charged during measurement. Furthermore, GDMS and 55M5 facilitate the initiation of discharge and maintain stable discharge, allowing measurements that would be difficult to make without coating with a conductive material. Second, a contamination protection film is formed on the outermost surface layer of the solid sample. Even if the surface of a solid sample is cleaned by sputtering, the surface of the solid sample may be contaminated from the atmosphere by taking the solid sample out of the vacuum sample chamber into the atmosphere and exposing it to the atmosphere when subjecting it to SIMS%GDMS or 55M5 analysis. , depending on the atmosphere, C, O, N as well as Si.

AQ、Cu、Fe等の元素が微量分析では無視できない
程度の汚染を生じさせる。とくに、固体試料表面はスパ
ッタリングによる清浄化により活性化しているため、大
気からの汚染はひどい。しかし、この導電性物質のコー
テイング後、固体試料を大気中に取出す場合は、大気か
らの汚染は固体試料表面に直接生ずるのではなく、導電
層表面に生ずる。固体試料表面に大気からの汚染層が生
じている場合、S IMS、GDMS、55M5の測定
において測定前の予備スパッタリングや予備放電により
汚染層を除去するが、いずれにおいても完全に除去でき
たかどうかを判断することは極めて困難であった。しか
し、本発明においては、導電層が除去できれば、もはや
大気からの汚染層は完全に除去できたと判断できる。す
なわち、導電性物質(既知)のイオン強度変化により極
めて定量的に導電層の除去状態をモニターできる。従っ
て不必要に長時間にわって予備スパッタリングや予備放
電を行なうことを防止でき、作業効率を向上できる。本
発明で必要とする予備スパッタリングや予備放電の時間
は、本発明に従わない場合と比べると極めて短時間であ
ることは言うまでもない。
Elements such as AQ, Cu, and Fe cause contamination to a degree that cannot be ignored in trace analysis. In particular, since the surface of a solid sample is activated by cleaning by sputtering, contamination from the atmosphere is severe. However, when the solid sample is taken out into the atmosphere after being coated with this conductive material, contamination from the atmosphere does not occur directly on the surface of the solid sample, but on the surface of the conductive layer. If a contaminant layer from the atmosphere has formed on the surface of a solid sample, the contaminant layer is removed by preliminary sputtering or preliminary discharge before measurement in SIMS, GDMS, or 55M5 measurements. It was extremely difficult to judge. However, in the present invention, if the conductive layer can be removed, it can be judged that the contaminant layer from the atmosphere has been completely removed. That is, the state of removal of the conductive layer can be monitored very quantitatively by changing the ionic strength of the conductive substance (known). Therefore, it is possible to prevent preliminary sputtering and preliminary discharge from being performed for an unnecessarily long time, and work efficiency can be improved. It goes without saying that the time required for preliminary sputtering and preliminary discharge in the present invention is extremely short compared to the case not according to the present invention.

以下に添付図面を参照して本発明を具体的に説明するが
、言うまでもなく本発明は以下のものに限定されるもの
ではない。
The present invention will be specifically described below with reference to the accompanying drawings, but it goes without saying that the present invention is not limited to the following.

第1図は、固体試料がアンドープの半絶縁性GaAs結
晶ウェーハであるときの一興体例の作業フロー図を示す
。Arイオンによるスパッタエツチングと銀のスパッタ
コーティングは同−真空試料室内で連続して行なわれ、
この間試料は大気にさらされない。
FIG. 1 shows a work flow diagram of an example of a one-shot device when the solid sample is an undoped semi-insulating GaAs crystal wafer. Sputter etching with Ar ions and sputter coating with silver were performed continuously in the same vacuum sample chamber.
During this time the sample is not exposed to the atmosphere.

第2図は、Arイオンによるスパッタエツチングと導電
性物質のスパッタコーティングを行なう装置の一例の概
略図を示す。第2図(a)は固体試料2を回転させなが
らアルゴンイオンビームでスパッタエッチしているとこ
ろを示し、第2図(b)は、導電性物質から成るターゲ
ット4をアルゴンイオンビームでスパッタリングし、ス
パッタされた粒子を固体試料2にコーティングしている
ところを示す。真空試料室8の中において、試料ホルダ
ー3とターゲット4は固定板5に保持されており、回転
軸6を中心に固定板5は回転可能である。
FIG. 2 shows a schematic diagram of an example of an apparatus for performing sputter etching using Ar ions and sputter coating with a conductive material. FIG. 2(a) shows sputter etching with an argon ion beam while rotating the solid sample 2, and FIG. 2(b) shows sputter etching with an argon ion beam on a target 4 made of a conductive material. A solid sample 2 is shown being coated with sputtered particles. In the vacuum sample chamber 8 , the sample holder 3 and the target 4 are held by a fixed plate 5 , and the fixed plate 5 is rotatable about a rotating shaft 6 .

また固体試料2をスパッタエツチングしているときにス
パッタリングされた粒子がターゲット4の表面にコーテ
ィングされることを防止するために遮蔽板7を設けた。
Further, a shielding plate 7 was provided to prevent sputtered particles from being coated on the surface of the target 4 while the solid sample 2 was being sputter etched.

ターゲット4の材質としては銀、金、アルミニウム、パ
ラジウム及びインジウム等を使用したが、後の分析に応
じて適宜選択できることは言うまでもない。なお導電性
物質のコーティングの厚さについては、0.01μm程
度あればS IMS、GDMS及び55M5いずれの測
定にも充分な表面の導電性処理となり得た。なお、アン
ドープの半絶縁性GaAs結晶ウェーハの比抵抗は5X
lO’Ω・0111以上であった。アルゴンイオン銃l
を高速原子ビーム源(通称FAR)に置き換えても良好
な結果が得られた。
Although silver, gold, aluminum, palladium, indium, etc. were used as the material for the target 4, it goes without saying that it can be appropriately selected depending on the subsequent analysis. Regarding the thickness of the conductive substance coating, a thickness of about 0.01 μm was enough to provide sufficient surface conductivity for SIMS, GDMS, and 55M5 measurements. Note that the resistivity of the undoped semi-insulating GaAs crystal wafer is 5X.
It was 1O'Ω·0111 or more. argon ion gun
Good results were also obtained by replacing the atomic beam source with a fast atomic beam source (commonly known as FAR).

例えばGDMS分析への応用例について説明する。固体
試料が半絶縁性GaAs結晶の場合、比抵抗5xlO’
Ω・cm程度のものでは、グロー放電を開始させるのが
非常に困難であり、また安定な放電を持続させることも
困難であった。しかし、本発明において厚さ0.01μ
mの銀導電層を形成したとき、放電開始と安定な放電の
持続が容易であった。また予備放電開始後10分以内で
銀イオンは殆ど検出されなくなり(マトリックスである
Ga、Asのイオン強度の約100.5分の1以下)、
この時点で、約20元素についてその量を測定したとこ
ろ、すべて10atomic−ppb以下であった。
For example, an example of application to GDMS analysis will be explained. When the solid sample is a semi-insulating GaAs crystal, the resistivity is 5xlO'
When the diameter is about Ω·cm, it is very difficult to start a glow discharge, and it is also difficult to maintain a stable discharge. However, in the present invention, the thickness is 0.01 μm.
When a silver conductive layer of m was formed, it was easy to start a discharge and sustain a stable discharge. Moreover, within 10 minutes after the start of preliminary discharge, almost no silver ions are detected (approximately 1/100.5 or less of the ionic strength of the matrix Ga and As).
At this point, the amounts of about 20 elements were measured, and all were found to be less than 10 atomic-ppb.

その結果の一例を第1表に示す。An example of the results is shown in Table 1.

第1表 導電性物質の検出値が充分に小さくなった時点で清浄な
固体試料表面が露出したと判断することが可能となり、
不必要な予備放電を長時間行なう必要がなくなり、作業
効率が大幅に向上した。第1図における乾燥工程の後、
例えば真空蒸着等で銀をコーティングしこれを元素分析
測定に供した場合、銀が殆ど検出されなく(マトリック
スであるGa及びAsのイオン強度の約100万分の1
以下)なってもNa、Mg、Si等が数10 atog
mic−ppb〜数atomic−ppm検出され、こ
れが固体試料中のものなのか、固体試料表面の汚染によ
るものなのか判断ができず、多くの元素を何度も分析し
、値が安定したところで一応予備放電を終了するという
めんどうがあり、予備放電時間はときには1時間をこえ
ることがあった。
When the detected value of the conductive substance in Table 1 becomes sufficiently small, it is possible to determine that a clean solid sample surface has been exposed.
There is no need to perform unnecessary pre-discharge for a long time, greatly improving work efficiency. After the drying process in Figure 1,
For example, when silver is coated by vacuum evaporation and subjected to elemental analysis measurement, almost no silver is detected (approximately 1/1 millionth of the ionic strength of the matrix Ga and As).
(below) even if Na, Mg, Si, etc. are several 10 atog
mic-ppb to several atomic-ppm was detected, and it was not possible to determine whether this was in the solid sample or due to contamination on the surface of the solid sample, so many elements were analyzed many times, and once the values stabilized, There was the trouble of completing the preliminary discharge, and the preliminary discharge time sometimes exceeded one hour.

[発明の効果コ 以上説明したように、本発明はSIMS、GDMS又は
55M5により固体試料中の微量元素分析において効果
的である。
[Effects of the Invention] As explained above, the present invention is effective in analyzing trace elements in solid samples using SIMS, GDMS, or 55M5.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一興体例の作業フロー図、第2図は本
発明を行なうための装置の一例の概略図である。 l・・・アルゴンイオン銃、 2・・・固体試料、3・
・・試料ホルダー、4・・・ターゲット、5・・・固定
板、6・・・回転軸、 7・・・遮蔽板、 8・・・真
空試料室。
FIG. 1 is a work flow diagram of an embodiment of the present invention, and FIG. 2 is a schematic diagram of an example of an apparatus for carrying out the present invention. l...Argon ion gun, 2...Solid sample, 3.
... Sample holder, 4... Target, 5... Fixed plate, 6... Rotating shaft, 7... Shielding plate, 8... Vacuum sample chamber.

Claims (1)

【特許請求の範囲】 1、固体試料表面を真空試料室内でスパッタリングによ
り予め清浄化した後に、大気にさらすことなく固体試料
の少なくとも一部分の表面に導電性物質をコーティング
して少なくとも1つの導電層を形成することを特徴とす
る微量分析用前処理法。 2、スパッタリングは、稀ガス雰囲気内での放電を利用
したスパッタリング或いは稀ガスのイオンビーム又は中
性原子ビームを固体試料表面に照射するスパッタリング
によって行う特許請求の範囲第1項記載の微量分析用前
処理法。 3、スパッタリングにおいて、固体試料を回転させる特
許請求の範囲第1項又は第2項に記載の微量分析用前処
理法。 4、導電層はスパッタコーティングにより形成される特
許請求の範囲第1〜3項のいずれかに記載の微量分析用
前処理法。 5、スパッタコーティングは、稀ガス雰囲気内での放電
を利用したスパッタコーティング或いは稀ガスのイオン
ビーム又は中性原子ビームを導電性物質からなるターゲ
ットに照射してスパッタリングし、これを固定試料表面
に付着させるスパッタコーティングである特許請求の範
囲第4項記載の微量分析用前処理法。 6、微量分析は、グロー放電質量分析、スパーク質量分
析又は二次イオン質量分析である特許請求の範囲第1〜
5項のいずれかに記載の微量分析用前処理法。
[Claims] 1. After the surface of the solid sample is pre-cleaned by sputtering in a vacuum sample chamber, at least one conductive layer is formed by coating the surface of at least a portion of the solid sample with a conductive substance without exposing it to the atmosphere. A pretreatment method for trace analysis characterized by the formation of 2. The sputtering is performed by sputtering using discharge in a rare gas atmosphere, or sputtering by irradiating the solid sample surface with a rare gas ion beam or neutral atomic beam. Processing method. 3. A pretreatment method for trace analysis according to claim 1 or 2, which comprises rotating a solid sample during sputtering. 4. The pretreatment method for microanalysis according to any one of claims 1 to 3, wherein the conductive layer is formed by sputter coating. 5. Sputter coating is sputter coating using electrical discharge in a rare gas atmosphere, or sputtering by irradiating a target made of a conductive material with a rare gas ion beam or neutral atomic beam, and then attaching it to the surface of a fixed sample. 5. The pretreatment method for trace analysis according to claim 4, which is sputter coating. 6. Claims 1 to 6, wherein the microanalysis is glow discharge mass spectrometry, spark mass spectrometry, or secondary ion mass spectrometry.
The pretreatment method for trace analysis according to any of Item 5.
JP62132735A 1987-05-28 1987-05-28 Pretreatment for microanalysis Pending JPS63295953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62132735A JPS63295953A (en) 1987-05-28 1987-05-28 Pretreatment for microanalysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62132735A JPS63295953A (en) 1987-05-28 1987-05-28 Pretreatment for microanalysis

Publications (1)

Publication Number Publication Date
JPS63295953A true JPS63295953A (en) 1988-12-02

Family

ID=15088370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62132735A Pending JPS63295953A (en) 1987-05-28 1987-05-28 Pretreatment for microanalysis

Country Status (1)

Country Link
JP (1) JPS63295953A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231421A (en) * 1989-07-31 1993-07-27 Canon Kabushiki Kaisha Thermal transfer recording apparatus with delayed driving
JPH0896740A (en) * 1994-09-22 1996-04-12 Nec Corp Secondary ion mass spectrometry method
JP2008051639A (en) * 2006-08-24 2008-03-06 Ulvac Japan Ltd Secondary ion mass analysis method for insulating material
JP2010054456A (en) * 2008-08-29 2010-03-11 Ulvac Japan Ltd Mass analysis method, and method and device for manufacturing sample for mass analysis
JP2011085533A (en) * 2009-10-16 2011-04-28 Jeol Ltd Method of forming conductive film to sample surface in auger analysis device, the auger analysis device, and sample holder for the auger analysis device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231421A (en) * 1989-07-31 1993-07-27 Canon Kabushiki Kaisha Thermal transfer recording apparatus with delayed driving
JPH0896740A (en) * 1994-09-22 1996-04-12 Nec Corp Secondary ion mass spectrometry method
JP2008051639A (en) * 2006-08-24 2008-03-06 Ulvac Japan Ltd Secondary ion mass analysis method for insulating material
JP2010054456A (en) * 2008-08-29 2010-03-11 Ulvac Japan Ltd Mass analysis method, and method and device for manufacturing sample for mass analysis
JP2011085533A (en) * 2009-10-16 2011-04-28 Jeol Ltd Method of forming conductive film to sample surface in auger analysis device, the auger analysis device, and sample holder for the auger analysis device

Similar Documents

Publication Publication Date Title
Uhlenbrock et al. The influence of defects on the Ni 2p and O 1s XPS of NiO
US4308089A (en) Method for preventing corrosion of Al and Al alloys
US6174740B1 (en) Method for analyzing impurities within silicon wafer
JPS63295953A (en) Pretreatment for microanalysis
JP2013167635A (en) Liquid-particle analysis of metal materials
CN111570390A (en) Treatment method of tantalum part in glow discharge mass spectrometer
Hosoya et al. Effects of wet cleaning on Si contaminated with heavy metals during Reactive Ion Etching
JP2002368052A (en) Method for desorbing silicon and method for analyzing impurities in silicon wafer
JP2973638B2 (en) Impurity analysis method
JP3532786B2 (en) Method for preparing sample for analysis of metal impurities contained in synthetic resin and method for measuring metal impurities using the same
JPS58171821A (en) Detection of contamination and purification degree in plasma processing and apparatus thereof
US6146909A (en) Detecting trace levels of copper
JP4003032B2 (en) Semiconductor wafer evaluation method
JP4877897B2 (en) Method for removing impurities from silicon wafer and analysis method
JP2888957B2 (en) Water evaluation method, pure water production method and its apparatus
WO2002031493A1 (en) Method of treating metal analysis sample and device thereof
JP2877974B2 (en) Glow discharge mass spectrometry
Shiue et al. Quantitative techniques for measuring cleanroom wipers with respect to airborne molecular contamination
Berghaus et al. Study of surface composition of iron-based metallic glasses by means of UV photoemission, angle-resolved Auger electron and ion scattering spectroscopy
JP2001041890A (en) Analyzing method in depth direction by utilizing glow discharge
JPH11195685A (en) Pattern defect inspection system and method of inspecting pattern defect
US20090277875A1 (en) Method for the Determination of the Surface Occupation of a Silica Glass Component
KR100244922B1 (en) Analyzing method of metal alloy for semiconductor manufacturing process
JPH0562958A (en) Purity evaluation method of chemical liquid
JP2002200463A (en) Method for cleaning fluororesin-made instrument