JPH0896740A - Secondary ion mass spectrometry method - Google Patents
Secondary ion mass spectrometry methodInfo
- Publication number
- JPH0896740A JPH0896740A JP6254425A JP25442594A JPH0896740A JP H0896740 A JPH0896740 A JP H0896740A JP 6254425 A JP6254425 A JP 6254425A JP 25442594 A JP25442594 A JP 25442594A JP H0896740 A JPH0896740 A JP H0896740A
- Authority
- JP
- Japan
- Prior art keywords
- secondary ion
- ion mass
- mass spectrometry
- layer
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000001004 secondary ion mass spectrometry Methods 0.000 title claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 25
- 239000010408 film Substances 0.000 claims abstract description 21
- 239000010410 layer Substances 0.000 claims abstract description 20
- 239000004065 semiconductor Substances 0.000 claims abstract description 17
- 238000009826 distribution Methods 0.000 claims abstract description 15
- 239000012535 impurity Substances 0.000 claims abstract description 13
- 238000007747 plating Methods 0.000 claims abstract description 13
- 239000002345 surface coating layer Substances 0.000 claims abstract description 8
- 239000002184 metal Substances 0.000 claims abstract description 6
- 239000010409 thin film Substances 0.000 claims abstract description 4
- 238000003631 wet chemical etching Methods 0.000 claims abstract description 4
- 238000009713 electroplating Methods 0.000 claims description 3
- 238000004949 mass spectrometry Methods 0.000 claims description 3
- 238000004458 analytical method Methods 0.000 abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 5
- 238000011156 evaluation Methods 0.000 abstract 1
- 239000012530 fluid Substances 0.000 abstract 1
- 239000000523 sample Substances 0.000 description 20
- 150000002500 ions Chemical class 0.000 description 16
- 238000005468 ion implantation Methods 0.000 description 10
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 4
- XUKUURHRXDUEBC-SXOMAYOGSA-N (3s,5r)-7-[2-(4-fluorophenyl)-3-phenyl-4-(phenylcarbamoyl)-5-propan-2-ylpyrrol-1-yl]-3,5-dihydroxyheptanoic acid Chemical compound C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CC[C@@H](O)C[C@H](O)CC(O)=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 XUKUURHRXDUEBC-SXOMAYOGSA-N 0.000 description 3
- 239000000538 analytical sample Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000001235 sensitizing effect Effects 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001793 charged compounds Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000005464 sample preparation method Methods 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Electron Tubes For Measurement (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体基板中の不純物
分析を行う二次イオン質量分析法に関し、特に表面近傍
の不純物の分布を精密に分析する二次イオン質量分析法
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary ion mass spectrometry method for analyzing impurities in a semiconductor substrate, and more particularly to a secondary ion mass spectrometry method for precisely analyzing the distribution of impurities near the surface.
【0002】[0002]
【従来の技術】半導体デバイスの高速化に伴い、基板表
面近傍の浅い領域における不純物制御が重要となってい
る。そこで、半導体基板中の不純物深さ分布を測定する
ための主要な方法である二次イオン質量分析法において
も、表面近傍の浅い領域を正確に分析することのできる
能力が要求されている。ここで二次イオン質量分析法と
は、一次イオンで試料表面をスパッタリングし、そのと
き試料表面から真空中に飛び出したスパッタ粒子のうち
イオン化しているもの、すなわち二次イオンを質量分析
器によって分離検出するものである。しかしながら、二
次イオンの生成過程は単純なものではなく、特に試料最
表面においては、一次イオンや吸着分子との相互作用が
複雑なために、二次イオンのイオン化効率が変化しやす
いものである。そのため、分析開始直後の試料表面近傍
では、二次イオン収率が大きく乱れるので量的な分析が
できないという問題があった。2. Description of the Related Art With the increase in speed of semiconductor devices, it has become important to control impurities in a shallow region near the surface of a substrate. Therefore, even in the secondary ion mass spectrometry, which is a main method for measuring the impurity depth distribution in the semiconductor substrate, the ability to accurately analyze the shallow region near the surface is required. Here, the secondary ion mass spectrometry is a method in which a sample surface is sputtered with primary ions, and among the sputtered particles that have jumped out of the sample surface into a vacuum, ionized particles, that is, secondary ions are separated by a mass spectrometer. It is something to detect. However, the secondary ion generation process is not simple, and the ionization efficiency of secondary ions is likely to change, especially on the outermost surface of the sample, because the interaction with primary ions and adsorbed molecules is complicated. . Therefore, the secondary ion yield is greatly disturbed in the vicinity of the sample surface immediately after the start of analysis, and there is a problem that quantitative analysis cannot be performed.
【0003】それに対する改善手法として従来検討され
てきたものに、試料表面を別の物質で被覆する方法があ
る。たとえば図4に示すように、分析検体であるSi基
板1の表面に予め化学気相堆積法でSiNx堆積層4を
形成しておくと、一次イオンと吸着分子と試料原子との
相互作用による二次イオン生成効率の初期的な不安定さ
は、このSiNx層4の表面で治まる。そこで、目的と
するBイオン注入領域2の分析を行うときには、二次イ
オンのイオン化率が比較的安定した状態で分析すること
ができる。[0003] As a method for improving it, there has been conventionally studied a method of coating the sample surface with another substance. For example, as shown in FIG. 4, when the SiN x deposition layer 4 is formed in advance by the chemical vapor deposition method on the surface of the Si substrate 1 which is the analysis sample, the interaction between primary ions, adsorbed molecules and sample atoms causes The initial instability of the secondary ion generation efficiency is subsided on the surface of the SiN x layer 4. Therefore, when the target B ion implantation region 2 is analyzed, the ionization rate of the secondary ions can be analyzed in a relatively stable state.
【0004】[0004]
【発明が解決しようとする課題】このように、分析試料
の表面に被覆層を形成すること自体は、二次イオン生成
効率の安定化法として、分析値の定量性向上に効果のあ
る方法ではある。しかし、製造プロセスが簡便であるた
め多用されている従来の化学気相堆積法による被覆で
は、次のような問題があるため、本来の効果が満足に得
られないという欠点があった。 堆積しやすい物質は、SiO2,SiNx等の電気抵抗
率の高いものが主で、一次イオンの電荷によってチャー
ジ・アップがおこり、測定系が乱れる。 化学気相堆積法はドライ・プロセスであり、成膜前に
被分析基板の表面に自然酸化膜が残留する。そのため実
際の分析時には、酸化膜の酸素増感作用によって二次イ
オンのイオン化率が変動する。 成膜時に分析基板の温度を上げなければならないた
め、不純物の熱拡散が生じ、正確な深さ分布が得られな
くなってしまう。As described above, forming the coating layer on the surface of the analytical sample itself is not a method effective for improving the quantitativeness of the analytical value as a method for stabilizing the secondary ion generation efficiency. is there. However, the conventional chemical vapor deposition method, which is widely used because of its simple manufacturing process, has the following problems, so that the original effect cannot be sufficiently obtained. The substances that are easily deposited are mainly those having a high electric resistivity such as SiO 2 and SiN x , and charge up occurs due to the charge of primary ions, which disturbs the measurement system. The chemical vapor deposition method is a dry process, and a natural oxide film remains on the surface of the substrate to be analyzed before film formation. Therefore, during actual analysis, the ionization rate of secondary ions fluctuates due to the oxygen sensitizing action of the oxide film. Since it is necessary to raise the temperature of the analysis substrate during film formation, thermal diffusion of impurities occurs, and accurate depth distribution cannot be obtained.
【0005】そこで本発明の目的は、上述のような欠点
のない、より効果的な表面被覆層を形成させることによ
って、半導体基板表面近傍における浅い不純物分布の正
確な分析をすることのできる二次イオン質量分析法を提
供することにある。Therefore, an object of the present invention is to form a more effective surface coating layer which does not have the above-mentioned drawbacks, thereby making it possible to accurately analyze the shallow impurity distribution in the vicinity of the semiconductor substrate surface. It is to provide an ion mass spectrometry.
【0006】[0006]
【課題を解決するための手段】本発明は、半導体基板表
面近傍に含まれる不純物の深さ分布を測定する二次イオ
ン質量分析法において、試料の前処理として、分析しよ
うとする半導体基板表面の酸化膜層を湿式化学エッチン
グにより除去し、次いでめっき液に投入して、金属薄膜
による表面被覆層を形成させることを特徴とする二次イ
オン質量分析法である。ここで、表面被覆層の形成は電
解めっき法により行うことが好ましく、めっき液は非シ
アン系であることが好ましい。SUMMARY OF THE INVENTION The present invention is a secondary ion mass spectrometry method for measuring the depth distribution of impurities contained in the vicinity of the surface of a semiconductor substrate. The secondary ion mass spectrometry method is characterized in that the oxide film layer is removed by wet chemical etching, and then the plating film is put into a plating solution to form a surface coating layer of a metal thin film. Here, the surface coating layer is preferably formed by an electrolytic plating method, and the plating solution is preferably a non-cyan system.
【0007】[0007]
【作用】本発明では、半導体ウエハの自然酸化膜をウェ
ット・エッチングによって除去し、次に水洗後空気に触
れさせることなくめっき液に投入して、金属薄膜の表面
保護層を形成させる。このため二次イオン質量分析にお
いて最表面でのイオン化効率の変動現象や、自然酸化膜
による酸素増感作用の影響を受けることがない。従っ
て、低エネルギーのイオン注入によって、浅いドーピン
グ層を形成させた半導体試料のような場合であっても、
最表面から不純物ドーピング・プロファイルを高精度に
分析することが可能である。ここで、表面保護層の形成
方法として、本発明ではウェット・エッチング法とめっ
き法を組み合わせて用いているので、すべて室温で連続
にプロセスされる。そのため、従来の化学気相堆積法に
よる保護膜と異なり、ウエハ表面の保護膜との界面部分
でも、自然酸化膜残りによる影響を防ぐことができる。
そしてさらに、化学気相堆積時の加熱や、自然酸化膜ガ
ス・エッチングの加熱を受けないので、不純物の熱拡散
による深さプロファイルのティリングを発生させること
もない。According to the present invention, the natural oxide film on the semiconductor wafer is removed by wet etching, and then it is rinsed with water and then poured into the plating solution without being exposed to air to form a surface protective layer of the metal thin film. Therefore, the secondary ion mass spectrometry is not affected by the fluctuation phenomenon of the ionization efficiency at the outermost surface or the oxygen sensitizing action of the natural oxide film. Therefore, even in the case of a semiconductor sample in which a shallow doping layer is formed by low energy ion implantation,
It is possible to analyze the impurity doping profile from the outermost surface with high accuracy. Here, since the wet etching method and the plating method are used in combination in the present invention as the method for forming the surface protective layer, all of them are continuously processed at room temperature. Therefore, unlike the conventional protective film formed by the chemical vapor deposition method, the influence of the natural oxide film remaining can be prevented even at the interface between the wafer surface and the protective film.
Furthermore, since the heating during the chemical vapor deposition and the heating by the natural oxide film gas / etching are not performed, the tilling of the depth profile due to the thermal diffusion of impurities is not generated.
【0008】[0008]
【実施例】次に本発明の実施例について、図面を参照し
て説明する。図1は、本発明による方法の一実施例を説
明するための半導体結晶分析試料の断面図である。Si
基板1の表面には、P型導電層を形成するためにアクセ
プターとなる不純物Bがイオン注入されている。このB
イオン注入領域2の深さ方向分布を正確に知るために、
分析に先立ち、前処理としてSi基板1の最表面にAu
めっき層3を形成する。このときの試料作製流れ図を図
2に示す。Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a cross-sectional view of a semiconductor crystal analysis sample for explaining an embodiment of the method according to the present invention. Si
An impurity B serving as an acceptor for forming a P-type conductive layer is ion-implanted into the surface of the substrate 1. This B
In order to know the depth distribution of the ion implantation region 2 accurately,
Prior to analysis, Au was applied to the outermost surface of the Si substrate 1 as a pretreatment.
The plating layer 3 is formed. A sample preparation flow chart at this time is shown in FIG.
【0009】まずSi基板1に外部汚染防止のための表
面酸化膜が形成された試料にイオン注入21を行う。た
とえば、表面近傍の浅い領域をP型半導体とする場合に
は、BF2 +分子イオンをイオン注入する。次に、HFを
用いた湿式の化学エッチング22によって表面酸化膜を
除去する。このあと水洗23を行うが、あまり長時間純
水中にさらすと、自然酸化膜が形成されるので、必要な
最短時間とする。そのあと、基板がぬれた状態で空気に
触れないようにして、Auめっき液に投入し、Auめっ
き24を行う。ここで、めっき液は、万一酸が残ってい
た場合でも、有害なシアン化水素を発生させないため
に、非シアン系が望ましい。そして、イオン注入によっ
て基板表面の電気抵抗率が下がっているので、電解めっ
きにすることで、確実に表面にAu層を形成させること
ができる。その後、水洗25および乾燥26を行うこと
により、試料の前処理は終了する。図3はこのようにし
て作製した試料の、二次イオン質量分析器による深さ分
布分析例を示したものである。試料最表面でAuめっき
層がスパッタリングされた後、Si基板1表面のBイオ
ン注入領域2の部分について、イオン注入による正規分
布型の正確な深さ分布データが得られている。First, ion implantation 21 is performed on a sample in which a surface oxide film for preventing external contamination is formed on the Si substrate 1. For example, when a shallow region near the surface is used as a P-type semiconductor, BF 2 + molecular ions are ion-implanted. Next, the surface oxide film is removed by wet chemical etching 22 using HF. After that, washing with water 23 is performed, but if it is exposed to pure water for a long time, a natural oxide film is formed. After that, while the substrate is wet, the substrate is not exposed to air and is poured into an Au plating solution to perform Au plating 24. Here, the plating solution is preferably a non-cyan type, because it does not generate harmful hydrogen cyanide even if acid remains. Then, since the electrical resistivity of the substrate surface is lowered by the ion implantation, electrolytic plating can surely form the Au layer on the surface. Thereafter, the sample is pretreated by washing with water 25 and drying 26. FIG. 3 shows an example of the depth distribution analysis of the sample thus produced by a secondary ion mass spectrometer. After the Au plating layer is sputtered on the outermost surface of the sample, the normal distribution type accurate depth distribution data by ion implantation is obtained for the portion of the B ion implantation region 2 on the surface of the Si substrate 1.
【0010】次に、従来の表面被覆法による分析データ
について比較してみる。図4は、前述したように、Si
基板1にBイオン注入を行ってBイオン注入領域2を形
成した後、製作が容易なSiNx堆積層4を形成させた
試料断面図である。この場合、Si堆積層4は一般に化
学気相堆積法で作られ、その時、Si基板1は、空気に
さらされ、加熱されるので、その表面は酸化される。そ
の結果、Si基板1とSiNx堆積層4との界面には、
自然酸化膜層5が残留する。こうした従来法による試料
を、二次イオン質量分析器で分析したものが図5であ
る。これによると、SiNx堆積層4が絶縁物である
ことによる表面チャージ・アップによる感度のずれ6、
自然酸化膜層5での酸素増感作用(酸素による二次イ
オンのイオン化効率上昇)によるピーク7、SiNx
堆積層4形成時の、加熱による不純物Bの拡散8、がみ
られるため、正確な深さ分布分析ができていないことが
わかる。Next, a comparison will be made of analytical data obtained by the conventional surface coating method. As described above, FIG.
FIG. 4 is a cross-sectional view of a sample in which a SiN x deposition layer 4 that is easy to manufacture is formed after performing B ion implantation on the substrate 1 to form the B ion implantation region 2. In this case, the Si deposition layer 4 is generally produced by a chemical vapor deposition method, at which time the Si substrate 1 is exposed to air and heated, so that its surface is oxidized. As a result, at the interface between the Si substrate 1 and the SiN x deposition layer 4,
The natural oxide film layer 5 remains. FIG. 5 shows a sample obtained by such a conventional method analyzed by a secondary ion mass spectrometer. According to this, since the SiN x deposition layer 4 is an insulator, the sensitivity shift due to surface charge-up 6,
Peak 7 due to oxygen sensitizing action (increasing ionization efficiency of secondary ions by oxygen) in the native oxide film layer 5, SiN x
Since the diffusion 8 of the impurity B due to heating during the formation of the deposited layer 4 is observed, it can be seen that an accurate depth distribution analysis cannot be performed.
【0011】以上はSi基板を例にして説明してきた
が、これはGaAs,InP,ZnSなどのIII−V族
あるいはII−VI族化合物半導体でも上記と同様に適用す
ることができる。Although the Si substrate has been described above as an example, this can also be applied to III-V group or II-VI group compound semiconductors such as GaAs, InP, and ZnS in the same manner as above.
【0012】[0012]
【発明の効果】以上説明したように、本発明によれば試
料表面を酸化したり加熱したりすることなく、導電性の
金属被覆層を形成できるので、半導体試料表面近傍の浅
い領域における不純物深さ分布を正確に分析できるとい
う利点を有している。このことは、浅い領域での電気的
特性が重要視される高速・高集積度の半導体デバイス用
半導体結晶基板を二次イオン質量分析法で分析評価する
場合に、極めて有効である。As described above, according to the present invention, since the conductive metal coating layer can be formed without oxidizing or heating the sample surface, the impurity depth in the shallow region near the semiconductor sample surface can be formed. This has the advantage that the size distribution can be analyzed accurately. This is extremely effective when a semiconductor crystal substrate for a high-speed and highly integrated semiconductor device in which electrical characteristics in a shallow region are important is analyzed and evaluated by secondary ion mass spectrometry.
【図1】本発明の方法によって得られた分析試料の一例
の断面図である。FIG. 1 is a cross-sectional view of an example of an analytical sample obtained by the method of the present invention.
【図2】本発明の方法の一実施例の試料作製法を示す流
れ図である。FIG. 2 is a flow chart showing a sample preparation method of one embodiment of the method of the present invention.
【図3】本発明の方法によって得られた試料の深さ分布
分析結果を示す図である。FIG. 3 is a diagram showing the results of depth distribution analysis of a sample obtained by the method of the present invention.
【図4】従来例によって得られた分析試料の一例の断面
図である。FIG. 4 is a cross-sectional view of an example of an analytical sample obtained by a conventional example.
【図5】従来例によって得られた試料の深さ分布分析結
果を示す図である。FIG. 5 is a diagram showing a result of depth distribution analysis of a sample obtained by a conventional example.
1 Si基板 2 Bイオン注入領域 3 Auめっき層 4 SiNx堆積層 5 自然酸化膜層 6 表面チャージ・アップによる感度ずれ 7 酸素増感作用によるピーク 8 加熱による不純物Bの拡散1 Si substrate 2 B ion implantation region 3 Au plated layer 4 SiN x deposited layer 5 Natural oxide film layer 6 Sensitivity deviation due to surface charge up 7 Peak due to oxygen sensitization action 8 Diffusion of impurity B by heating
Claims (3)
深さ分布を測定する二次イオン質量分析法において、試
料の前処理として、分析しようとする半導体基板表面の
酸化膜層を湿式化学エッチングにより除去し、次いでめ
っき液に投入して、金属薄膜による表面被覆層を形成さ
せることを特徴とする二次イオン質量分析法。1. In a secondary ion mass spectrometry method for measuring the depth distribution of impurities contained in the vicinity of the surface of a semiconductor substrate, the oxide film layer on the surface of the semiconductor substrate to be analyzed is subjected to wet chemical etching as a sample pretreatment. A secondary ion mass spectrometric method characterized in that the surface coating layer is formed by removing the metal film and then adding it to a plating solution to form a surface coating layer with a metal thin film.
行う請求項1記載の二次イオン質量分析法。2. The secondary ion mass spectrometric method according to claim 1, wherein the surface coating layer is formed by an electrolytic plating method.
たは2記載の二次イオン質量分析法。3. The secondary ion mass spectrometry method according to claim 1, wherein the plating solution is a non-cyan type.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6254425A JPH0896740A (en) | 1994-09-22 | 1994-09-22 | Secondary ion mass spectrometry method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6254425A JPH0896740A (en) | 1994-09-22 | 1994-09-22 | Secondary ion mass spectrometry method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0896740A true JPH0896740A (en) | 1996-04-12 |
Family
ID=17264808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6254425A Pending JPH0896740A (en) | 1994-09-22 | 1994-09-22 | Secondary ion mass spectrometry method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0896740A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008232677A (en) * | 2007-03-16 | 2008-10-02 | Fujitsu Ltd | Depth direction analysis method of element |
JP2013152169A (en) * | 2012-01-25 | 2013-08-08 | Fujitsu Ltd | Secondary ion mass analysis method and secondary ion mass analysis apparatus |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63295953A (en) * | 1987-05-28 | 1988-12-02 | Sumitomo Electric Ind Ltd | Pretreatment for microanalysis |
-
1994
- 1994-09-22 JP JP6254425A patent/JPH0896740A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63295953A (en) * | 1987-05-28 | 1988-12-02 | Sumitomo Electric Ind Ltd | Pretreatment for microanalysis |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008232677A (en) * | 2007-03-16 | 2008-10-02 | Fujitsu Ltd | Depth direction analysis method of element |
JP2013152169A (en) * | 2012-01-25 | 2013-08-08 | Fujitsu Ltd | Secondary ion mass analysis method and secondary ion mass analysis apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6753194B2 (en) | Surface contamination analyzer for semiconductor wafers, method used therein and process for fabricating semiconductor device | |
JP3044881B2 (en) | Method for analyzing metal impurities in surface oxide film of semiconductor substrate | |
US5652151A (en) | Method for determining an impurity concentration profile | |
CN109632925B (en) | SIMS (simple in-situ chemical vapor deposition) optimization detection method for concentration and distribution of trace impurity elements in AlN (aluminum nitride) | |
US8030187B2 (en) | Method for manufacturing semiconductor device | |
JPH0896740A (en) | Secondary ion mass spectrometry method | |
JPH10223713A (en) | Heat treatment evaluating wafer and heat treatment evaluating method using the same | |
US20160079130A1 (en) | Method for evaluating a semiconductor wafer | |
JPH08102481A (en) | Estimation method of mis semiconductor device | |
Hu et al. | Electron cyclotron resonance plasma process for InP passivation | |
US8419892B2 (en) | Plasma process detecting sensor | |
Inoue et al. | Micro-probe Auger analysis of Si migration in Al metallization for LSI | |
JP4083878B2 (en) | Impurity measurement method | |
JPH1123498A (en) | Secondary ion mass spectrometry | |
US6642518B1 (en) | Assembly and method for improved scanning electron microscope analysis of semiconductor devices | |
Felch et al. | A comparison of three techniques for profiling ultrashallow p+-n junctions | |
JP2001141676A (en) | Quantitative analysis method in secondary ion mass spectrometry | |
JP3166152B2 (en) | Impurity measurement method | |
JP2753379B2 (en) | Method for manufacturing semiconductor device | |
JP2605630B2 (en) | Secondary ion mass spectrometry | |
JP2000206063A (en) | Method for analyzing impurity concentration of interface | |
JP2006269956A (en) | Crystalline silicon substrate, its manufacturing method and photoelectric conversion element employing it | |
Sinha et al. | Avalanche‐Induced Hot Electron Injection and Trapping in Gate Oxides on p‐Si | |
Chu et al. | Determination of Sub‐Parts per Billion Boron Contamination in N+ Czochralski Silicon Substrates by SIMS | |
Anderle et al. | Applications of secondary neutral mass spectrometry (SNMS) in VLSI technology |