JPH0982587A - Preparation of nonsquare electronic chip - Google Patents

Preparation of nonsquare electronic chip

Info

Publication number
JPH0982587A
JPH0982587A JP25674995A JP25674995A JPH0982587A JP H0982587 A JPH0982587 A JP H0982587A JP 25674995 A JP25674995 A JP 25674995A JP 25674995 A JP25674995 A JP 25674995A JP H0982587 A JPH0982587 A JP H0982587A
Authority
JP
Japan
Prior art keywords
wafer
electronic chip
electronic
cutting
chips
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP25674995A
Other languages
Japanese (ja)
Inventor
Kazu Kaneko
和 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HP Inc
Original Assignee
Hewlett Packard Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Co filed Critical Hewlett Packard Co
Priority to JP25674995A priority Critical patent/JPH0982587A/en
Publication of JPH0982587A publication Critical patent/JPH0982587A/en
Ceased legal-status Critical Current

Links

Landscapes

  • Dicing (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the increase of chipping, cracking, or internal strains by cutting off electronic chips from a wafer having a hexagonal or trigonal substrate so that the side faces of the chips can be formed of the a-plane of the wafer. SOLUTION: On a wafer 30, a GaInN/AlGaN blue light emitting diode (purple color and green color LED) is formed on each sapphire substrate through the conventional process. The LEDs are respectively formed in numerous triangular areas 34 demarcated by numbers cutting lines 31, 32, and 33 drawn along the a-plane of the substrates and numerous triangle pole-like LED chips 35 having triangular areas 34 are obtained by cutting the wafer 30 along the cutting lines. The diameter of the electronic chip, in addition, is adjusted to about 5mm or smaller. Therefore, the occurrence of chipping, cracking, or internal strains can be reduced when the chips are cut off.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、六方晶電子チップある
いは三方晶電子チップの製造方法に関し、詳しくは電子
装置を集積したウェーハの切断、分離あるいはペレッタ
イズの方法および該方法を用いて切り出した非方形電子
チップと非方形電子チップを使った電子部品に関する。
なお、本発明は六方晶電子チップあるいは三方晶電子チ
ップの双方に適用できる。以下において、説明の便宜上
一方についてのみ説明をした場合でも、特にことわらな
い限りその説明は六方晶電子チップと三方晶電子チップ
の双方に適用しうるもである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hexagonal electronic chip or a trigonal electronic chip, and more particularly to a method for cutting, separating or pelletizing a wafer on which electronic devices are integrated and a non-cutting method using the method. The present invention relates to an electronic component using a square electronic chip and a non-square electronic chip.
The present invention can be applied to both hexagonal electronic chips and trigonal electronic chips. In the following, even if only one is described for convenience of description, the description can be applied to both the hexagonal electronic chip and the trigonal electronic chip unless otherwise specified.

【0002】[0002]

【技術背景】図1に示すように、多くの半導体装置、電
気光学装置あるいは微小光学装置等(以下総称して電子
装置1という)はウェーハ工程において適切な基板2上
にその多数が一括形成される。つぎに、これら電子装置
1は処理済みのウェーハ3を適切な方法で切断すること
により、分離された電子チップ10としてとりだされて
組み立て工程に移され部品として完成する。この切断、
分離工程あるいはペレッタイズ工程(以下切り出し工
程)には図1のCに示すダイシングの外にスクライビン
グやへき開、裂開などが含まれる。この場合、ウェーハ
3はキャリア4に取り付けられた粘着テープ5に張りつ
けられて固定されたのち、ブレード6によって切断され
る。
BACKGROUND OF THE INVENTION As shown in FIG. 1, many semiconductor devices, electro-optical devices, micro-optical devices, etc. (hereinafter collectively referred to as electronic devices 1) are collectively formed on a suitable substrate 2 in a wafer process. It Next, these electronic devices 1 are taken out as separated electronic chips 10 by cutting the processed wafer 3 by an appropriate method, transferred to an assembly process, and completed as parts. This disconnection,
The separating step or pelletizing step (hereinafter referred to as cutting step) includes scribing, cleavage, cleavage, etc. in addition to the dicing shown in C of FIG. In this case, the wafer 3 is attached and fixed to the adhesive tape 5 attached to the carrier 4, and then cut by the blade 6.

【0003】この分離工程では、切断面が一様で在るこ
とが望ましい。不測の欠けや亀裂が生じると半導体装置
の歩留まりの低下や動作不良などの信頼性の低下が結果
する。このような望ましくない結果を避けるためウェー
ハ上で半導体装置の周辺に余裕を多くとれば、ウェーハ
当たりの半導体装置の数が減少し、それを用いた部品の
価格は高騰する。
In this separation step, it is desirable that the cut surface be uniform. If an unexpected chip or crack occurs, the yield of the semiconductor device may decrease, or the reliability such as malfunction may decrease. If a large margin is provided around the semiconductor device on the wafer in order to avoid such an undesired result, the number of semiconductor devices per wafer is reduced, and the price of parts using the same is increased.

【0004】従来、切り出された電子チップは方形、即
ち矩形や長方形の外形を有していた。ところが、近年種
々の基板が種々の電子素装置の集積に用いられてきた。
たとえば、日本国特許願平成7年第23452号の明細
書に記載のInGaN,GaN,AlGaN,BGaN,BAlN,BGaInN等のIII-
N系半導体で構成したレーザやLED(発光ダイオード)を
SiC(シリコンカーバイド)基板やAl2O3(サファイア)基
板ZnS基板等に集積することが考えられてきた。
Conventionally, the cut-out electronic chip has a rectangular or rectangular or rectangular outer shape. However, in recent years, various substrates have been used for integration of various electronic devices.
For example, III- such as InGaN, GaN, AlGaN, BGaN, BAlN, BGaInN described in the specification of Japanese Patent Application No. 23452, 1995-
Lasers and LEDs (light emitting diodes) composed of N-based semiconductors
It has been considered to integrate it on a SiC (silicon carbide) substrate or an Al2O3 (sapphire) substrate ZnS substrate.

【0005】これらの基板は図2のCに結晶構造を示す
六方晶系や図2のA,Bに示すサファイア等の三方晶系の
結晶である。そして上記レーザ、LED等の電子装置はこ
れらの基板のc面上に集積される。そのため、矩形や長
方形の電子チップを切り出そうとすると、電子チップの
側面のうち一方の対をなす2側面は基板のa面に沿った
もの(即ち、a面に平行な面)にできるがもう一方の対
をなす2側面はa面に沿ったものとはならずa面と交差す
る。そのため、a面と交差する側面は一様でなく、上記
の不測の欠けや亀裂が生じやすい。その範囲は典型的に
は数10から数100μmである。
These substrates are hexagonal crystals whose crystal structure is shown in FIG. 2C or trigonal crystals such as sapphire shown in FIGS. 2A and 2B. The electronic devices such as laser and LED are integrated on the c-plane of these substrates. Therefore, when a rectangular or rectangular electronic chip is to be cut out, two paired side surfaces of the side surfaces of the electronic chip can be along the a-plane of the substrate (that is, parallel to the a-plane). The other pair of two sides does not extend along the a-plane and intersects the a-plane. Therefore, the side surface intersecting the a-plane is not uniform, and the above-mentioned unexpected chip or crack is likely to occur. The range is typically several tens to several hundreds μm.

【0006】[0006]

【発明の概要】本発明では、六方晶系あるいは三方晶系
基板を備えたウェーハから切り出された電子チップの側
面を、a面に沿ったものとすることにより、上記電子チ
ップの切り出しに伴う欠けや亀裂、内部歪みの増大を低
減する。すべての側面をa面に沿ったものとするので、
チップの外形は方形とはならない、即ち非方形である。
SUMMARY OF THE INVENTION In the present invention, the side surface of an electronic chip cut out from a wafer provided with a hexagonal or trigonal substrate is made to be along the a-plane, so that the chip due to the cutting of the electronic chip Reduces cracks and internal strain. Since all sides are along the a-plane,
The outer shape of the chip is not square, that is, non-square.

【0007】[0007]

【発明の実施例】図3においてウェーハ30はサファイ
ア基板上にGaInN/AlGaN青色LED(紫色~緑色発光)を従
来のプロセスで作成したものである。各LEDは、基板のa
面に沿う多数の切り出し線31、32、33によって区
画された多数の三角形状領域34のそれぞれに形成され
た(図3のA)。ウェーハ30をそれら切り出し線に沿
って切断し三角形状領域34を備えた三角柱状のLEDチ
ップ35(拡大して表示してある)が多数得られる(図
3のB)。三角形状領域34には六角柱を成すLED素子
36が形成され、チップの頂点近傍のn型領域には電極
37が設けられている。素子領域36の頂上のp型領域
にも電極38が設けられ、電極領域37、38からLED
に駆動電流を供給する。基板方向に発光した光が放射さ
れる。六角柱を成すLED素子36の外形もa面に沿ったも
のとできる。
BEST MODE FOR CARRYING OUT THE INVENTION In FIG. 3, a wafer 30 is made by forming a GaInN / AlGaN blue LED (purple to green emission) on a sapphire substrate by a conventional process. Each LED is a on the board
It was formed in each of a large number of triangular regions 34 defined by a large number of cut lines 31, 32, 33 along the surface (A in FIG. 3). The wafer 30 is cut along the cutting lines to obtain a large number of triangular prism-shaped LED chips 35 (enlarged and displayed) having triangular regions 34 (B in FIG. 3). A hexagonal prism-shaped LED element 36 is formed in the triangular region 34, and an electrode 37 is provided in the n-type region near the apex of the chip. An electrode 38 is also provided in the p-type region on the top of the device region 36, and the LED regions 37, 38 are connected to the LED.
Drive current is supplied to. Light emitted toward the substrate is emitted. The outer shape of the LED element 36 forming a hexagonal column can also be along the a-plane.

【0008】図4においてウェーハ40はウェーハ30
と同様にサファイア基板上にGaInN/AlGaN青色LED(紫色
~緑色発光)を従来のプロセスで作成したものである。
各LEDは、基板のa面に沿う多数の切り出し線41、4
2、43によって区画された多数の六角形状領域44の
それぞれに形成された。ウェーハ40をそれら切り出し
線に沿って切断し六角形状領域44を備えた六角柱状の
LEDチップ45が多数得られる。
In FIG. 4, the wafer 40 is the wafer 30.
GaInN / AlGaN blue LED (purple) on sapphire substrate
~ Green emission) is created by a conventional process.
Each LED has a large number of cutting lines 41, 4 along the a-plane of the substrate.
It was formed in each of a large number of hexagonal regions 44 divided by 2, 43. The wafer 40 is cut along these cutting lines to form a hexagonal column shape having a hexagonal region 44.
A large number of LED chips 45 can be obtained.

【0009】図5においてウェーハ50はサファイア基
板上にGaInN/AlInNストライプ型レーザを従来のプロセ
スで作成したものである(前掲日本国特許願平成7年第
23452号の明細書参照)。各レーザは、基板のa面
に沿う多数の切り出し線51とa面に沿う多数のへき開
線52によって区画された多数の菱形状領域54のそれ
ぞれに形成される。一つの菱形状領域54内でレーザの
共振器を構成する部分53は、相対するへき開線52を
橋絡するように設けられ、それらへき開線に垂直に交わ
りつつ隣接する菱形状領域54へ少しはみ出している。
In FIG. 5, a wafer 50 is produced by forming a GaInN / AlInN stripe laser on a sapphire substrate by a conventional process (see the specification of Japanese Patent Application No. 23452, 1995 mentioned above). Each laser is formed in each of a large number of diamond-shaped regions 54 defined by a large number of cut lines 51 along the a-plane of the substrate and a large number of cleavage lines 52 along the a-plane. A portion 53 constituting a laser cavity in one rhombus region 54 is provided so as to bridge the opposing cleavage lines 52, and slightly protrudes to an adjacent rhombus region 54 while intersecting perpendicularly to the cleavage lines 52. ing.

【0010】切り出し工程ではまずへき開線52に沿っ
てウェーハ50をへき開し、多数の細長い短冊55を切
り出す。ついで切り出し線51に沿って短冊55を切断
しレーザチップ56を得る。へき開で得られたチップの
側面はレーザ共振器の鏡面となり、レーザ光を出力す
る。切り出す工程の順を逆にしてへき開線52に沿った
へき開を後にすることもできるが、上記の順がより好ま
しい。
In the cutting step, first, the wafer 50 is cleaved along the cleavage line 52, and a large number of elongated strips 55 are cut out. Then, the strip 55 is cut along the cut line 51 to obtain a laser chip 56. The side surface of the chip obtained by cleavage becomes the mirror surface of the laser resonator and outputs laser light. The order of the steps of cutting out may be reversed and the cleavage along the cleavage line 52 may be performed later, but the above order is more preferable.

【0011】以上の説明は、説明の便宜上物理的寸法や
領域の数が実際とは異なるが、当業者が本発明を理解す
るための障害とはならないと考えられる。また、本発明
はLEDやレーザへの使用に限定されず、結晶基板に集積
されるその他の電気素子、微小光学素子、微小機械素子
等にも有効に使用できる。
Although the above description is different from the actual one in terms of physical dimensions and the number of regions for the sake of convenience of explanation, it is not considered to be an obstacle for those skilled in the art to understand the present invention. Further, the present invention is not limited to use for LEDs and lasers, but can be effectively used for other electric elements, micro-optical elements, micro-mechanical elements, etc. integrated on a crystal substrate.

【0012】[0012]

【発明の効果】本発明の実施によりチップの切り出しに
伴う欠けや亀裂、内部歪みが低減され、電子部品等の性
能と信頼性が向上する。また、切り出しのための余裕を
少なくできるので、ウェーハ当たりのチップ数を多くで
きるので、電子部品等のコストの低減がなされる。特
に、直径5mm以下のチップを切り出す場合には効果が顕
著である。
By implementing the present invention, chipping, cracking, and internal strain that accompany cutting of chips are reduced, and the performance and reliability of electronic components and the like are improved. Further, since the margin for cutting out can be reduced and the number of chips per wafer can be increased, the cost of electronic components and the like can be reduced. In particular, the effect is remarkable when a chip having a diameter of 5 mm or less is cut out.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来技術によるウェーハの平面図(A)と正面
図(B)とを含むウェーハ切り出し工程を説明するため
の図である。
FIG. 1 is a diagram for explaining a wafer cutting step including a plan view (A) and a front view (B) of a wafer according to a conventional technique.

【図2】六方晶系(C)やサファイア等の三方晶系(A,
B)の結晶構造を示す説明図である。
FIG. 2 is a hexagonal system (C) or a trigonal system (A,
It is explanatory drawing which shows the crystal structure of B).

【図3】三角柱LEDチップを切り出す本発明の第一の実
施例を説明するための図である。
FIG. 3 is a diagram for explaining a first embodiment of the present invention for cutting out a triangular prism LED chip.

【図4】六角柱LEDチップを切り出す本発明の第ニの実
施例を説明するための図である。
FIG. 4 is a diagram for explaining a second embodiment of the present invention for cutting out a hexagonal prism LED chip.

【図5】菱形柱レーザチップを切り出す本発明の第三の
実施例を説明するための図である。
FIG. 5 is a diagram for explaining a third embodiment of the present invention for cutting out a rhomboid laser chip.

【符号の説明】[Explanation of symbols]

30、40、50 ウェーハ 31、32、33、41、42、43、51 切り出し
線 37、38 電極 52 へき開線 35、45 LEDチップ 55 短冊 56 レーザチップ
30, 40, 50 Wafers 31, 32, 33, 41, 42, 43, 51 Cutting lines 37, 38 Electrodes 52 Cleaving lines 35, 45 LED chips 55 Strips 56 Laser chips

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 六方晶あるいは三方晶結晶基板上に一つ
あるいは複数の電子装置を集積してなるウェーハを用意
し、該ウェーハを前記結晶基板のa面に沿って切断する
ことにより少なくとも一つの前記電子装置と該電子装置
を搭載する前記結晶基板とからなる電子チップを得るこ
とを含む非方形電子チップの製造方法。
1. A wafer prepared by integrating one or a plurality of electronic devices on a hexagonal or trigonal crystal substrate is prepared, and at least one wafer is cut by cutting the wafer along the a-plane of the crystal substrate. A method for manufacturing a non-rectangular electronic chip, which comprises obtaining an electronic chip comprising the electronic device and the crystal substrate on which the electronic device is mounted.
【請求項2】 前記電子チップの直径が約5mm以下で
あることを特徴とする請求項1に記載の非方形電子チッ
プの製造方法。
2. The method of manufacturing a non-rectangular electronic chip according to claim 1, wherein the electronic chip has a diameter of about 5 mm or less.
【請求項3】 前記電子チップの外形が3角形か6角形
か菱形かのいずれかである請求項1に記載の非方形電子
チップの製造方法。
3. The method for manufacturing a non-rectangular electronic chip according to claim 1, wherein the outer shape of the electronic chip is a triangle, a hexagon, or a rhombus.
【請求項4】 前記電子チップが紫色~緑色発光のIII-N
系発光ダイオードである請求項3に記載の非方形六方晶
電子チップの製造方法。
4. The III-N device wherein the electronic chip emits purple to green light.
The method for manufacturing a non-rectangular hexagonal electronic chip according to claim 3, which is a light emitting diode.
JP25674995A 1995-09-08 1995-09-08 Preparation of nonsquare electronic chip Ceased JPH0982587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25674995A JPH0982587A (en) 1995-09-08 1995-09-08 Preparation of nonsquare electronic chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25674995A JPH0982587A (en) 1995-09-08 1995-09-08 Preparation of nonsquare electronic chip

Publications (1)

Publication Number Publication Date
JPH0982587A true JPH0982587A (en) 1997-03-28

Family

ID=17296917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25674995A Ceased JPH0982587A (en) 1995-09-08 1995-09-08 Preparation of nonsquare electronic chip

Country Status (1)

Country Link
JP (1) JPH0982587A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635503B2 (en) 2002-01-28 2003-10-21 Cree, Inc. Cluster packaging of light emitting diodes
US6740906B2 (en) 2001-07-23 2004-05-25 Cree, Inc. Light emitting diodes including modifications for submount bonding
US6791119B2 (en) 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
US6794684B2 (en) 2001-02-01 2004-09-21 Cree, Inc. Reflective ohmic contacts for silicon carbide including a layer consisting essentially of nickel, methods of fabricating same, and light emitting devices including the same
WO2006038713A1 (en) * 2004-10-07 2006-04-13 Showa Denko K.K. Production method for semiconductor device
KR100628628B1 (en) * 1998-05-28 2006-09-27 스미토모덴키고교가부시키가이샤 Gallium nitride based semiconductor device
US7211833B2 (en) 2001-07-23 2007-05-01 Cree, Inc. Light emitting diodes including barrier layers/sublayers
JP2007201305A (en) * 2006-01-30 2007-08-09 Sony Corp Semiconductor laser device, semiconductor laser chip, and method for manufacturing semiconductor laser device
JP2008130628A (en) * 2006-11-17 2008-06-05 Hitachi Displays Ltd Liquid-crystal display device
JP2010040697A (en) * 2008-08-04 2010-02-18 Sumitomo Electric Ind Ltd Semiconductor device and manufacturing method thereof
JP2013535109A (en) * 2010-06-18 2013-09-09 ソラア インコーポレーテッド Gallium and nitrogen containing triangle or rhombus configuration for optical devices
WO2014108777A1 (en) * 2013-01-08 2014-07-17 Koninklijke Philips N.V. Shaped led for enhanced light extraction efficiency
US8901699B2 (en) 2005-05-11 2014-12-02 Cree, Inc. Silicon carbide junction barrier Schottky diodes with suppressed minority carrier injection
US8905588B2 (en) 2010-02-03 2014-12-09 Sorra, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US8912025B2 (en) 2011-11-23 2014-12-16 Soraa, Inc. Method for manufacture of bright GaN LEDs using a selective removal process
US8946865B2 (en) 2011-01-24 2015-02-03 Soraa, Inc. Gallium—nitride-on-handle substrate materials and devices and method of manufacture
US8994033B2 (en) 2013-07-09 2015-03-31 Soraa, Inc. Contacts for an n-type gallium and nitrogen substrate for optical devices
US9076926B2 (en) 2011-08-22 2015-07-07 Soraa, Inc. Gallium and nitrogen containing trilateral configuration for optical devices
US9105806B2 (en) 2009-03-09 2015-08-11 Soraa, Inc. Polarization direction of optical devices using selected spatial configurations
US9147807B1 (en) 2014-04-08 2015-09-29 Panasonic Intellectual Property Management Co., Ltd. Nitride semiconductor light-emitting diode
US9269876B2 (en) 2012-03-06 2016-02-23 Soraa, Inc. Light emitting diodes with low refractive index material layers to reduce light guiding effects
US9391118B2 (en) 2007-01-22 2016-07-12 Cree, Inc. Fault tolerant light emitters, systems incorporating fault tolerant light emitters and methods of fabricating fault tolerant light emitters
US9419189B1 (en) 2013-11-04 2016-08-16 Soraa, Inc. Small LED source with high brightness and high efficiency
US9450143B2 (en) 2010-06-18 2016-09-20 Soraa, Inc. Gallium and nitrogen containing triangular or diamond-shaped configuration for optical devices
US9583678B2 (en) 2009-09-18 2017-02-28 Soraa, Inc. High-performance LED fabrication
US9978904B2 (en) 2012-10-16 2018-05-22 Soraa, Inc. Indium gallium nitride light emitting devices
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US10157898B2 (en) 2007-01-22 2018-12-18 Cree, Inc. Illumination devices, and methods of fabricating same
DE102022123683A1 (en) 2022-09-15 2024-03-21 Ams-Osram International Gmbh OPTOELECTRONIC COMPONENT AND METHOD FOR THE PRODUCTION THEREOF

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100628628B1 (en) * 1998-05-28 2006-09-27 스미토모덴키고교가부시키가이샤 Gallium nitride based semiconductor device
US8692277B2 (en) 2001-02-01 2014-04-08 Cree, Inc. Light emitting diodes including optically matched substrates
US6791119B2 (en) 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
US6794684B2 (en) 2001-02-01 2004-09-21 Cree, Inc. Reflective ohmic contacts for silicon carbide including a layer consisting essentially of nickel, methods of fabricating same, and light emitting devices including the same
US7026659B2 (en) 2001-02-01 2006-04-11 Cree, Inc. Light emitting diodes including pedestals
US8426881B2 (en) 2001-02-01 2013-04-23 Cree, Inc. Light emitting diodes including two reflector layers
US7420222B2 (en) 2001-02-01 2008-09-02 Cree, Inc. Light emitting diodes including transparent oxide layers
US7211833B2 (en) 2001-07-23 2007-05-01 Cree, Inc. Light emitting diodes including barrier layers/sublayers
US7037742B2 (en) 2001-07-23 2006-05-02 Cree, Inc. Methods of fabricating light emitting devices using mesa regions and passivation layers
US7611915B2 (en) 2001-07-23 2009-11-03 Cree, Inc. Methods of manufacturing light emitting diodes including barrier layers/sublayers
US8907366B2 (en) 2001-07-23 2014-12-09 Cree, Inc. Light emitting diodes including current spreading layer and barrier sublayers
US6740906B2 (en) 2001-07-23 2004-05-25 Cree, Inc. Light emitting diodes including modifications for submount bonding
US6635503B2 (en) 2002-01-28 2003-10-21 Cree, Inc. Cluster packaging of light emitting diodes
US7498184B2 (en) 2004-10-07 2009-03-03 Showa Denko K.K. Production method for semiconductor device
WO2006038713A1 (en) * 2004-10-07 2006-04-13 Showa Denko K.K. Production method for semiconductor device
US8901699B2 (en) 2005-05-11 2014-12-02 Cree, Inc. Silicon carbide junction barrier Schottky diodes with suppressed minority carrier injection
JP2007201305A (en) * 2006-01-30 2007-08-09 Sony Corp Semiconductor laser device, semiconductor laser chip, and method for manufacturing semiconductor laser device
JP2008130628A (en) * 2006-11-17 2008-06-05 Hitachi Displays Ltd Liquid-crystal display device
US9391118B2 (en) 2007-01-22 2016-07-12 Cree, Inc. Fault tolerant light emitters, systems incorporating fault tolerant light emitters and methods of fabricating fault tolerant light emitters
US10157898B2 (en) 2007-01-22 2018-12-18 Cree, Inc. Illumination devices, and methods of fabricating same
US10586787B2 (en) 2007-01-22 2020-03-10 Cree, Inc. Illumination devices using externally interconnected arrays of light emitting devices, and methods of fabricating same
JP2010040697A (en) * 2008-08-04 2010-02-18 Sumitomo Electric Ind Ltd Semiconductor device and manufacturing method thereof
US9105806B2 (en) 2009-03-09 2015-08-11 Soraa, Inc. Polarization direction of optical devices using selected spatial configurations
US10693041B2 (en) 2009-09-18 2020-06-23 Soraa, Inc. High-performance LED fabrication
US9583678B2 (en) 2009-09-18 2017-02-28 Soraa, Inc. High-performance LED fabrication
US8905588B2 (en) 2010-02-03 2014-12-09 Sorra, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US11411135B2 (en) 2010-06-18 2022-08-09 Korrus, Inc. Gallium and nitrogen containing triangular or diamond-shaped configuration for optical devices
US9450143B2 (en) 2010-06-18 2016-09-20 Soraa, Inc. Gallium and nitrogen containing triangular or diamond-shaped configuration for optical devices
JP2016006881A (en) * 2010-06-18 2016-01-14 ソラア インコーポレーテッドSoraa Inc. Triangular or rhomboid structure containing gallium and nitrogen for optical device
JP2013535109A (en) * 2010-06-18 2013-09-09 ソラア インコーポレーテッド Gallium and nitrogen containing triangle or rhombus configuration for optical devices
US8946865B2 (en) 2011-01-24 2015-02-03 Soraa, Inc. Gallium—nitride-on-handle substrate materials and devices and method of manufacture
US9076926B2 (en) 2011-08-22 2015-07-07 Soraa, Inc. Gallium and nitrogen containing trilateral configuration for optical devices
US8912025B2 (en) 2011-11-23 2014-12-16 Soraa, Inc. Method for manufacture of bright GaN LEDs using a selective removal process
US9269876B2 (en) 2012-03-06 2016-02-23 Soraa, Inc. Light emitting diodes with low refractive index material layers to reduce light guiding effects
US9978904B2 (en) 2012-10-16 2018-05-22 Soraa, Inc. Indium gallium nitride light emitting devices
WO2014108777A1 (en) * 2013-01-08 2014-07-17 Koninklijke Philips N.V. Shaped led for enhanced light extraction efficiency
JP2016506083A (en) * 2013-01-08 2016-02-25 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. LED molded for improved light extraction efficiency
CN104885234A (en) * 2013-01-08 2015-09-02 皇家飞利浦有限公司 Shaped LED for enhanced light extraction efficiency
US8994033B2 (en) 2013-07-09 2015-03-31 Soraa, Inc. Contacts for an n-type gallium and nitrogen substrate for optical devices
US9419189B1 (en) 2013-11-04 2016-08-16 Soraa, Inc. Small LED source with high brightness and high efficiency
US10529902B2 (en) 2013-11-04 2020-01-07 Soraa, Inc. Small LED source with high brightness and high efficiency
US9385275B2 (en) 2014-04-08 2016-07-05 Panasonic Intellectual Property Management Co., Ltd. Nitride semiconductor light-emitting diode
US9147807B1 (en) 2014-04-08 2015-09-29 Panasonic Intellectual Property Management Co., Ltd. Nitride semiconductor light-emitting diode
DE102022123683A1 (en) 2022-09-15 2024-03-21 Ams-Osram International Gmbh OPTOELECTRONIC COMPONENT AND METHOD FOR THE PRODUCTION THEREOF

Similar Documents

Publication Publication Date Title
JPH0982587A (en) Preparation of nonsquare electronic chip
JP4126749B2 (en) Manufacturing method of semiconductor device
KR100495215B1 (en) VERTICAL GaN LIGHT EMITTING DIODE AND METHOD OF PRODUCING THE SAME
KR100610632B1 (en) Manufacturing method of led having vertical structure
JP3822976B2 (en) Semiconductor device and manufacturing method thereof
KR100483049B1 (en) A METHOD OF PRODUCING VERTICAL GaN LIGHT EMITTING DIODES
US20080219309A1 (en) Method of fabricating semiconductor laser diode apparatus and semiconductor laser diode apparatus
JPH08330628A (en) Light-emitting semiconductor element and its manufacture
US4731790A (en) Semiconductor laser chip having a layer structure to reduce the probability of an ungrown region
JP3421523B2 (en) Wafer splitting method
US20060040500A1 (en) Nitride semiconductor chip and method for manufacturing nitride semiconductor chip
JPH10223930A (en) Semiconductor light emitting element
US20040169185A1 (en) High luminescent light emitting diode
JPH10335699A (en) Compound semiconductor light emitting element and manufacture thereof
US8102892B2 (en) Semiconductor laser light emitting device and method for manufacturing same
KR100421224B1 (en) Method of isolating semiconductor laser diode
JPH10209506A (en) Manufacture of semiconductor light emitting element
JPH0983081A (en) Fabrication of semiconductor laser element
KR20160028436A (en) Light-emitting device
JP3856639B2 (en) Manufacturing method of semiconductor light emitting device
CN110581207A (en) Light emitting assembly and method of manufacturing the same
JP3053750B2 (en) Method for manufacturing edge-emitting LED
KR100335796B1 (en) Scribing/Breaking Methods for the Optoelectronic Devices of GaN-Based Semiconductor Films Grown on Sapphire Substrates
WO2021261192A1 (en) Method for manufacturing semiconductor laser element, semiconductor laser element, and semiconductor laser device
US20080175290A1 (en) Semiconductor device and method for fabricating the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050930

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070109

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20070925